Abstract

An optical true-time delay (OTTD) engine based on a polynomial White cell (quadratic) is designed and simulated with commercially available components with a time delay increment of at least 25ps for wideband beam steering in the frequency range of 218GHz. The simulated quantification of aberration losses show for the first time that aberration losses in the null cell are about 5.0dB. However, for the longer delay arms, there is an additional loss of about 3.2dB/delay each time a beam travels an arm with a lens train used as a delay element compared with the same delay generated without a lens train. We present a design and simulation of a low-loss delay arms quartic cell without a lens train by using a separate field lens for each delay arm for efficient wideband beam steering.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. White, “Long optical paths of large aperture,” J. Opt. Soc. Am. 32, 285-2881942).
    [CrossRef]
  2. R. Mital, C. M. Warnky, and B. L. Anderson, “Design and demonstration of an optical true-time-delay device based on an octic-style white cell,” J. Lightwave Technol. 24, 982-990(2006).
    [CrossRef]
  3. B. L. Anderson, D. J. Rabb, C. M. Warnky, and F. Abou-Galala, “Binary optical true-time delay based on the White cell: design and demonstration,” J. Lightwave Technol. 24, 1886-1895(2006).
    [CrossRef]
  4. B. L., S. A. Collins, R. Mital, N. K. Nahar, and B. R. Stone, The “Octic” White cell true- time delay device,” in Government Microcircuit Applications and Critical Technology Conference-2003, Tampa, Florida, 31 March-3 April 2003; http://www.gomactech.net/2003/agenda_new.html
  5. R. Higgins, N. K. Nahar, and B. L. Anderson, “Design and demonstration of a switching engine for a binary true-time-delay device that uses a White cell,” Appl. Opt. 42, 4747-4757(2003).
    [CrossRef] [PubMed]
  6. C. M. Warnky, R. Mital, and B. L. Anderson, “Demonstration of quartic cell, a free-space true-time-delay device based on White cell,” J. Lightwave Technol. 243849-3855 (2006).
    [CrossRef]
  7. S. Kunathikom, B. L. Anderson, and S. A. Collins,Jr., “Design of delay elements in a binary optical true-time-delay device that uses a White Cell,” Appl. Opt. 426984-6994 (2003).
    [CrossRef] [PubMed]
  8. B. L. Anderson, S. A. Collins, R. G. Rojas, G. Valco, C. M. Warnky, D. J. Rabb, F. Abou-Galala, N. K. Nahar, and G. Hughes, “Binary optical true-time delay based on the White cell: final report phase I,” (ElectroScience Laboratory, The Ohio State University, 2004).
  9. N. K. Nahar and R. G. Rojas, “Coupling loss from free-space to large mode area photonic crystal fibers,” J. Lightwave Technol. 26, 3669-3676 (2008).
    [CrossRef]
  10. W. H. Kohn, “Astigmatism and White cells: theoretical considerations on the construction of an anastigmatic White cell,” Appl. Opt. 31, 6757-6764 (1992).
    [CrossRef] [PubMed]
  11. Lambda Research Corporation, “OSLO leading lens design software,” http://www.lambdares.com/software_products/oslo/
  12. A. Y. Yi, C. Huang, F. Klocke, C. Brecher, G. Pongs, M. Winterschladen, A. Demmer, S. Lange, T. Bergs, M. Merz, and F. Niehaus, “Development of a compression molding process for three-dimensional tailored free-form glass optics,” Appl. Opt. 45, 6511-6518 (2006).
    [CrossRef] [PubMed]
  13. W. T. Plummer, J. G. Baker, and J. V. Tassell, “Photographic optical systems with nonrotational aspheric surfaces,” Appl. Opt. 38, 3572-3592 (1999).
    [CrossRef]
  14. B. L. Anderson and C. D. Liddle, “Optical true time delay for phased-array antennas: demonstration of a quadratic White cell,” Appl. Opt. 41, 4912-4921 (2002).
    [CrossRef] [PubMed]

2008 (1)

2006 (4)

2003 (2)

2002 (1)

1999 (1)

1992 (1)

1942 (1)

Abou-Galala, F.

B. L. Anderson, D. J. Rabb, C. M. Warnky, and F. Abou-Galala, “Binary optical true-time delay based on the White cell: design and demonstration,” J. Lightwave Technol. 24, 1886-1895(2006).
[CrossRef]

B. L. Anderson, S. A. Collins, R. G. Rojas, G. Valco, C. M. Warnky, D. J. Rabb, F. Abou-Galala, N. K. Nahar, and G. Hughes, “Binary optical true-time delay based on the White cell: final report phase I,” (ElectroScience Laboratory, The Ohio State University, 2004).

Anderson, B. L.

Baker, J. G.

Bergs, T.

Brecher, C.

Collins, S. A.

S. Kunathikom, B. L. Anderson, and S. A. Collins,Jr., “Design of delay elements in a binary optical true-time-delay device that uses a White Cell,” Appl. Opt. 426984-6994 (2003).
[CrossRef] [PubMed]

B. L. Anderson, S. A. Collins, R. G. Rojas, G. Valco, C. M. Warnky, D. J. Rabb, F. Abou-Galala, N. K. Nahar, and G. Hughes, “Binary optical true-time delay based on the White cell: final report phase I,” (ElectroScience Laboratory, The Ohio State University, 2004).

B. L., S. A. Collins, R. Mital, N. K. Nahar, and B. R. Stone, The “Octic” White cell true- time delay device,” in Government Microcircuit Applications and Critical Technology Conference-2003, Tampa, Florida, 31 March-3 April 2003; http://www.gomactech.net/2003/agenda_new.html

Demmer, A.

Higgins, R.

Huang, C.

Hughes, G.

B. L. Anderson, S. A. Collins, R. G. Rojas, G. Valco, C. M. Warnky, D. J. Rabb, F. Abou-Galala, N. K. Nahar, and G. Hughes, “Binary optical true-time delay based on the White cell: final report phase I,” (ElectroScience Laboratory, The Ohio State University, 2004).

Klocke, F.

Kohn, W. H.

Kunathikom, S.

Lange, S.

Liddle, C. D.

Merz, M.

Mital, R.

C. M. Warnky, R. Mital, and B. L. Anderson, “Demonstration of quartic cell, a free-space true-time-delay device based on White cell,” J. Lightwave Technol. 243849-3855 (2006).
[CrossRef]

R. Mital, C. M. Warnky, and B. L. Anderson, “Design and demonstration of an optical true-time-delay device based on an octic-style white cell,” J. Lightwave Technol. 24, 982-990(2006).
[CrossRef]

B. L., S. A. Collins, R. Mital, N. K. Nahar, and B. R. Stone, The “Octic” White cell true- time delay device,” in Government Microcircuit Applications and Critical Technology Conference-2003, Tampa, Florida, 31 March-3 April 2003; http://www.gomactech.net/2003/agenda_new.html

Nahar, N. K.

N. K. Nahar and R. G. Rojas, “Coupling loss from free-space to large mode area photonic crystal fibers,” J. Lightwave Technol. 26, 3669-3676 (2008).
[CrossRef]

R. Higgins, N. K. Nahar, and B. L. Anderson, “Design and demonstration of a switching engine for a binary true-time-delay device that uses a White cell,” Appl. Opt. 42, 4747-4757(2003).
[CrossRef] [PubMed]

B. L., S. A. Collins, R. Mital, N. K. Nahar, and B. R. Stone, The “Octic” White cell true- time delay device,” in Government Microcircuit Applications and Critical Technology Conference-2003, Tampa, Florida, 31 March-3 April 2003; http://www.gomactech.net/2003/agenda_new.html

B. L. Anderson, S. A. Collins, R. G. Rojas, G. Valco, C. M. Warnky, D. J. Rabb, F. Abou-Galala, N. K. Nahar, and G. Hughes, “Binary optical true-time delay based on the White cell: final report phase I,” (ElectroScience Laboratory, The Ohio State University, 2004).

Niehaus, F.

Plummer, W. T.

Pongs, G.

Rabb, D. J.

B. L. Anderson, D. J. Rabb, C. M. Warnky, and F. Abou-Galala, “Binary optical true-time delay based on the White cell: design and demonstration,” J. Lightwave Technol. 24, 1886-1895(2006).
[CrossRef]

B. L. Anderson, S. A. Collins, R. G. Rojas, G. Valco, C. M. Warnky, D. J. Rabb, F. Abou-Galala, N. K. Nahar, and G. Hughes, “Binary optical true-time delay based on the White cell: final report phase I,” (ElectroScience Laboratory, The Ohio State University, 2004).

Rojas, R. G.

N. K. Nahar and R. G. Rojas, “Coupling loss from free-space to large mode area photonic crystal fibers,” J. Lightwave Technol. 26, 3669-3676 (2008).
[CrossRef]

B. L. Anderson, S. A. Collins, R. G. Rojas, G. Valco, C. M. Warnky, D. J. Rabb, F. Abou-Galala, N. K. Nahar, and G. Hughes, “Binary optical true-time delay based on the White cell: final report phase I,” (ElectroScience Laboratory, The Ohio State University, 2004).

Stone, B. R.

B. L., S. A. Collins, R. Mital, N. K. Nahar, and B. R. Stone, The “Octic” White cell true- time delay device,” in Government Microcircuit Applications and Critical Technology Conference-2003, Tampa, Florida, 31 March-3 April 2003; http://www.gomactech.net/2003/agenda_new.html

Tassell, J. V.

Valco, G.

B. L. Anderson, S. A. Collins, R. G. Rojas, G. Valco, C. M. Warnky, D. J. Rabb, F. Abou-Galala, N. K. Nahar, and G. Hughes, “Binary optical true-time delay based on the White cell: final report phase I,” (ElectroScience Laboratory, The Ohio State University, 2004).

Warnky, C. M.

White, J.

Winterschladen, M.

Yi, A. Y.

Appl. Opt. (6)

J. Lightwave Technol. (4)

J. Opt. Soc. Am. (1)

Other (3)

B. L. Anderson, S. A. Collins, R. G. Rojas, G. Valco, C. M. Warnky, D. J. Rabb, F. Abou-Galala, N. K. Nahar, and G. Hughes, “Binary optical true-time delay based on the White cell: final report phase I,” (ElectroScience Laboratory, The Ohio State University, 2004).

B. L., S. A. Collins, R. Mital, N. K. Nahar, and B. R. Stone, The “Octic” White cell true- time delay device,” in Government Microcircuit Applications and Critical Technology Conference-2003, Tampa, Florida, 31 March-3 April 2003; http://www.gomactech.net/2003/agenda_new.html

Lambda Research Corporation, “OSLO leading lens design software,” http://www.lambdares.com/software_products/oslo/

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Layout of the quadratic cell and its connectivity diagram (a) with and (b) without lens train. (c)  Spot patterns of the input/output beams on the MEMS.

Fig. 2
Fig. 2

Schematic of an OTTD wideband beam steering system.

Fig. 3
Fig. 3

Aberrations at (a) null arms, (b) shorter delay arm, and (c) spot profile after six bounces.

Fig. 4
Fig. 4

Aberrations at the long arm for six bounces (a) without and (b) with a lens train.

Fig. 5
Fig. 5

Aberrations along the long arm for six bounces going to both E and F once (a) without and (b) with a lens train.

Fig. 6
Fig. 6

OSLO simulated ray-trace schematic of a free-space quartic cell.

Fig. 7
Fig. 7

Output of quartic cell after ten bounces: (a) ray-trace curves and (b) spot profile.

Fig. 8
Fig. 8

Eight-element isotropic array: (a) broadside and (b) beam steering at 115 ° for Δ t = 25 ps .

Fig. 9
Fig. 9

Eight-element isotropic array beam steering with optical loss for Δ t = 25 ps : (a) at broadside and (b) scanned at 115 ° .

Tables (6)

Tables Icon

Table 1 Delays and Free-Space Distances Along Each Arm of the Quadratic Cell

Tables Icon

Table 2 Optical Surfaces of the Quadratic Cell

Tables Icon

Table 3 Astigmatism and 3rd Order Seidel Spherical Aberration in the Quadratic Cell

Tables Icon

Table 4 Output Beam Size and Loss in a Quadratic Cell After Six Bounces

Tables Icon

Table 5 Delays and Free-Space Distances in the Quartic Cell

Tables Icon

Table 6 Optical Surfaces of the Free-Space Quartic Cell

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

N = [ ( m 2 ) ( m 2 + 2 ) + ( m 2 ) ( 1 ) ] = [ ( m 2 ) 2 + 3 ( m 2 ) ] .

Metrics