Abstract

We investigated the influence of amplitude modulation (AM) noise and phase modulation (PM) noise of a laser source on the frequency stability in frequency stabilization systems. We estimated the frequency stability and evaluated the efficacy of a noise reduction technique (the Doppler-trend subtraction method) of a laser diode frequency stabilization system, where enhanced intensity noise arising from PM-to-AM noise conversion through a reference gas cell is reduced using the technique employed in modulation transfer spectroscopy. To evaluate the relationship between the laser’s intrinsic noise and its frequency stability, we performed noise spectrum measurements and formulated frequency stability in addition to measuring Allan standard deviation. As a result, it is found that the extra noise generated in PM-to-AM conversion is efficiently removed by the Doppler-trend subtraction method and that within the feedback bandwidth, the frequency stability becomes 1 order of magnitude better than that without the method.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. L. Eickhoff and J. L. Hall, “Optical frequency standard at 532 nm,” IEEE Trans. Instrum. Meas. 44, 155-158 (1995).
    [CrossRef]
  2. N. Ito, “Doppler-free modulation transfer spectroscopy of rubidium 52S1/2-62S1/2 transitions using a frequency-doubled diode laser blue-light source,” Rev. Sci. Instrum. 71, 2655-2662 (2000).
    [CrossRef]
  3. V. B. Tiwari, S. Singh, S. R. Mishra, H. S. Rawat, and S. C. Mehendale, “Laser frequency stabilization using Doppler-free bi-polarization spectroscopy,” Opt. Commun. 263, 249-255 (2006).
    [CrossRef]
  4. C. P. Pearman, C. S. Adams, S. G. Cox, P. F. Griffin, D. A. Smith, and I. G. Hughes, “Polarization spectroscopy of a closed atomic transition: applications to laser frequency locking,” J. Phys. B 35, 5141-5151 (2002).
    [CrossRef]
  5. M. Poulin, C. Latrasse, N. Cyr, and M. Têtu, “An absolute frequency reference at 192.6 THz (1556 nm) based on a two-photon absorption line of rubidium at 778 nm for WDM communication systems,” IEEE Photon. Technol. Lett. 9, 1631-1633 (1997).
    [CrossRef]
  6. Y. Millerioux, D. Touahri, L. Hilico, A. Clairon, R. Felder, F. Biraben, and B. de Beauvoir, “Towards an accurate frequency standard at λ=778 nm using a laser diode stabilized on a hyperfine component of the Doppler-free two-photon transitions in rubidium,” Opt. Commun. 108, 91-96 (1994).
    [CrossRef]
  7. T. Hori, A. Araya, S. Moriwaki, and N. Mio, “Development of a wavelength-stabilized distributed Bragg reflector laser diode to the Cs−D2 line for field use in accurate geophysical measurements,” Rev. Sci. Instrum. 78, 026105 (2007).
    [CrossRef] [PubMed]
  8. A. Araya, T. Kunugi, Y. Fukao, I. Yamada, N. Suda, S. Maruyama, N. Mio, and S. Moriwaki, “Iodine-stabilized Nd:YAG laser applied to a long-baseline interferometer for wideband earth strain observations,” Rev. Sci. Instrum. 73, 2434-2439 (2002).
    [CrossRef]
  9. M. Bahoura and A. Clairon, “Diode-laser noise conversion in an optically dense atomic sample,” Opt. Lett. 26, 926-928(2001).
    [CrossRef]
  10. J. C. Camparo and J. G. Coffer, “Conversion of laser phase noise to amplitude noise in a resonant atomic vapor: The role of laser linewidth,” Phys. Rev. A 59, 728-735(1999).
    [CrossRef]
  11. J. A. Barnes, A. R. Chi, L. S. Cutler, D. J. Healey, D. B. Leeson, T. E. McGunigal, J. A. Mullen JR., W. L. Smith, R. L. Sydnor, R. F. C. Vessot, and G. M. R. Winkler, “Characterization of frequency stability,” IEEE Trans. Instrum. Meas. IM-20, 105-120 (1971).
    [CrossRef]
  12. L. S. Cutler and C. L. Searle, “Some aspects of the theory and measurement of frequency fluctuations in frequency standards,” Proc. IEEE 54, 136-154 (1966).
    [CrossRef]
  13. D. W. Allan, “Statistics of atomic frequency standards,” Proc. IEEE 54, 221-230 (1966).
    [CrossRef]
  14. M. Bahoura and A. Clairon, “Laser phase noise influence on the ultimate performance of its frequency stabilization to a Mach-Zehnder interferometer fringe,” IEEE Trans. Instrum. Meas. 52, 1846-1853 (2003).
    [CrossRef]
  15. M. Bahoura and A. Clairon, “Ultimate linewidth reduction of a semiconductor laser frequency-stabilized to a Fabry-Perot interferometer,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 50, 1414-1421 (2003).
    [CrossRef] [PubMed]

2007 (1)

T. Hori, A. Araya, S. Moriwaki, and N. Mio, “Development of a wavelength-stabilized distributed Bragg reflector laser diode to the Cs−D2 line for field use in accurate geophysical measurements,” Rev. Sci. Instrum. 78, 026105 (2007).
[CrossRef] [PubMed]

2006 (1)

V. B. Tiwari, S. Singh, S. R. Mishra, H. S. Rawat, and S. C. Mehendale, “Laser frequency stabilization using Doppler-free bi-polarization spectroscopy,” Opt. Commun. 263, 249-255 (2006).
[CrossRef]

2003 (2)

M. Bahoura and A. Clairon, “Laser phase noise influence on the ultimate performance of its frequency stabilization to a Mach-Zehnder interferometer fringe,” IEEE Trans. Instrum. Meas. 52, 1846-1853 (2003).
[CrossRef]

M. Bahoura and A. Clairon, “Ultimate linewidth reduction of a semiconductor laser frequency-stabilized to a Fabry-Perot interferometer,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 50, 1414-1421 (2003).
[CrossRef] [PubMed]

2002 (2)

C. P. Pearman, C. S. Adams, S. G. Cox, P. F. Griffin, D. A. Smith, and I. G. Hughes, “Polarization spectroscopy of a closed atomic transition: applications to laser frequency locking,” J. Phys. B 35, 5141-5151 (2002).
[CrossRef]

A. Araya, T. Kunugi, Y. Fukao, I. Yamada, N. Suda, S. Maruyama, N. Mio, and S. Moriwaki, “Iodine-stabilized Nd:YAG laser applied to a long-baseline interferometer for wideband earth strain observations,” Rev. Sci. Instrum. 73, 2434-2439 (2002).
[CrossRef]

2001 (1)

2000 (1)

N. Ito, “Doppler-free modulation transfer spectroscopy of rubidium 52S1/2-62S1/2 transitions using a frequency-doubled diode laser blue-light source,” Rev. Sci. Instrum. 71, 2655-2662 (2000).
[CrossRef]

1999 (1)

J. C. Camparo and J. G. Coffer, “Conversion of laser phase noise to amplitude noise in a resonant atomic vapor: The role of laser linewidth,” Phys. Rev. A 59, 728-735(1999).
[CrossRef]

1997 (1)

M. Poulin, C. Latrasse, N. Cyr, and M. Têtu, “An absolute frequency reference at 192.6 THz (1556 nm) based on a two-photon absorption line of rubidium at 778 nm for WDM communication systems,” IEEE Photon. Technol. Lett. 9, 1631-1633 (1997).
[CrossRef]

1995 (1)

M. L. Eickhoff and J. L. Hall, “Optical frequency standard at 532 nm,” IEEE Trans. Instrum. Meas. 44, 155-158 (1995).
[CrossRef]

1994 (1)

Y. Millerioux, D. Touahri, L. Hilico, A. Clairon, R. Felder, F. Biraben, and B. de Beauvoir, “Towards an accurate frequency standard at λ=778 nm using a laser diode stabilized on a hyperfine component of the Doppler-free two-photon transitions in rubidium,” Opt. Commun. 108, 91-96 (1994).
[CrossRef]

1971 (1)

J. A. Barnes, A. R. Chi, L. S. Cutler, D. J. Healey, D. B. Leeson, T. E. McGunigal, J. A. Mullen JR., W. L. Smith, R. L. Sydnor, R. F. C. Vessot, and G. M. R. Winkler, “Characterization of frequency stability,” IEEE Trans. Instrum. Meas. IM-20, 105-120 (1971).
[CrossRef]

1966 (2)

L. S. Cutler and C. L. Searle, “Some aspects of the theory and measurement of frequency fluctuations in frequency standards,” Proc. IEEE 54, 136-154 (1966).
[CrossRef]

D. W. Allan, “Statistics of atomic frequency standards,” Proc. IEEE 54, 221-230 (1966).
[CrossRef]

Adams, C. S.

C. P. Pearman, C. S. Adams, S. G. Cox, P. F. Griffin, D. A. Smith, and I. G. Hughes, “Polarization spectroscopy of a closed atomic transition: applications to laser frequency locking,” J. Phys. B 35, 5141-5151 (2002).
[CrossRef]

Allan, D. W.

D. W. Allan, “Statistics of atomic frequency standards,” Proc. IEEE 54, 221-230 (1966).
[CrossRef]

Araya, A.

T. Hori, A. Araya, S. Moriwaki, and N. Mio, “Development of a wavelength-stabilized distributed Bragg reflector laser diode to the Cs−D2 line for field use in accurate geophysical measurements,” Rev. Sci. Instrum. 78, 026105 (2007).
[CrossRef] [PubMed]

A. Araya, T. Kunugi, Y. Fukao, I. Yamada, N. Suda, S. Maruyama, N. Mio, and S. Moriwaki, “Iodine-stabilized Nd:YAG laser applied to a long-baseline interferometer for wideband earth strain observations,” Rev. Sci. Instrum. 73, 2434-2439 (2002).
[CrossRef]

Bahoura, M.

M. Bahoura and A. Clairon, “Laser phase noise influence on the ultimate performance of its frequency stabilization to a Mach-Zehnder interferometer fringe,” IEEE Trans. Instrum. Meas. 52, 1846-1853 (2003).
[CrossRef]

M. Bahoura and A. Clairon, “Ultimate linewidth reduction of a semiconductor laser frequency-stabilized to a Fabry-Perot interferometer,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 50, 1414-1421 (2003).
[CrossRef] [PubMed]

M. Bahoura and A. Clairon, “Diode-laser noise conversion in an optically dense atomic sample,” Opt. Lett. 26, 926-928(2001).
[CrossRef]

Barnes, J. A.

J. A. Barnes, A. R. Chi, L. S. Cutler, D. J. Healey, D. B. Leeson, T. E. McGunigal, J. A. Mullen JR., W. L. Smith, R. L. Sydnor, R. F. C. Vessot, and G. M. R. Winkler, “Characterization of frequency stability,” IEEE Trans. Instrum. Meas. IM-20, 105-120 (1971).
[CrossRef]

Biraben, F.

Y. Millerioux, D. Touahri, L. Hilico, A. Clairon, R. Felder, F. Biraben, and B. de Beauvoir, “Towards an accurate frequency standard at λ=778 nm using a laser diode stabilized on a hyperfine component of the Doppler-free two-photon transitions in rubidium,” Opt. Commun. 108, 91-96 (1994).
[CrossRef]

Camparo, J. C.

J. C. Camparo and J. G. Coffer, “Conversion of laser phase noise to amplitude noise in a resonant atomic vapor: The role of laser linewidth,” Phys. Rev. A 59, 728-735(1999).
[CrossRef]

Chi, A. R.

J. A. Barnes, A. R. Chi, L. S. Cutler, D. J. Healey, D. B. Leeson, T. E. McGunigal, J. A. Mullen JR., W. L. Smith, R. L. Sydnor, R. F. C. Vessot, and G. M. R. Winkler, “Characterization of frequency stability,” IEEE Trans. Instrum. Meas. IM-20, 105-120 (1971).
[CrossRef]

Clairon, A.

M. Bahoura and A. Clairon, “Ultimate linewidth reduction of a semiconductor laser frequency-stabilized to a Fabry-Perot interferometer,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 50, 1414-1421 (2003).
[CrossRef] [PubMed]

M. Bahoura and A. Clairon, “Laser phase noise influence on the ultimate performance of its frequency stabilization to a Mach-Zehnder interferometer fringe,” IEEE Trans. Instrum. Meas. 52, 1846-1853 (2003).
[CrossRef]

M. Bahoura and A. Clairon, “Diode-laser noise conversion in an optically dense atomic sample,” Opt. Lett. 26, 926-928(2001).
[CrossRef]

Y. Millerioux, D. Touahri, L. Hilico, A. Clairon, R. Felder, F. Biraben, and B. de Beauvoir, “Towards an accurate frequency standard at λ=778 nm using a laser diode stabilized on a hyperfine component of the Doppler-free two-photon transitions in rubidium,” Opt. Commun. 108, 91-96 (1994).
[CrossRef]

Coffer, J. G.

J. C. Camparo and J. G. Coffer, “Conversion of laser phase noise to amplitude noise in a resonant atomic vapor: The role of laser linewidth,” Phys. Rev. A 59, 728-735(1999).
[CrossRef]

Cox, S. G.

C. P. Pearman, C. S. Adams, S. G. Cox, P. F. Griffin, D. A. Smith, and I. G. Hughes, “Polarization spectroscopy of a closed atomic transition: applications to laser frequency locking,” J. Phys. B 35, 5141-5151 (2002).
[CrossRef]

Cutler, L. S.

J. A. Barnes, A. R. Chi, L. S. Cutler, D. J. Healey, D. B. Leeson, T. E. McGunigal, J. A. Mullen JR., W. L. Smith, R. L. Sydnor, R. F. C. Vessot, and G. M. R. Winkler, “Characterization of frequency stability,” IEEE Trans. Instrum. Meas. IM-20, 105-120 (1971).
[CrossRef]

L. S. Cutler and C. L. Searle, “Some aspects of the theory and measurement of frequency fluctuations in frequency standards,” Proc. IEEE 54, 136-154 (1966).
[CrossRef]

Cyr, N.

M. Poulin, C. Latrasse, N. Cyr, and M. Têtu, “An absolute frequency reference at 192.6 THz (1556 nm) based on a two-photon absorption line of rubidium at 778 nm for WDM communication systems,” IEEE Photon. Technol. Lett. 9, 1631-1633 (1997).
[CrossRef]

de Beauvoir, B.

Y. Millerioux, D. Touahri, L. Hilico, A. Clairon, R. Felder, F. Biraben, and B. de Beauvoir, “Towards an accurate frequency standard at λ=778 nm using a laser diode stabilized on a hyperfine component of the Doppler-free two-photon transitions in rubidium,” Opt. Commun. 108, 91-96 (1994).
[CrossRef]

Eickhoff, M. L.

M. L. Eickhoff and J. L. Hall, “Optical frequency standard at 532 nm,” IEEE Trans. Instrum. Meas. 44, 155-158 (1995).
[CrossRef]

Felder, R.

Y. Millerioux, D. Touahri, L. Hilico, A. Clairon, R. Felder, F. Biraben, and B. de Beauvoir, “Towards an accurate frequency standard at λ=778 nm using a laser diode stabilized on a hyperfine component of the Doppler-free two-photon transitions in rubidium,” Opt. Commun. 108, 91-96 (1994).
[CrossRef]

Fukao, Y.

A. Araya, T. Kunugi, Y. Fukao, I. Yamada, N. Suda, S. Maruyama, N. Mio, and S. Moriwaki, “Iodine-stabilized Nd:YAG laser applied to a long-baseline interferometer for wideband earth strain observations,” Rev. Sci. Instrum. 73, 2434-2439 (2002).
[CrossRef]

Griffin, P. F.

C. P. Pearman, C. S. Adams, S. G. Cox, P. F. Griffin, D. A. Smith, and I. G. Hughes, “Polarization spectroscopy of a closed atomic transition: applications to laser frequency locking,” J. Phys. B 35, 5141-5151 (2002).
[CrossRef]

Hall, J. L.

M. L. Eickhoff and J. L. Hall, “Optical frequency standard at 532 nm,” IEEE Trans. Instrum. Meas. 44, 155-158 (1995).
[CrossRef]

Healey, D. J.

J. A. Barnes, A. R. Chi, L. S. Cutler, D. J. Healey, D. B. Leeson, T. E. McGunigal, J. A. Mullen JR., W. L. Smith, R. L. Sydnor, R. F. C. Vessot, and G. M. R. Winkler, “Characterization of frequency stability,” IEEE Trans. Instrum. Meas. IM-20, 105-120 (1971).
[CrossRef]

Hilico, L.

Y. Millerioux, D. Touahri, L. Hilico, A. Clairon, R. Felder, F. Biraben, and B. de Beauvoir, “Towards an accurate frequency standard at λ=778 nm using a laser diode stabilized on a hyperfine component of the Doppler-free two-photon transitions in rubidium,” Opt. Commun. 108, 91-96 (1994).
[CrossRef]

Hori, T.

T. Hori, A. Araya, S. Moriwaki, and N. Mio, “Development of a wavelength-stabilized distributed Bragg reflector laser diode to the Cs−D2 line for field use in accurate geophysical measurements,” Rev. Sci. Instrum. 78, 026105 (2007).
[CrossRef] [PubMed]

Hughes, I. G.

C. P. Pearman, C. S. Adams, S. G. Cox, P. F. Griffin, D. A. Smith, and I. G. Hughes, “Polarization spectroscopy of a closed atomic transition: applications to laser frequency locking,” J. Phys. B 35, 5141-5151 (2002).
[CrossRef]

Ito, N.

N. Ito, “Doppler-free modulation transfer spectroscopy of rubidium 52S1/2-62S1/2 transitions using a frequency-doubled diode laser blue-light source,” Rev. Sci. Instrum. 71, 2655-2662 (2000).
[CrossRef]

Kunugi, T.

A. Araya, T. Kunugi, Y. Fukao, I. Yamada, N. Suda, S. Maruyama, N. Mio, and S. Moriwaki, “Iodine-stabilized Nd:YAG laser applied to a long-baseline interferometer for wideband earth strain observations,” Rev. Sci. Instrum. 73, 2434-2439 (2002).
[CrossRef]

Latrasse, C.

M. Poulin, C. Latrasse, N. Cyr, and M. Têtu, “An absolute frequency reference at 192.6 THz (1556 nm) based on a two-photon absorption line of rubidium at 778 nm for WDM communication systems,” IEEE Photon. Technol. Lett. 9, 1631-1633 (1997).
[CrossRef]

Leeson, D. B.

J. A. Barnes, A. R. Chi, L. S. Cutler, D. J. Healey, D. B. Leeson, T. E. McGunigal, J. A. Mullen JR., W. L. Smith, R. L. Sydnor, R. F. C. Vessot, and G. M. R. Winkler, “Characterization of frequency stability,” IEEE Trans. Instrum. Meas. IM-20, 105-120 (1971).
[CrossRef]

Maruyama, S.

A. Araya, T. Kunugi, Y. Fukao, I. Yamada, N. Suda, S. Maruyama, N. Mio, and S. Moriwaki, “Iodine-stabilized Nd:YAG laser applied to a long-baseline interferometer for wideband earth strain observations,” Rev. Sci. Instrum. 73, 2434-2439 (2002).
[CrossRef]

McGunigal, T. E.

J. A. Barnes, A. R. Chi, L. S. Cutler, D. J. Healey, D. B. Leeson, T. E. McGunigal, J. A. Mullen JR., W. L. Smith, R. L. Sydnor, R. F. C. Vessot, and G. M. R. Winkler, “Characterization of frequency stability,” IEEE Trans. Instrum. Meas. IM-20, 105-120 (1971).
[CrossRef]

Mehendale, S. C.

V. B. Tiwari, S. Singh, S. R. Mishra, H. S. Rawat, and S. C. Mehendale, “Laser frequency stabilization using Doppler-free bi-polarization spectroscopy,” Opt. Commun. 263, 249-255 (2006).
[CrossRef]

Millerioux, Y.

Y. Millerioux, D. Touahri, L. Hilico, A. Clairon, R. Felder, F. Biraben, and B. de Beauvoir, “Towards an accurate frequency standard at λ=778 nm using a laser diode stabilized on a hyperfine component of the Doppler-free two-photon transitions in rubidium,” Opt. Commun. 108, 91-96 (1994).
[CrossRef]

Mio, N.

T. Hori, A. Araya, S. Moriwaki, and N. Mio, “Development of a wavelength-stabilized distributed Bragg reflector laser diode to the Cs−D2 line for field use in accurate geophysical measurements,” Rev. Sci. Instrum. 78, 026105 (2007).
[CrossRef] [PubMed]

A. Araya, T. Kunugi, Y. Fukao, I. Yamada, N. Suda, S. Maruyama, N. Mio, and S. Moriwaki, “Iodine-stabilized Nd:YAG laser applied to a long-baseline interferometer for wideband earth strain observations,” Rev. Sci. Instrum. 73, 2434-2439 (2002).
[CrossRef]

Mishra, S. R.

V. B. Tiwari, S. Singh, S. R. Mishra, H. S. Rawat, and S. C. Mehendale, “Laser frequency stabilization using Doppler-free bi-polarization spectroscopy,” Opt. Commun. 263, 249-255 (2006).
[CrossRef]

Moriwaki, S.

T. Hori, A. Araya, S. Moriwaki, and N. Mio, “Development of a wavelength-stabilized distributed Bragg reflector laser diode to the Cs−D2 line for field use in accurate geophysical measurements,” Rev. Sci. Instrum. 78, 026105 (2007).
[CrossRef] [PubMed]

A. Araya, T. Kunugi, Y. Fukao, I. Yamada, N. Suda, S. Maruyama, N. Mio, and S. Moriwaki, “Iodine-stabilized Nd:YAG laser applied to a long-baseline interferometer for wideband earth strain observations,” Rev. Sci. Instrum. 73, 2434-2439 (2002).
[CrossRef]

Mullen, J. A.

J. A. Barnes, A. R. Chi, L. S. Cutler, D. J. Healey, D. B. Leeson, T. E. McGunigal, J. A. Mullen JR., W. L. Smith, R. L. Sydnor, R. F. C. Vessot, and G. M. R. Winkler, “Characterization of frequency stability,” IEEE Trans. Instrum. Meas. IM-20, 105-120 (1971).
[CrossRef]

Pearman, C. P.

C. P. Pearman, C. S. Adams, S. G. Cox, P. F. Griffin, D. A. Smith, and I. G. Hughes, “Polarization spectroscopy of a closed atomic transition: applications to laser frequency locking,” J. Phys. B 35, 5141-5151 (2002).
[CrossRef]

Poulin, M.

M. Poulin, C. Latrasse, N. Cyr, and M. Têtu, “An absolute frequency reference at 192.6 THz (1556 nm) based on a two-photon absorption line of rubidium at 778 nm for WDM communication systems,” IEEE Photon. Technol. Lett. 9, 1631-1633 (1997).
[CrossRef]

Rawat, H. S.

V. B. Tiwari, S. Singh, S. R. Mishra, H. S. Rawat, and S. C. Mehendale, “Laser frequency stabilization using Doppler-free bi-polarization spectroscopy,” Opt. Commun. 263, 249-255 (2006).
[CrossRef]

Searle, C. L.

L. S. Cutler and C. L. Searle, “Some aspects of the theory and measurement of frequency fluctuations in frequency standards,” Proc. IEEE 54, 136-154 (1966).
[CrossRef]

Singh, S.

V. B. Tiwari, S. Singh, S. R. Mishra, H. S. Rawat, and S. C. Mehendale, “Laser frequency stabilization using Doppler-free bi-polarization spectroscopy,” Opt. Commun. 263, 249-255 (2006).
[CrossRef]

Smith, D. A.

C. P. Pearman, C. S. Adams, S. G. Cox, P. F. Griffin, D. A. Smith, and I. G. Hughes, “Polarization spectroscopy of a closed atomic transition: applications to laser frequency locking,” J. Phys. B 35, 5141-5151 (2002).
[CrossRef]

Smith, W. L.

J. A. Barnes, A. R. Chi, L. S. Cutler, D. J. Healey, D. B. Leeson, T. E. McGunigal, J. A. Mullen JR., W. L. Smith, R. L. Sydnor, R. F. C. Vessot, and G. M. R. Winkler, “Characterization of frequency stability,” IEEE Trans. Instrum. Meas. IM-20, 105-120 (1971).
[CrossRef]

Suda, N.

A. Araya, T. Kunugi, Y. Fukao, I. Yamada, N. Suda, S. Maruyama, N. Mio, and S. Moriwaki, “Iodine-stabilized Nd:YAG laser applied to a long-baseline interferometer for wideband earth strain observations,” Rev. Sci. Instrum. 73, 2434-2439 (2002).
[CrossRef]

Têtu, M.

M. Poulin, C. Latrasse, N. Cyr, and M. Têtu, “An absolute frequency reference at 192.6 THz (1556 nm) based on a two-photon absorption line of rubidium at 778 nm for WDM communication systems,” IEEE Photon. Technol. Lett. 9, 1631-1633 (1997).
[CrossRef]

Tiwari, V. B.

V. B. Tiwari, S. Singh, S. R. Mishra, H. S. Rawat, and S. C. Mehendale, “Laser frequency stabilization using Doppler-free bi-polarization spectroscopy,” Opt. Commun. 263, 249-255 (2006).
[CrossRef]

Touahri, D.

Y. Millerioux, D. Touahri, L. Hilico, A. Clairon, R. Felder, F. Biraben, and B. de Beauvoir, “Towards an accurate frequency standard at λ=778 nm using a laser diode stabilized on a hyperfine component of the Doppler-free two-photon transitions in rubidium,” Opt. Commun. 108, 91-96 (1994).
[CrossRef]

Vessot, R. F. C.

J. A. Barnes, A. R. Chi, L. S. Cutler, D. J. Healey, D. B. Leeson, T. E. McGunigal, J. A. Mullen JR., W. L. Smith, R. L. Sydnor, R. F. C. Vessot, and G. M. R. Winkler, “Characterization of frequency stability,” IEEE Trans. Instrum. Meas. IM-20, 105-120 (1971).
[CrossRef]

Winkler, G. M. R.

J. A. Barnes, A. R. Chi, L. S. Cutler, D. J. Healey, D. B. Leeson, T. E. McGunigal, J. A. Mullen JR., W. L. Smith, R. L. Sydnor, R. F. C. Vessot, and G. M. R. Winkler, “Characterization of frequency stability,” IEEE Trans. Instrum. Meas. IM-20, 105-120 (1971).
[CrossRef]

Yamada, I.

A. Araya, T. Kunugi, Y. Fukao, I. Yamada, N. Suda, S. Maruyama, N. Mio, and S. Moriwaki, “Iodine-stabilized Nd:YAG laser applied to a long-baseline interferometer for wideband earth strain observations,” Rev. Sci. Instrum. 73, 2434-2439 (2002).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

M. Poulin, C. Latrasse, N. Cyr, and M. Têtu, “An absolute frequency reference at 192.6 THz (1556 nm) based on a two-photon absorption line of rubidium at 778 nm for WDM communication systems,” IEEE Photon. Technol. Lett. 9, 1631-1633 (1997).
[CrossRef]

IEEE Trans. Instrum. Meas. (3)

M. L. Eickhoff and J. L. Hall, “Optical frequency standard at 532 nm,” IEEE Trans. Instrum. Meas. 44, 155-158 (1995).
[CrossRef]

J. A. Barnes, A. R. Chi, L. S. Cutler, D. J. Healey, D. B. Leeson, T. E. McGunigal, J. A. Mullen JR., W. L. Smith, R. L. Sydnor, R. F. C. Vessot, and G. M. R. Winkler, “Characterization of frequency stability,” IEEE Trans. Instrum. Meas. IM-20, 105-120 (1971).
[CrossRef]

M. Bahoura and A. Clairon, “Laser phase noise influence on the ultimate performance of its frequency stabilization to a Mach-Zehnder interferometer fringe,” IEEE Trans. Instrum. Meas. 52, 1846-1853 (2003).
[CrossRef]

IEEE Trans. Ultrason. Ferroelectr. Freq. Control (1)

M. Bahoura and A. Clairon, “Ultimate linewidth reduction of a semiconductor laser frequency-stabilized to a Fabry-Perot interferometer,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 50, 1414-1421 (2003).
[CrossRef] [PubMed]

J. Phys. B (1)

C. P. Pearman, C. S. Adams, S. G. Cox, P. F. Griffin, D. A. Smith, and I. G. Hughes, “Polarization spectroscopy of a closed atomic transition: applications to laser frequency locking,” J. Phys. B 35, 5141-5151 (2002).
[CrossRef]

Opt. Commun. (2)

V. B. Tiwari, S. Singh, S. R. Mishra, H. S. Rawat, and S. C. Mehendale, “Laser frequency stabilization using Doppler-free bi-polarization spectroscopy,” Opt. Commun. 263, 249-255 (2006).
[CrossRef]

Y. Millerioux, D. Touahri, L. Hilico, A. Clairon, R. Felder, F. Biraben, and B. de Beauvoir, “Towards an accurate frequency standard at λ=778 nm using a laser diode stabilized on a hyperfine component of the Doppler-free two-photon transitions in rubidium,” Opt. Commun. 108, 91-96 (1994).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. A (1)

J. C. Camparo and J. G. Coffer, “Conversion of laser phase noise to amplitude noise in a resonant atomic vapor: The role of laser linewidth,” Phys. Rev. A 59, 728-735(1999).
[CrossRef]

Proc. IEEE (2)

L. S. Cutler and C. L. Searle, “Some aspects of the theory and measurement of frequency fluctuations in frequency standards,” Proc. IEEE 54, 136-154 (1966).
[CrossRef]

D. W. Allan, “Statistics of atomic frequency standards,” Proc. IEEE 54, 221-230 (1966).
[CrossRef]

Rev. Sci. Instrum. (3)

T. Hori, A. Araya, S. Moriwaki, and N. Mio, “Development of a wavelength-stabilized distributed Bragg reflector laser diode to the Cs−D2 line for field use in accurate geophysical measurements,” Rev. Sci. Instrum. 78, 026105 (2007).
[CrossRef] [PubMed]

A. Araya, T. Kunugi, Y. Fukao, I. Yamada, N. Suda, S. Maruyama, N. Mio, and S. Moriwaki, “Iodine-stabilized Nd:YAG laser applied to a long-baseline interferometer for wideband earth strain observations,” Rev. Sci. Instrum. 73, 2434-2439 (2002).
[CrossRef]

N. Ito, “Doppler-free modulation transfer spectroscopy of rubidium 52S1/2-62S1/2 transitions using a frequency-doubled diode laser blue-light source,” Rev. Sci. Instrum. 71, 2655-2662 (2000).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Frequency stabilization system in Ref. [7]. BS, beam splitter; PD, photodiode; diff. amp, differential amplifier.

Fig. 2
Fig. 2

Comparison of MT spectra of C s D 2 line (transitions from F = 4 lower state) measured (a) without subtraction and (b) with subtraction.

Fig. 3
Fig. 3

Setup for the intensity noise measurements. The Cs cell has the length of 2 cm , and the absorption coefficient of 0.35 cm 1 at the center of the resonance from the F = 4 lower state.

Fig. 4
Fig. 4

Relative intensity noise spectra in three conditions, background noise of the photodetector, and the laser shot noise.

Fig. 5
Fig. 5

Stability difference between the Doppler-trend subtraction technique applied and not applied. The measured and calculated Allan standard deviation [by Eq. (2) from the noise spectrum measurement] in the free-running condition are also shown.

Fig. 6
Fig. 6

Block diagram of two successive demodulations. DBM, double-balanced mixer; LPF, low-pass filter; HPF, high-pass filter.

Fig. 7
Fig. 7

Measured and calculated stability of the system with and without the Doppler-trend subtraction technique.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

δ I I δ ν L | d Γ d ν | ,
σ y ( τ ) = 2 0 d f S y ( f ) sin 4 ( π f τ ) ( π f τ ) 2 ,
E = E 0 [ 1 + A cos ( ω a t ) ] e [ i ( ω t + Δ ϕ sin ( ω m t ) + δ ϕ sin ( ω f t ) ) ] E 0 [ 1 + α ] e [ i ( ω t + δ θ ) ] ,
E = E 0 [ 1 + α ] e [ i ( ω r t + δ θ ) ] { D ( ω r + β + ζ ) + ξ D ( ω r ) [ 1 + cos ( ω 0 t ) ] · L ( ω r + β + ζ ) } E 0 [ 1 + α ] e [ i ( ω r t + δ θ ) ] { D ( ω r ) + C 0 β + C 0 ζ + ξ D ( ω r ) [ 1 + cos ( ω 0 t ) ] [ 1 i ( β + ζ ) γ ( β + ζ ) 2 γ 2 ] } = E 0 [ 1 + α ] e [ i ( ω r t + δ θ ) ] D ( ω r ) { 1 + C β + C ζ + ξ [ 1 + cos ( ω 0 t ) ] [ 1 i ( β + ζ ) γ - ( β + ζ ) 2 γ 2 ] } ,
V 1 I = | E | 2 = | E 0 | 2 | D ( ω r ) | 2 [ 1 + α ] 2 | { 1 + C β + C ζ + ξ [ 1 + cos ( ω 0 t ) ] [ 1 i ( β + ζ ) γ ( β + ζ ) 2 γ 2 ] } | 2 | E 0 | 2 | D ( ω r ) | 2 { 1 + 2 ξ + 3 2 ξ 2 + α ( 2 + 4 ξ + 3 ξ 2 ) + 2 C β ( 1 + ξ ) + ζ [ 2 C ( 1 + ξ ) ( 1 + 2 α ) + β ( 2 C 2 - ξ ( 4 + 3 ξ ) 1 γ 2 ) } + 2 ξ cos ( ω 0 t ) [ ( 1 + ξ ) ( 1 + 2 α ) + C β + ζ ( C + 2 C α - 2 ( 1 + ξ ) β γ 2 ) ] .
α l , q h ω a = l h A ( ω a ) cos [ ( ω a q ) t ] , β l , q h ω f = l h δ ω ( ω f ) cos [ ( ω f q ) t ] ,
V 2 { 2 ξ ( 1 + ξ ) + ( 2 + 4 ξ + 3 ξ 2 ) α ω 0 ω m Ω , ω 0 ω 0 + ω m + Ω + 2 ( 1 + ξ ) C β ω 0 - ω m - Ω , ω 0 ω 0 + ω m + Ω + 4 ξ ( 1 + ξ ) α 0 , 0 ω m + Ω + 2 ξ C β 0 , 0 ω m + Ω + ζ [ 4 C ( 1 + ξ ) α ω 0 , ω 0 ω 0 + Ω + ( 2 C 2 ξ ( 4 + 3 ξ ) γ 2 ) β ω 0 , ω 0 ω 0 + Ω + 2 ξ C ( 1 + 2 α 0 , 0 Ω ) 4 ξ ( 1 + ξ ) γ 2 β 0 , 0 Ω ] } .
V error { ( 2 + 4 ξ + 3 ξ 2 ) α ω 0 ± ω m , ω 0 ± ω m ω 0 ± ω m + Ω + 2 ( 1 + ξ ) C β ω 0 ± ω m , ω 0 ± ω m ω 0 ± ω m + Ω + 4 ξ ( 1 + ξ ) α ω m , ω m ω m + Ω + 2 ξ C β ω m , ω m ω m + Ω + Δ ω [ 4 C ( 1 + ξ ) α ω 0 , ω 0 ω 0 + Ω + ( 2 C 2 ξ ( 4 + 3 ξ ) γ 2 ) β ω 0 , ω 0 ω 0 + Ω + 2 ξ C [ 1 + 2 α 0 , 0 Ω ] 4 ξ ( 1 + ξ ) γ 2 β 0 , 0 Ω ] } .
β 0 , 0 Ω = γ 2 4 ξ ( 1 + ξ ) Δ ω { ( 2 + 4 ξ + 3 ξ 2 ) α ω 0 ± ω m , ω 0 ± ω m ω 0 ± ω m + Ω + 2 ( 1 + ξ ) C β ω 0 ± ω m , ω 0 ± ω m ω 0 ± ω m + Ω + 4 ξ ( 1 + ξ ) α ω m , ω m ω m + Ω + 2 ξ C β ω m , ω m ω m + Ω + Δ ω [ 4 C ( 1 + ξ ) α ω 0 , ω 0 ω 0 + Ω + ( 2 C 2 ξ ( 4 + 3 ξ ) γ 2 ) β ω 0 , ω 0 ω 0 + Ω + 2 ξ C [ 1 + 2 α 0 , 0 Ω ] ] γ 2 2 ξ ( 1 + ξ ) Δ ω { α ω 0 ± ω m , ω 0 ± ω m ω 0 ± ω m + Ω + C β ω 0 ± ω m , ω 0 ± ω m ω 0 ± ω m + Ω + ξ ( 2 α ω m , ω m ω m + Ω + C β ω m , ω m ω m + Ω ) + C Δ ω [ 2 α ω 0 , ω 0 ω 0 + Ω + C β ω 0 , ω 0 ω 0 + Ω + ξ ( 1 + 2 α 0 , 0 Ω ) ] } ,
β 0 , 0 Ω C γ 2 2 ξ ( 1 + ξ ) [ C β ω 0 , ω 0 ω 0 + Ω + 2 ξ α 0 , 0 Ω ) ] .

Metrics