Abstract

We report on frequency measurements of a free-running Nd:YAG laser operating at temperatures down to 6.5K using a femtosecond laser frequency comb. Due to lower thermal expansion and thermo-optic effects as well as reduced electron–phonon interactions in Nd:YAG at cryogenic temperatures, a laser frequency stability on the order of 1011 at τ30s has been achieved. Within a one-week measurement period, absolute frequency deviations were lower than 1.85MHz. This is up to a 100-fold improvement of frequency stability compared to any existing free-running solid-state laser.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. V. Pound, “Electronic frequency stabilization of microwave oscillators,” Rev. Sci. Instrum. 17, 490-505 (1946).
    [CrossRef] [PubMed]
  2. R. W. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97-105 (1983).
    [CrossRef]
  3. G. C. Bjorklund, “Frequency-modulation spectroscopy: a new method for measuring weak absorptions and dispersions,” Opt. Lett. 5, 15-17 (1980).
    [CrossRef] [PubMed]
  4. T. J. Kane and R. L. Byer, “Monolithic, unidirectional, single-mode Nd:YAG ring laser,” Opt. Lett. 10, 65-67 (1985).
    [CrossRef] [PubMed]
  5. T. Kushida, “Linewidth and thermal shifts of spectral lines in neodymium-doped yttrium aluminum garnet and calcium fluorophosphates,” Phys. Rev. 185, 500-508(1969).
    [CrossRef]
  6. V. A. Sychugov and G. P. Shipulo, “Thermal investigation on Nd 3+ doped yttrium aluminum garnet,” Sov. Phys. Solid State 10, 2224-2225 (1969).
  7. R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAlO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2 and KY(WO4)2 laser crystals in the 80-300 K temperature range,” J. Appl. Phys. 98, 103514 (2005).
    [CrossRef]
  8. D. C. Brown, “The promise of cryogenic solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 11, 587-599 (2005).
    [CrossRef]
  9. A. A. Kaminskii, Laser Crystals (Springer-Verlag, 1981).
  10. H. Müller, S. Herrmann, T. Schuldt, M. Scholz, E. Kovalchuk, and A. Peters, “Offset compensation by use of amplitude-modulated sidebands in optical frequency standards,” Opt. Lett. 28, 2186-2188 (2003).
    [CrossRef] [PubMed]
  11. E. V. Kovalchuk, T. Schuldt, and A. Peters, “Combination of a continuous-wave optical parametric oscillator and a femtosecond frequency comb for optical frequency metrology,” Opt. Lett. 30, 3141-3143 (2005)
    [CrossRef] [PubMed]
  12. R. H. Pantell and H. E. Puthoff, Fundamentals of Quantum Electronics (Wiley, 1969).
  13. G. F. Imbusch, W. M. Yen, A. L. Schawlow, D. E. McCumber, and M. D. Sturge, “Temperature dependence of the width and position of the 2E-->4A2 fluorescence lines of Cr3+ and V2+ in MgO,” Phys. Rev. 133, A1029-A1034 (1964).
    [CrossRef]
  14. I. S. Andriesh, V. Y. Gamurar', D. N. Vylegzhanin, A. A. Kaminskii, S. I. Klokishner, and Y. E. Perlin, “Electron-phonon interaction in Y3Al5O12-Nd3+,” Sov. Phys. Solid State 14, 2550 (1973).
  15. R. Wynne, J. L. Daneu, T. Y. Fan, and T. Yee, “Thermal coefficients of the expansion and refractive index in YAG,” Appl. Opt. 38, 3282-3284 (1999).
    [CrossRef]
  16. M. Heurs, V. M. Quetschke, B. Willke, and K. Danzmann, I. Freitag, “Simultaneously suppressing frequency and intensity noise in a Nd:YAG nonplanar ring oscillator by means of the current-lock technique,” Opt. Lett. 29, 2148-2150 (2004).
    [CrossRef] [PubMed]

2005 (3)

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAlO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2 and KY(WO4)2 laser crystals in the 80-300 K temperature range,” J. Appl. Phys. 98, 103514 (2005).
[CrossRef]

D. C. Brown, “The promise of cryogenic solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 11, 587-599 (2005).
[CrossRef]

E. V. Kovalchuk, T. Schuldt, and A. Peters, “Combination of a continuous-wave optical parametric oscillator and a femtosecond frequency comb for optical frequency metrology,” Opt. Lett. 30, 3141-3143 (2005)
[CrossRef] [PubMed]

2004 (1)

2003 (1)

1999 (1)

1985 (1)

1983 (1)

R. W. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97-105 (1983).
[CrossRef]

1980 (1)

1973 (1)

I. S. Andriesh, V. Y. Gamurar', D. N. Vylegzhanin, A. A. Kaminskii, S. I. Klokishner, and Y. E. Perlin, “Electron-phonon interaction in Y3Al5O12-Nd3+,” Sov. Phys. Solid State 14, 2550 (1973).

1969 (2)

T. Kushida, “Linewidth and thermal shifts of spectral lines in neodymium-doped yttrium aluminum garnet and calcium fluorophosphates,” Phys. Rev. 185, 500-508(1969).
[CrossRef]

V. A. Sychugov and G. P. Shipulo, “Thermal investigation on Nd 3+ doped yttrium aluminum garnet,” Sov. Phys. Solid State 10, 2224-2225 (1969).

1964 (1)

G. F. Imbusch, W. M. Yen, A. L. Schawlow, D. E. McCumber, and M. D. Sturge, “Temperature dependence of the width and position of the 2E-->4A2 fluorescence lines of Cr3+ and V2+ in MgO,” Phys. Rev. 133, A1029-A1034 (1964).
[CrossRef]

1946 (1)

R. V. Pound, “Electronic frequency stabilization of microwave oscillators,” Rev. Sci. Instrum. 17, 490-505 (1946).
[CrossRef] [PubMed]

Aggarwal, R. L.

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAlO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2 and KY(WO4)2 laser crystals in the 80-300 K temperature range,” J. Appl. Phys. 98, 103514 (2005).
[CrossRef]

Andriesh, I. S.

I. S. Andriesh, V. Y. Gamurar', D. N. Vylegzhanin, A. A. Kaminskii, S. I. Klokishner, and Y. E. Perlin, “Electron-phonon interaction in Y3Al5O12-Nd3+,” Sov. Phys. Solid State 14, 2550 (1973).

Bjorklund, G. C.

Brown, D. C.

D. C. Brown, “The promise of cryogenic solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 11, 587-599 (2005).
[CrossRef]

Byer, R. L.

Daneu, J. L.

Danzmann, K.

Drever, R. W.

R. W. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97-105 (1983).
[CrossRef]

Fan, T. Y.

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAlO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2 and KY(WO4)2 laser crystals in the 80-300 K temperature range,” J. Appl. Phys. 98, 103514 (2005).
[CrossRef]

R. Wynne, J. L. Daneu, T. Y. Fan, and T. Yee, “Thermal coefficients of the expansion and refractive index in YAG,” Appl. Opt. 38, 3282-3284 (1999).
[CrossRef]

Ford, G. M.

R. W. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97-105 (1983).
[CrossRef]

Freitag, I.

Gamurar', V. Y.

I. S. Andriesh, V. Y. Gamurar', D. N. Vylegzhanin, A. A. Kaminskii, S. I. Klokishner, and Y. E. Perlin, “Electron-phonon interaction in Y3Al5O12-Nd3+,” Sov. Phys. Solid State 14, 2550 (1973).

Hall, J. L.

R. W. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97-105 (1983).
[CrossRef]

Herrmann, S.

Heurs, M.

Hough, J.

R. W. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97-105 (1983).
[CrossRef]

Imbusch, G. F.

G. F. Imbusch, W. M. Yen, A. L. Schawlow, D. E. McCumber, and M. D. Sturge, “Temperature dependence of the width and position of the 2E-->4A2 fluorescence lines of Cr3+ and V2+ in MgO,” Phys. Rev. 133, A1029-A1034 (1964).
[CrossRef]

Kaminskii, A. A.

I. S. Andriesh, V. Y. Gamurar', D. N. Vylegzhanin, A. A. Kaminskii, S. I. Klokishner, and Y. E. Perlin, “Electron-phonon interaction in Y3Al5O12-Nd3+,” Sov. Phys. Solid State 14, 2550 (1973).

A. A. Kaminskii, Laser Crystals (Springer-Verlag, 1981).

Kane, T. J.

Klokishner, S. I.

I. S. Andriesh, V. Y. Gamurar', D. N. Vylegzhanin, A. A. Kaminskii, S. I. Klokishner, and Y. E. Perlin, “Electron-phonon interaction in Y3Al5O12-Nd3+,” Sov. Phys. Solid State 14, 2550 (1973).

Kovalchuk, E.

Kovalchuk, E. V.

Kowalski, F. V.

R. W. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97-105 (1983).
[CrossRef]

Kushida, T.

T. Kushida, “Linewidth and thermal shifts of spectral lines in neodymium-doped yttrium aluminum garnet and calcium fluorophosphates,” Phys. Rev. 185, 500-508(1969).
[CrossRef]

McCumber, D. E.

G. F. Imbusch, W. M. Yen, A. L. Schawlow, D. E. McCumber, and M. D. Sturge, “Temperature dependence of the width and position of the 2E-->4A2 fluorescence lines of Cr3+ and V2+ in MgO,” Phys. Rev. 133, A1029-A1034 (1964).
[CrossRef]

Müller, H.

Munley, A. J.

R. W. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97-105 (1983).
[CrossRef]

Ochoa, J. R.

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAlO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2 and KY(WO4)2 laser crystals in the 80-300 K temperature range,” J. Appl. Phys. 98, 103514 (2005).
[CrossRef]

Pantell, R. H.

R. H. Pantell and H. E. Puthoff, Fundamentals of Quantum Electronics (Wiley, 1969).

Perlin, Y. E.

I. S. Andriesh, V. Y. Gamurar', D. N. Vylegzhanin, A. A. Kaminskii, S. I. Klokishner, and Y. E. Perlin, “Electron-phonon interaction in Y3Al5O12-Nd3+,” Sov. Phys. Solid State 14, 2550 (1973).

Peters, A.

Pound, R. V.

R. V. Pound, “Electronic frequency stabilization of microwave oscillators,” Rev. Sci. Instrum. 17, 490-505 (1946).
[CrossRef] [PubMed]

Puthoff, H. E.

R. H. Pantell and H. E. Puthoff, Fundamentals of Quantum Electronics (Wiley, 1969).

Quetschke, V. M.

Ripin, D. J.

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAlO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2 and KY(WO4)2 laser crystals in the 80-300 K temperature range,” J. Appl. Phys. 98, 103514 (2005).
[CrossRef]

Schawlow, A. L.

G. F. Imbusch, W. M. Yen, A. L. Schawlow, D. E. McCumber, and M. D. Sturge, “Temperature dependence of the width and position of the 2E-->4A2 fluorescence lines of Cr3+ and V2+ in MgO,” Phys. Rev. 133, A1029-A1034 (1964).
[CrossRef]

Scholz, M.

Schuldt, T.

Shipulo, G. P.

V. A. Sychugov and G. P. Shipulo, “Thermal investigation on Nd 3+ doped yttrium aluminum garnet,” Sov. Phys. Solid State 10, 2224-2225 (1969).

Sturge, M. D.

G. F. Imbusch, W. M. Yen, A. L. Schawlow, D. E. McCumber, and M. D. Sturge, “Temperature dependence of the width and position of the 2E-->4A2 fluorescence lines of Cr3+ and V2+ in MgO,” Phys. Rev. 133, A1029-A1034 (1964).
[CrossRef]

Sychugov, V. A.

V. A. Sychugov and G. P. Shipulo, “Thermal investigation on Nd 3+ doped yttrium aluminum garnet,” Sov. Phys. Solid State 10, 2224-2225 (1969).

Vylegzhanin, D. N.

I. S. Andriesh, V. Y. Gamurar', D. N. Vylegzhanin, A. A. Kaminskii, S. I. Klokishner, and Y. E. Perlin, “Electron-phonon interaction in Y3Al5O12-Nd3+,” Sov. Phys. Solid State 14, 2550 (1973).

Ward, H.

R. W. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97-105 (1983).
[CrossRef]

Willke, B.

Wynne, R.

Yee, T.

Yen, W. M.

G. F. Imbusch, W. M. Yen, A. L. Schawlow, D. E. McCumber, and M. D. Sturge, “Temperature dependence of the width and position of the 2E-->4A2 fluorescence lines of Cr3+ and V2+ in MgO,” Phys. Rev. 133, A1029-A1034 (1964).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. B (1)

R. W. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, and H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97-105 (1983).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

D. C. Brown, “The promise of cryogenic solid-state lasers,” IEEE J. Sel. Top. Quantum Electron. 11, 587-599 (2005).
[CrossRef]

J. Appl. Phys. (1)

R. L. Aggarwal, D. J. Ripin, J. R. Ochoa, and T. Y. Fan, “Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAlO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2 and KY(WO4)2 laser crystals in the 80-300 K temperature range,” J. Appl. Phys. 98, 103514 (2005).
[CrossRef]

Opt. Lett. (5)

Phys. Rev. (2)

T. Kushida, “Linewidth and thermal shifts of spectral lines in neodymium-doped yttrium aluminum garnet and calcium fluorophosphates,” Phys. Rev. 185, 500-508(1969).
[CrossRef]

G. F. Imbusch, W. M. Yen, A. L. Schawlow, D. E. McCumber, and M. D. Sturge, “Temperature dependence of the width and position of the 2E-->4A2 fluorescence lines of Cr3+ and V2+ in MgO,” Phys. Rev. 133, A1029-A1034 (1964).
[CrossRef]

Rev. Sci. Instrum. (1)

R. V. Pound, “Electronic frequency stabilization of microwave oscillators,” Rev. Sci. Instrum. 17, 490-505 (1946).
[CrossRef] [PubMed]

Sov. Phys. Solid State (2)

V. A. Sychugov and G. P. Shipulo, “Thermal investigation on Nd 3+ doped yttrium aluminum garnet,” Sov. Phys. Solid State 10, 2224-2225 (1969).

I. S. Andriesh, V. Y. Gamurar', D. N. Vylegzhanin, A. A. Kaminskii, S. I. Klokishner, and Y. E. Perlin, “Electron-phonon interaction in Y3Al5O12-Nd3+,” Sov. Phys. Solid State 14, 2550 (1973).

Other (2)

A. A. Kaminskii, Laser Crystals (Springer-Verlag, 1981).

R. H. Pantell and H. E. Puthoff, Fundamentals of Quantum Electronics (Wiley, 1969).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

(a) Experimental setup of the cryogenic NPRO including pump power stabilization via an acousto-optic modulator (AOM). The Nd:YAG emission is coupled out via a dichroic mirror (DM) and sent to frequency stability measurements. (b) Block diagram describing the measurement of the beat difference (PCF, photonic crystal fiber; HWP, half-wave plate; PZT, piezo element; BS, beam splitter; PD, photodiode). For details, see text.

Fig. 2
Fig. 2

(a) Dependence of the cryogenic NPRO threshold on crystal temperature. Below 225 K , emission at 1061 nm is preferred due to its lower threshold power. Solid lines show theoretical predictions based on the relative populations of the R 1 and R 2 levels. (b) Laser frequency shift of the B-transition between 10 K and 200 K . Data points were retrieved by a wavemeter; the thick solid line was measured by the beat difference method [see. Fig. 1b]. The thin solid line is a theoretical fit of the gain profile shift T 4 according to Eq. (1). (Inset) At low temperatures, the laser line shift is dominated by thermal expansion and the thermo-optic effect. Details of the fit can be found in the text.

Fig. 3
Fig. 3

Comparison between the stability of the cryogenic NPRO (1,2), other free-running Nd:YAG lasers (model “Prometheus” by InnoLight GmbH and model 122 by Lightwave), and an iodine standard quantified (a) by the square-root power spectral density of their frequency fluctuations and (b) their relative Allan deviation. The cryogenic NPRO shows a stability halfway between these commercial lasers and an actively stabilized iodine standard for an integration time τ > 1 s and outperforms the iodine standard on short time scales.

Fig. 4
Fig. 4

Long-term stability of the cryogenic NPRO at 6.5 K . (a) Frequency measurements relative to the frequency of the iodine standard over a period of one week ( 10 s time average per data point). Absolute frequency deviations are below 5 MHz . (b) Corrected data according to varying pump power; absolute frequency fluctuations over one week do not exceed 1.85 MHz .

Tables (1)

Tables Icon

Table 1 Dependence of the NPRO Frequency ν NPRO on Pump Diode and Cryostat Parameters a

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Δ ν G ( T ) ( T T D ) 4 0 T D / T x 3 e x 1 d x π 4 15 ( T T D ) 4 ,
ν R ( T ) = ν 0 + T ν R T = ν 0 m c T n L ( α ( T ) + 1 / n n ( T ) T ) ,

Metrics