Abstract

A highly birefringent elliptical-hole terahertz (THz) fiber with a squeezed lattice is proposed. This THz fiber is formed through regular linear deformation of a circular porous fiber by squeezing it in one direction, which may be fabricated with the existing fabrication technology. By numerical analysis we show that, with a moderate amount of deformation, the proposed THz fiber can exhibit high birefringence on a level of 102 over a wide THz frequency range. And the THz fiber guiding loss caused by material absorption can be reduced effectively, since a dominant fraction of modal power is distributed in the airholes inside the dielectric material.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature 432, 376-379 (2004).
    [CrossRef] [PubMed]
  2. J. Harrington, R. George, P. Pedersen, and E. Mueller, “Hollow polycarbonate waveguides with inner Cu coatings for delivery of terahertz radiation,” Opt. Express 12, 5263-5268 (2004).
    [CrossRef] [PubMed]
  3. L. J. Chen, H. W. Chen, T. F. Kao, J. Y. Lu, and C. K. Sun, “Low-loss subwavelength plastic fiber for terahertz waveguiding,” Opt. Lett. 31, 308-310 (2006).
    [CrossRef] [PubMed]
  4. M. Nagel, A. Marchewka, H. Kurz, “Low-index discontinuity terahertz waveguides,” Opt. Express 14, 9944-9954 (2006).
    [CrossRef] [PubMed]
  5. B. Bowden, J. A. Harrington, and O. Mitrofanov, “Silver/polystyrene-coated hollow glass waveguides for the transmission of terahertz radiation,” Opt. Lett. 32, 2945-2947 (2007).
    [CrossRef] [PubMed]
  6. M. Wachter, M. Nagel, and H. Kurz, “Metallic slit waveguide for dispersion-free low-loss terahertz signal transmission,” Appl. Phys. Lett. 90, 061111 (2007).
    [CrossRef]
  7. M. Skorobogatiy and A. Dupuis, “Ferroelectric all-polymer hollow Bragg fibers for terahertz guidance,” Appl. Phys. Lett. 90, 113514 (2007).
    [CrossRef]
  8. J. Y. Lu, C. P. Yu, H. C. Chang, H. W. Chen, Y. T. Li, C. L. Pan, and C. K. Sun, “Terahertz air-core microstructure fiber,” Appl. Phys. Lett. 92, 064105 (2008).
    [CrossRef]
  9. A. Hassani, A. Dupuis, and M. Skorobogatiy, “Low loss porous terahertz fibers containing multiple subwavelength holes,” Appl. Phys. Lett. 92, 071101 (2008).
    [CrossRef]
  10. A. Hassani, A. Dupuis, and M. Skorobogatiy, “Porous polymer fibers for low-loss Terahertz guiding,” Opt. Express 16, 6340-6351 (2008).
    [CrossRef] [PubMed]
  11. S. Atakaramians, S. Afshar V., B. M. Fischer, D. Abbott, and T. M. Monro, “Porous fibers: a novel approach to low loss THz waveguides,” Opt. Express 16, 8845-8854 (2008).
    [CrossRef] [PubMed]
  12. S. Atakaramians, S. Afshar V., B. M. Fischer, D. Abbott, and T. M. Monro, “Low loss, low dispersion and highly birefringent terahertz porous fibers,” Opt. Commun. 282, 36-38 (2009).
    [CrossRef]
  13. M. J. Steel and R. M. Osgood, “Polarization and dispersive properties of elliptical-hole photonic crystal fibers,” J. Lightwave Technol. 19, 495-503 (2001).
    [CrossRef]
  14. D. Chen and L. Shen, “Ultrahigh birefringent photonic crystal fiber with ultralow confinement loss,” IEEE Photon. Technol. Lett. 19, 185-187 (2007).
    [CrossRef]
  15. N. A. Issa, M. A. van Eijkelenborg, M. Fellew, F. Cox, G. Henry, and M. C. J. Large, “Fabrication and study of microstructured optical fibers with elliptical holes,” Opt. Lett. 29, 1336-1338 (2004).
    [CrossRef] [PubMed]
  16. H. Ebendorff-Heidepriem and T. M. Monro, “Extrusion of complex preforms for microstructured optical fibers,” Opt. Express 15, 15086-15092 (2007).
    [CrossRef] [PubMed]
  17. V. V. Ravi Kanth Kumar, A. K. George, J. C. Knight, and P. St. J. Russell, “Tellurite photonic crystal fiber,” Opt. Express 11, 2641-2645 (2003)
    [CrossRef]
  18. M. Cho, J. Kim, H. Park, Y. Han, K. Moon, E. Jung, and H. Han, “Highly birefringent terahertz polarization maintaining plastic photonic crystal fibers,” Opt. Express 16, 7-12 (2008).
    [CrossRef] [PubMed]
  19. G. Ren, Y. Gong, P. Shum, X. Yu, J. Hu, G. Wang, M. Ong Ling Chuen, and V. Paulose, “Low-loss air-core polarization maintaining terahertz fiber,” Opt. Express 16, 13593-13598(2008).
    [CrossRef] [PubMed]
  20. A. W. Snyder and J. D. Love, Optical Waveguide Theory(Chapman & Hall, 1983).
  21. M. Goto, A. Quema, H. Takahashi, S. Ono, and N. Sarukura, “Teflon photonic crystal fiber as terahertz waveguide,” Jpn. J. Appl. Phys. 43, L317-L319 (2004).
    [CrossRef]

2009 (1)

S. Atakaramians, S. Afshar V., B. M. Fischer, D. Abbott, and T. M. Monro, “Low loss, low dispersion and highly birefringent terahertz porous fibers,” Opt. Commun. 282, 36-38 (2009).
[CrossRef]

2008 (6)

2007 (5)

M. Wachter, M. Nagel, and H. Kurz, “Metallic slit waveguide for dispersion-free low-loss terahertz signal transmission,” Appl. Phys. Lett. 90, 061111 (2007).
[CrossRef]

M. Skorobogatiy and A. Dupuis, “Ferroelectric all-polymer hollow Bragg fibers for terahertz guidance,” Appl. Phys. Lett. 90, 113514 (2007).
[CrossRef]

D. Chen and L. Shen, “Ultrahigh birefringent photonic crystal fiber with ultralow confinement loss,” IEEE Photon. Technol. Lett. 19, 185-187 (2007).
[CrossRef]

B. Bowden, J. A. Harrington, and O. Mitrofanov, “Silver/polystyrene-coated hollow glass waveguides for the transmission of terahertz radiation,” Opt. Lett. 32, 2945-2947 (2007).
[CrossRef] [PubMed]

H. Ebendorff-Heidepriem and T. M. Monro, “Extrusion of complex preforms for microstructured optical fibers,” Opt. Express 15, 15086-15092 (2007).
[CrossRef] [PubMed]

2006 (2)

2004 (4)

2003 (1)

2001 (1)

George, A. K.

Russell, P. St. J.

Abbott, D.

S. Atakaramians, S. Afshar V., B. M. Fischer, D. Abbott, and T. M. Monro, “Low loss, low dispersion and highly birefringent terahertz porous fibers,” Opt. Commun. 282, 36-38 (2009).
[CrossRef]

S. Atakaramians, S. Afshar V., B. M. Fischer, D. Abbott, and T. M. Monro, “Porous fibers: a novel approach to low loss THz waveguides,” Opt. Express 16, 8845-8854 (2008).
[CrossRef] [PubMed]

Afshar V., S.

S. Atakaramians, S. Afshar V., B. M. Fischer, D. Abbott, and T. M. Monro, “Low loss, low dispersion and highly birefringent terahertz porous fibers,” Opt. Commun. 282, 36-38 (2009).
[CrossRef]

S. Atakaramians, S. Afshar V., B. M. Fischer, D. Abbott, and T. M. Monro, “Porous fibers: a novel approach to low loss THz waveguides,” Opt. Express 16, 8845-8854 (2008).
[CrossRef] [PubMed]

Atakaramians, S.

S. Atakaramians, S. Afshar V., B. M. Fischer, D. Abbott, and T. M. Monro, “Low loss, low dispersion and highly birefringent terahertz porous fibers,” Opt. Commun. 282, 36-38 (2009).
[CrossRef]

S. Atakaramians, S. Afshar V., B. M. Fischer, D. Abbott, and T. M. Monro, “Porous fibers: a novel approach to low loss THz waveguides,” Opt. Express 16, 8845-8854 (2008).
[CrossRef] [PubMed]

Bowden, B.

Chang, H. C.

J. Y. Lu, C. P. Yu, H. C. Chang, H. W. Chen, Y. T. Li, C. L. Pan, and C. K. Sun, “Terahertz air-core microstructure fiber,” Appl. Phys. Lett. 92, 064105 (2008).
[CrossRef]

Chen, D.

D. Chen and L. Shen, “Ultrahigh birefringent photonic crystal fiber with ultralow confinement loss,” IEEE Photon. Technol. Lett. 19, 185-187 (2007).
[CrossRef]

Chen, H. W.

J. Y. Lu, C. P. Yu, H. C. Chang, H. W. Chen, Y. T. Li, C. L. Pan, and C. K. Sun, “Terahertz air-core microstructure fiber,” Appl. Phys. Lett. 92, 064105 (2008).
[CrossRef]

L. J. Chen, H. W. Chen, T. F. Kao, J. Y. Lu, and C. K. Sun, “Low-loss subwavelength plastic fiber for terahertz waveguiding,” Opt. Lett. 31, 308-310 (2006).
[CrossRef] [PubMed]

Chen, L. J.

Cho, M.

Cox, F.

Dupuis, A.

A. Hassani, A. Dupuis, and M. Skorobogatiy, “Porous polymer fibers for low-loss Terahertz guiding,” Opt. Express 16, 6340-6351 (2008).
[CrossRef] [PubMed]

A. Hassani, A. Dupuis, and M. Skorobogatiy, “Low loss porous terahertz fibers containing multiple subwavelength holes,” Appl. Phys. Lett. 92, 071101 (2008).
[CrossRef]

M. Skorobogatiy and A. Dupuis, “Ferroelectric all-polymer hollow Bragg fibers for terahertz guidance,” Appl. Phys. Lett. 90, 113514 (2007).
[CrossRef]

Ebendorff-Heidepriem, H.

Fellew, M.

Fischer, B. M.

S. Atakaramians, S. Afshar V., B. M. Fischer, D. Abbott, and T. M. Monro, “Low loss, low dispersion and highly birefringent terahertz porous fibers,” Opt. Commun. 282, 36-38 (2009).
[CrossRef]

S. Atakaramians, S. Afshar V., B. M. Fischer, D. Abbott, and T. M. Monro, “Porous fibers: a novel approach to low loss THz waveguides,” Opt. Express 16, 8845-8854 (2008).
[CrossRef] [PubMed]

George, R.

Gong, Y.

Goto, M.

M. Goto, A. Quema, H. Takahashi, S. Ono, and N. Sarukura, “Teflon photonic crystal fiber as terahertz waveguide,” Jpn. J. Appl. Phys. 43, L317-L319 (2004).
[CrossRef]

Han, H.

Han, Y.

Harrington, J.

Harrington, J. A.

Hassani, A.

A. Hassani, A. Dupuis, and M. Skorobogatiy, “Low loss porous terahertz fibers containing multiple subwavelength holes,” Appl. Phys. Lett. 92, 071101 (2008).
[CrossRef]

A. Hassani, A. Dupuis, and M. Skorobogatiy, “Porous polymer fibers for low-loss Terahertz guiding,” Opt. Express 16, 6340-6351 (2008).
[CrossRef] [PubMed]

Henry, G.

Hu, J.

Issa, N. A.

Jung, E.

Kao, T. F.

Kim, J.

Knight, J. C.

Kurz, H.

M. Wachter, M. Nagel, and H. Kurz, “Metallic slit waveguide for dispersion-free low-loss terahertz signal transmission,” Appl. Phys. Lett. 90, 061111 (2007).
[CrossRef]

M. Nagel, A. Marchewka, H. Kurz, “Low-index discontinuity terahertz waveguides,” Opt. Express 14, 9944-9954 (2006).
[CrossRef] [PubMed]

Large, M. C. J.

Li, Y. T.

J. Y. Lu, C. P. Yu, H. C. Chang, H. W. Chen, Y. T. Li, C. L. Pan, and C. K. Sun, “Terahertz air-core microstructure fiber,” Appl. Phys. Lett. 92, 064105 (2008).
[CrossRef]

Ling Chuen, M. Ong

Love, J. D.

A. W. Snyder and J. D. Love, Optical Waveguide Theory(Chapman & Hall, 1983).

Lu, J. Y.

J. Y. Lu, C. P. Yu, H. C. Chang, H. W. Chen, Y. T. Li, C. L. Pan, and C. K. Sun, “Terahertz air-core microstructure fiber,” Appl. Phys. Lett. 92, 064105 (2008).
[CrossRef]

L. J. Chen, H. W. Chen, T. F. Kao, J. Y. Lu, and C. K. Sun, “Low-loss subwavelength plastic fiber for terahertz waveguiding,” Opt. Lett. 31, 308-310 (2006).
[CrossRef] [PubMed]

Marchewka, A.

Mitrofanov, O.

Mittleman, D. M.

K. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature 432, 376-379 (2004).
[CrossRef] [PubMed]

Monro, T. M.

Moon, K.

Mueller, E.

Nagel, M.

M. Wachter, M. Nagel, and H. Kurz, “Metallic slit waveguide for dispersion-free low-loss terahertz signal transmission,” Appl. Phys. Lett. 90, 061111 (2007).
[CrossRef]

M. Nagel, A. Marchewka, H. Kurz, “Low-index discontinuity terahertz waveguides,” Opt. Express 14, 9944-9954 (2006).
[CrossRef] [PubMed]

Ono, S.

M. Goto, A. Quema, H. Takahashi, S. Ono, and N. Sarukura, “Teflon photonic crystal fiber as terahertz waveguide,” Jpn. J. Appl. Phys. 43, L317-L319 (2004).
[CrossRef]

Osgood, R. M.

Pan, C. L.

J. Y. Lu, C. P. Yu, H. C. Chang, H. W. Chen, Y. T. Li, C. L. Pan, and C. K. Sun, “Terahertz air-core microstructure fiber,” Appl. Phys. Lett. 92, 064105 (2008).
[CrossRef]

Park, H.

Paulose, V.

Pedersen, P.

Quema, A.

M. Goto, A. Quema, H. Takahashi, S. Ono, and N. Sarukura, “Teflon photonic crystal fiber as terahertz waveguide,” Jpn. J. Appl. Phys. 43, L317-L319 (2004).
[CrossRef]

Ravi Kanth Kumar, V. V.

Ren, G.

Sarukura, N.

M. Goto, A. Quema, H. Takahashi, S. Ono, and N. Sarukura, “Teflon photonic crystal fiber as terahertz waveguide,” Jpn. J. Appl. Phys. 43, L317-L319 (2004).
[CrossRef]

Shen, L.

D. Chen and L. Shen, “Ultrahigh birefringent photonic crystal fiber with ultralow confinement loss,” IEEE Photon. Technol. Lett. 19, 185-187 (2007).
[CrossRef]

Shum, P.

Skorobogatiy, M.

A. Hassani, A. Dupuis, and M. Skorobogatiy, “Porous polymer fibers for low-loss Terahertz guiding,” Opt. Express 16, 6340-6351 (2008).
[CrossRef] [PubMed]

A. Hassani, A. Dupuis, and M. Skorobogatiy, “Low loss porous terahertz fibers containing multiple subwavelength holes,” Appl. Phys. Lett. 92, 071101 (2008).
[CrossRef]

M. Skorobogatiy and A. Dupuis, “Ferroelectric all-polymer hollow Bragg fibers for terahertz guidance,” Appl. Phys. Lett. 90, 113514 (2007).
[CrossRef]

Snyder, A. W.

A. W. Snyder and J. D. Love, Optical Waveguide Theory(Chapman & Hall, 1983).

Steel, M. J.

Sun, C. K.

J. Y. Lu, C. P. Yu, H. C. Chang, H. W. Chen, Y. T. Li, C. L. Pan, and C. K. Sun, “Terahertz air-core microstructure fiber,” Appl. Phys. Lett. 92, 064105 (2008).
[CrossRef]

L. J. Chen, H. W. Chen, T. F. Kao, J. Y. Lu, and C. K. Sun, “Low-loss subwavelength plastic fiber for terahertz waveguiding,” Opt. Lett. 31, 308-310 (2006).
[CrossRef] [PubMed]

Takahashi, H.

M. Goto, A. Quema, H. Takahashi, S. Ono, and N. Sarukura, “Teflon photonic crystal fiber as terahertz waveguide,” Jpn. J. Appl. Phys. 43, L317-L319 (2004).
[CrossRef]

van Eijkelenborg, M. A.

Wachter, M.

M. Wachter, M. Nagel, and H. Kurz, “Metallic slit waveguide for dispersion-free low-loss terahertz signal transmission,” Appl. Phys. Lett. 90, 061111 (2007).
[CrossRef]

Wang, G.

Wang, K.

K. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature 432, 376-379 (2004).
[CrossRef] [PubMed]

Yu, C. P.

J. Y. Lu, C. P. Yu, H. C. Chang, H. W. Chen, Y. T. Li, C. L. Pan, and C. K. Sun, “Terahertz air-core microstructure fiber,” Appl. Phys. Lett. 92, 064105 (2008).
[CrossRef]

Yu, X.

Appl. Phys. Lett. (4)

M. Wachter, M. Nagel, and H. Kurz, “Metallic slit waveguide for dispersion-free low-loss terahertz signal transmission,” Appl. Phys. Lett. 90, 061111 (2007).
[CrossRef]

M. Skorobogatiy and A. Dupuis, “Ferroelectric all-polymer hollow Bragg fibers for terahertz guidance,” Appl. Phys. Lett. 90, 113514 (2007).
[CrossRef]

J. Y. Lu, C. P. Yu, H. C. Chang, H. W. Chen, Y. T. Li, C. L. Pan, and C. K. Sun, “Terahertz air-core microstructure fiber,” Appl. Phys. Lett. 92, 064105 (2008).
[CrossRef]

A. Hassani, A. Dupuis, and M. Skorobogatiy, “Low loss porous terahertz fibers containing multiple subwavelength holes,” Appl. Phys. Lett. 92, 071101 (2008).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

D. Chen and L. Shen, “Ultrahigh birefringent photonic crystal fiber with ultralow confinement loss,” IEEE Photon. Technol. Lett. 19, 185-187 (2007).
[CrossRef]

J. Lightwave Technol. (1)

Jpn. J. Appl. Phys. (1)

M. Goto, A. Quema, H. Takahashi, S. Ono, and N. Sarukura, “Teflon photonic crystal fiber as terahertz waveguide,” Jpn. J. Appl. Phys. 43, L317-L319 (2004).
[CrossRef]

Nature (1)

K. Wang and D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature 432, 376-379 (2004).
[CrossRef] [PubMed]

Opt. Commun. (1)

S. Atakaramians, S. Afshar V., B. M. Fischer, D. Abbott, and T. M. Monro, “Low loss, low dispersion and highly birefringent terahertz porous fibers,” Opt. Commun. 282, 36-38 (2009).
[CrossRef]

Opt. Express (8)

Opt. Lett. (3)

Other (1)

A. W. Snyder and J. D. Love, Optical Waveguide Theory(Chapman & Hall, 1983).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Elliptical-hole THz fiber with an elliptical airhole array formed by squeezing the circular porous fiber in the y direction, where a linear deformation is assumed.

Fig. 2
Fig. 2

(a) Effective indices of fundamental x- polarized and y-polarized modes. (b) Modal birefringence versus squeeze coefficient at a fixed frequency of 1 THz ( λ = 300 μm ) for two different sizes of porous fiber with parameters of d / λ = 0.1 and 0.2, where D = 7 Λ and d = 0.8 Λ .

Fig. 3
Fig. 3

Birefringence versus frequency for a porous fiber of D = 420 μm with a deformation coefficient of η = 1.5 .

Fig. 4
Fig. 4

(a) Effective indices versus frequency for a porous fiber with D = 420 μm and d = 0.8 Λ . Insets I and II represent the energy flux distributions for the fundamental x-polarized and y-polarized modes at 1 THz , respectively. (b) Power distribution fractions of modal power in air-cladding, airholes, and dielectric material for both fundamental x-polarized and y-polarized modes.

Fig. 5
Fig. 5

Relative absorption loss caused by material absorption versus frequency. Four groups of curves are presented that have the same parameters as those in Fig. 3. α mod is the modal propagation loss that is due to material absorption, and α mat is the bulky absorption loss of the dielectric material. The dashed curve represents the relative loss of a round solid-core fiber with a diam eter of 420 μm .

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

f x = x S z d A all S z d A ,
α mod α mat = ( ε 0 / μ 0 ) 1 / 2 n dielectric | E | 2 d A Re { z ^ · all E × H * d A } ,

Metrics