Abstract

Au:BaTiO3 composite films comprising hexagon-shaped Au nanoparticle arrays covered with BaTiO3 matrix were fabricated by double-layer nanosphere lithography and pulsed laser deposition technique. The optical nonlinearity of the composite film was determined using the Z-scan technique at a wavelength of 532nm and a pulse duration of 25ps. The third-order nonlinear optical susceptibility, χ(3), was found to be 2.9×108esu, which is comparable with the best values in metal–dielectric films comprising randomly distributed spherical particles but with much higher metal concentrations. The local electric field enhancement in and near the particles was investigated using the dipole discrete approximation method.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters, Vol. 25 of Springer Series in Materials Science (Springer, 1995).
  2. D. Ricard, P. Roussignol, and C. Flytzanis, “Surface-mediated enhancement of optical phase conjugation in metal colloids,” Opt. Lett. 10, 511-513 (1985)
    [CrossRef] [PubMed]
  3. S. A. Maier and H. A. Atwater, “Plasmonics: localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys. 98, 011101 (2005).
    [CrossRef]
  4. H. B. Liao, R. F. Xiao, H. Wang, K. S. Wong, and G. K. L. Wong, “Large third-order optical nonlinearity in Au:TiO2 composite films measured on a femtosecond time scale,” Appl. Phys. Lett. 72, 1817-1819 (1998).
    [CrossRef]
  5. G. Yang, W. T. Wang, Y. L. Zhou, H. B. Lu, G. Z. Yang, and Z. H. Chen, “Linear and nonlinear optical properties of Ag nanocluster/BaTiO3 composite films,” Appl. Phys. Lett. 81, 3969-3971 (2002).
    [CrossRef]
  6. J. M. Ballesteros, R. Serna, J. Solis, C. N. Afonso, A. K. Petford-Long, D. H. Osborne, and R. F. Haglund, Jr., “Pulsed laser deposition of Cu:Al2O3 nanocrystal thin films with high third-order optical susceptibility,” Appl. Phys. Lett. 71, 2445-2447 (1997).
    [CrossRef]
  7. M. Meier, A. Wokaun, and P. F. Liao, “Enhanced fields on rough surfaces: dipolar interactions among particles of sizes exceeding the Rayleigh limit,” J. Opt. Soc. Am. B 2, 931-949(1985).
    [CrossRef]
  8. B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: influence of dipolar particle interation on the plasmon resonance,” Phys. Rev. Lett. 84, 4721-4274(2000).
    [CrossRef] [PubMed]
  9. L. Baia, M. Baia, J. Popp, and S. Astilean, “Gold films deposited over regular arrays of polystyrene nanospheres as highly effective SERS substrates from visible to NIR,” J. Phys. Chem. B 110, 23982-23986 (2006).
    [CrossRef] [PubMed]
  10. A. J. Haes, S. Zou, G. C. Schatz, and R. P. Van Duyne, “Nanoscale optical biosensor: short range distance dependence of the localized surface plasmon resonance of noble metal nanoparticles,” J. Phys. Chem. B 108, 6961-6968 (2004).
    [CrossRef]
  11. H. Shen, G. Lu, M. Ou, C. A. Marquette, G. Ledoux, S. Roux, O. Tillement, P. Perriat, B. Chen, and Z. Chen, “How the morphology of biochips roughness increases surface-enhanced chemiluminescence,” Chem. Phys. Lett. 439, 105-109 (2007).
    [CrossRef]
  12. H. Shen, B. Chen, G. Lu, T. Ning, D. Guan, Y. Zhou, and Z. Chen, “Enhancement of optical nonlinearity in periodic gold nanoparticle arrays,” Nanotechnology 17, 4274-4277 (2006).
    [CrossRef] [PubMed]
  13. H. W. Deckman and J. H. Dunsmuir, “Natural lithography,” Appl. Phys. Lett. 41, 377-379 (1982).
    [CrossRef]
  14. J. C. Hulteen and R. P. Van Duyne, “Nanosphere lithography: A materials general fabrication process for periodic particle array surfaces,” J. Vac. Sci. Technol. A 13, 1553-1558 (1995).
    [CrossRef]
  15. M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760-769 (1990).
    [CrossRef]
  16. H. Z. Guo, L. F. Liu, Z. H. Chen, S. Ding, H. B. Lu, K.-J. Jin, Y. L. Zhou, and B. L. Cheng, “Structure and optical properties of BaTiO3 ultrathin films,” Europhys. Lett. 73, 110-115(2006).
    [CrossRef]
  17. M. Y. Lee, T. S. Kim, and Y. S. Choi, “Third-order optical nonlinearities of solgel-processed Au-SiO2 thin films in the surface plasmon absorption region,” J. Non-Cryst. Solids 211, 143-149 (1997).
    [CrossRef]
  18. J. S. Kim, K. S. Lee, and S. S. Kim, “Third-order optical nonlinearity of Cu nanoparticle-dispersed Ba0.5Sr0.5TiO3 films prepared by alternating pulsed laser deposition,” Thin Solid Films 515, 2332-2336 (2006).
    [CrossRef]
  19. S. Zou and G. C. Schatz, “Silver nanoparticle array structures that produce giant enhancements in electromagnetic fields,” Chem. Phys. Lett. 403, 62-67 (2005).
    [CrossRef]
  20. D. A. Genov, A. K. Sarychev, V. M. Shalaev, and A. Wei, “Resonant field enhancements from metal nanoparticle arrays,” Nano Lett. 4, 153-158 (2004).
    [CrossRef]
  21. I. Tanahashi, Y. Manabe, T. Tohda, S. Sasaki, and A. Nakamura, “Optical nonlinearities of Au/SiO2 composite thin films prepared by a sputtering method,” J. Appl. Phys. 79, 1244-1249 (1996).
    [CrossRef]
  22. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370-4379 (1972).
    [CrossRef]
  23. E. M. Purcell and C. R. Pennypacker, “Scattering and adsorption of light by nonspherical dielectric grains,” Astrophys. J. 186, 705-714 (1973).
    [CrossRef]
  24. D. D. Smith, G. Fischer, R. W. Boyd, and D. A. Gregory, “Cancellation of photoinduced absorption in metal nanoparticle composites through a counterintuitive consequence of local field effects,” J. Opt. Soc. Am. B 14, 1625-1631(1997).
    [CrossRef]

2007 (1)

H. Shen, G. Lu, M. Ou, C. A. Marquette, G. Ledoux, S. Roux, O. Tillement, P. Perriat, B. Chen, and Z. Chen, “How the morphology of biochips roughness increases surface-enhanced chemiluminescence,” Chem. Phys. Lett. 439, 105-109 (2007).
[CrossRef]

2006 (4)

H. Shen, B. Chen, G. Lu, T. Ning, D. Guan, Y. Zhou, and Z. Chen, “Enhancement of optical nonlinearity in periodic gold nanoparticle arrays,” Nanotechnology 17, 4274-4277 (2006).
[CrossRef] [PubMed]

J. S. Kim, K. S. Lee, and S. S. Kim, “Third-order optical nonlinearity of Cu nanoparticle-dispersed Ba0.5Sr0.5TiO3 films prepared by alternating pulsed laser deposition,” Thin Solid Films 515, 2332-2336 (2006).
[CrossRef]

L. Baia, M. Baia, J. Popp, and S. Astilean, “Gold films deposited over regular arrays of polystyrene nanospheres as highly effective SERS substrates from visible to NIR,” J. Phys. Chem. B 110, 23982-23986 (2006).
[CrossRef] [PubMed]

H. Z. Guo, L. F. Liu, Z. H. Chen, S. Ding, H. B. Lu, K.-J. Jin, Y. L. Zhou, and B. L. Cheng, “Structure and optical properties of BaTiO3 ultrathin films,” Europhys. Lett. 73, 110-115(2006).
[CrossRef]

2005 (2)

S. A. Maier and H. A. Atwater, “Plasmonics: localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys. 98, 011101 (2005).
[CrossRef]

S. Zou and G. C. Schatz, “Silver nanoparticle array structures that produce giant enhancements in electromagnetic fields,” Chem. Phys. Lett. 403, 62-67 (2005).
[CrossRef]

2004 (2)

D. A. Genov, A. K. Sarychev, V. M. Shalaev, and A. Wei, “Resonant field enhancements from metal nanoparticle arrays,” Nano Lett. 4, 153-158 (2004).
[CrossRef]

A. J. Haes, S. Zou, G. C. Schatz, and R. P. Van Duyne, “Nanoscale optical biosensor: short range distance dependence of the localized surface plasmon resonance of noble metal nanoparticles,” J. Phys. Chem. B 108, 6961-6968 (2004).
[CrossRef]

2002 (1)

G. Yang, W. T. Wang, Y. L. Zhou, H. B. Lu, G. Z. Yang, and Z. H. Chen, “Linear and nonlinear optical properties of Ag nanocluster/BaTiO3 composite films,” Appl. Phys. Lett. 81, 3969-3971 (2002).
[CrossRef]

2000 (1)

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: influence of dipolar particle interation on the plasmon resonance,” Phys. Rev. Lett. 84, 4721-4274(2000).
[CrossRef] [PubMed]

1998 (1)

H. B. Liao, R. F. Xiao, H. Wang, K. S. Wong, and G. K. L. Wong, “Large third-order optical nonlinearity in Au:TiO2 composite films measured on a femtosecond time scale,” Appl. Phys. Lett. 72, 1817-1819 (1998).
[CrossRef]

1997 (3)

J. M. Ballesteros, R. Serna, J. Solis, C. N. Afonso, A. K. Petford-Long, D. H. Osborne, and R. F. Haglund, Jr., “Pulsed laser deposition of Cu:Al2O3 nanocrystal thin films with high third-order optical susceptibility,” Appl. Phys. Lett. 71, 2445-2447 (1997).
[CrossRef]

M. Y. Lee, T. S. Kim, and Y. S. Choi, “Third-order optical nonlinearities of solgel-processed Au-SiO2 thin films in the surface plasmon absorption region,” J. Non-Cryst. Solids 211, 143-149 (1997).
[CrossRef]

D. D. Smith, G. Fischer, R. W. Boyd, and D. A. Gregory, “Cancellation of photoinduced absorption in metal nanoparticle composites through a counterintuitive consequence of local field effects,” J. Opt. Soc. Am. B 14, 1625-1631(1997).
[CrossRef]

1996 (1)

I. Tanahashi, Y. Manabe, T. Tohda, S. Sasaki, and A. Nakamura, “Optical nonlinearities of Au/SiO2 composite thin films prepared by a sputtering method,” J. Appl. Phys. 79, 1244-1249 (1996).
[CrossRef]

1995 (1)

J. C. Hulteen and R. P. Van Duyne, “Nanosphere lithography: A materials general fabrication process for periodic particle array surfaces,” J. Vac. Sci. Technol. A 13, 1553-1558 (1995).
[CrossRef]

1990 (1)

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760-769 (1990).
[CrossRef]

1985 (2)

1982 (1)

H. W. Deckman and J. H. Dunsmuir, “Natural lithography,” Appl. Phys. Lett. 41, 377-379 (1982).
[CrossRef]

1973 (1)

E. M. Purcell and C. R. Pennypacker, “Scattering and adsorption of light by nonspherical dielectric grains,” Astrophys. J. 186, 705-714 (1973).
[CrossRef]

1972 (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370-4379 (1972).
[CrossRef]

Afonso, C. N.

J. M. Ballesteros, R. Serna, J. Solis, C. N. Afonso, A. K. Petford-Long, D. H. Osborne, and R. F. Haglund, Jr., “Pulsed laser deposition of Cu:Al2O3 nanocrystal thin films with high third-order optical susceptibility,” Appl. Phys. Lett. 71, 2445-2447 (1997).
[CrossRef]

Astilean, S.

L. Baia, M. Baia, J. Popp, and S. Astilean, “Gold films deposited over regular arrays of polystyrene nanospheres as highly effective SERS substrates from visible to NIR,” J. Phys. Chem. B 110, 23982-23986 (2006).
[CrossRef] [PubMed]

Atwater, H. A.

S. A. Maier and H. A. Atwater, “Plasmonics: localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys. 98, 011101 (2005).
[CrossRef]

Aussenegg, F. R.

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: influence of dipolar particle interation on the plasmon resonance,” Phys. Rev. Lett. 84, 4721-4274(2000).
[CrossRef] [PubMed]

Baia, L.

L. Baia, M. Baia, J. Popp, and S. Astilean, “Gold films deposited over regular arrays of polystyrene nanospheres as highly effective SERS substrates from visible to NIR,” J. Phys. Chem. B 110, 23982-23986 (2006).
[CrossRef] [PubMed]

Baia, M.

L. Baia, M. Baia, J. Popp, and S. Astilean, “Gold films deposited over regular arrays of polystyrene nanospheres as highly effective SERS substrates from visible to NIR,” J. Phys. Chem. B 110, 23982-23986 (2006).
[CrossRef] [PubMed]

Ballesteros, J. M.

J. M. Ballesteros, R. Serna, J. Solis, C. N. Afonso, A. K. Petford-Long, D. H. Osborne, and R. F. Haglund, Jr., “Pulsed laser deposition of Cu:Al2O3 nanocrystal thin films with high third-order optical susceptibility,” Appl. Phys. Lett. 71, 2445-2447 (1997).
[CrossRef]

Boyd, R. W.

Chen, B.

H. Shen, G. Lu, M. Ou, C. A. Marquette, G. Ledoux, S. Roux, O. Tillement, P. Perriat, B. Chen, and Z. Chen, “How the morphology of biochips roughness increases surface-enhanced chemiluminescence,” Chem. Phys. Lett. 439, 105-109 (2007).
[CrossRef]

H. Shen, B. Chen, G. Lu, T. Ning, D. Guan, Y. Zhou, and Z. Chen, “Enhancement of optical nonlinearity in periodic gold nanoparticle arrays,” Nanotechnology 17, 4274-4277 (2006).
[CrossRef] [PubMed]

Chen, Z.

H. Shen, G. Lu, M. Ou, C. A. Marquette, G. Ledoux, S. Roux, O. Tillement, P. Perriat, B. Chen, and Z. Chen, “How the morphology of biochips roughness increases surface-enhanced chemiluminescence,” Chem. Phys. Lett. 439, 105-109 (2007).
[CrossRef]

H. Shen, B. Chen, G. Lu, T. Ning, D. Guan, Y. Zhou, and Z. Chen, “Enhancement of optical nonlinearity in periodic gold nanoparticle arrays,” Nanotechnology 17, 4274-4277 (2006).
[CrossRef] [PubMed]

Chen, Z. H.

H. Z. Guo, L. F. Liu, Z. H. Chen, S. Ding, H. B. Lu, K.-J. Jin, Y. L. Zhou, and B. L. Cheng, “Structure and optical properties of BaTiO3 ultrathin films,” Europhys. Lett. 73, 110-115(2006).
[CrossRef]

G. Yang, W. T. Wang, Y. L. Zhou, H. B. Lu, G. Z. Yang, and Z. H. Chen, “Linear and nonlinear optical properties of Ag nanocluster/BaTiO3 composite films,” Appl. Phys. Lett. 81, 3969-3971 (2002).
[CrossRef]

Cheng, B. L.

H. Z. Guo, L. F. Liu, Z. H. Chen, S. Ding, H. B. Lu, K.-J. Jin, Y. L. Zhou, and B. L. Cheng, “Structure and optical properties of BaTiO3 ultrathin films,” Europhys. Lett. 73, 110-115(2006).
[CrossRef]

Choi, Y. S.

M. Y. Lee, T. S. Kim, and Y. S. Choi, “Third-order optical nonlinearities of solgel-processed Au-SiO2 thin films in the surface plasmon absorption region,” J. Non-Cryst. Solids 211, 143-149 (1997).
[CrossRef]

Christy, R. W.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370-4379 (1972).
[CrossRef]

Deckman, H. W.

H. W. Deckman and J. H. Dunsmuir, “Natural lithography,” Appl. Phys. Lett. 41, 377-379 (1982).
[CrossRef]

Ding, S.

H. Z. Guo, L. F. Liu, Z. H. Chen, S. Ding, H. B. Lu, K.-J. Jin, Y. L. Zhou, and B. L. Cheng, “Structure and optical properties of BaTiO3 ultrathin films,” Europhys. Lett. 73, 110-115(2006).
[CrossRef]

Ditlbacher, H.

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: influence of dipolar particle interation on the plasmon resonance,” Phys. Rev. Lett. 84, 4721-4274(2000).
[CrossRef] [PubMed]

Dunsmuir, J. H.

H. W. Deckman and J. H. Dunsmuir, “Natural lithography,” Appl. Phys. Lett. 41, 377-379 (1982).
[CrossRef]

Fischer, G.

Flytzanis, C.

Genov, D. A.

D. A. Genov, A. K. Sarychev, V. M. Shalaev, and A. Wei, “Resonant field enhancements from metal nanoparticle arrays,” Nano Lett. 4, 153-158 (2004).
[CrossRef]

Gregory, D. A.

Guan, D.

H. Shen, B. Chen, G. Lu, T. Ning, D. Guan, Y. Zhou, and Z. Chen, “Enhancement of optical nonlinearity in periodic gold nanoparticle arrays,” Nanotechnology 17, 4274-4277 (2006).
[CrossRef] [PubMed]

Guo, H. Z.

H. Z. Guo, L. F. Liu, Z. H. Chen, S. Ding, H. B. Lu, K.-J. Jin, Y. L. Zhou, and B. L. Cheng, “Structure and optical properties of BaTiO3 ultrathin films,” Europhys. Lett. 73, 110-115(2006).
[CrossRef]

Haes, A. J.

A. J. Haes, S. Zou, G. C. Schatz, and R. P. Van Duyne, “Nanoscale optical biosensor: short range distance dependence of the localized surface plasmon resonance of noble metal nanoparticles,” J. Phys. Chem. B 108, 6961-6968 (2004).
[CrossRef]

Hagan, D. J.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760-769 (1990).
[CrossRef]

Haglund,, R. F.

J. M. Ballesteros, R. Serna, J. Solis, C. N. Afonso, A. K. Petford-Long, D. H. Osborne, and R. F. Haglund, Jr., “Pulsed laser deposition of Cu:Al2O3 nanocrystal thin films with high third-order optical susceptibility,” Appl. Phys. Lett. 71, 2445-2447 (1997).
[CrossRef]

Hulteen, J. C.

J. C. Hulteen and R. P. Van Duyne, “Nanosphere lithography: A materials general fabrication process for periodic particle array surfaces,” J. Vac. Sci. Technol. A 13, 1553-1558 (1995).
[CrossRef]

Jin, K.-J.

H. Z. Guo, L. F. Liu, Z. H. Chen, S. Ding, H. B. Lu, K.-J. Jin, Y. L. Zhou, and B. L. Cheng, “Structure and optical properties of BaTiO3 ultrathin films,” Europhys. Lett. 73, 110-115(2006).
[CrossRef]

Johnson, P. B.

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370-4379 (1972).
[CrossRef]

Kim, J. S.

J. S. Kim, K. S. Lee, and S. S. Kim, “Third-order optical nonlinearity of Cu nanoparticle-dispersed Ba0.5Sr0.5TiO3 films prepared by alternating pulsed laser deposition,” Thin Solid Films 515, 2332-2336 (2006).
[CrossRef]

Kim, S. S.

J. S. Kim, K. S. Lee, and S. S. Kim, “Third-order optical nonlinearity of Cu nanoparticle-dispersed Ba0.5Sr0.5TiO3 films prepared by alternating pulsed laser deposition,” Thin Solid Films 515, 2332-2336 (2006).
[CrossRef]

Kim, T. S.

M. Y. Lee, T. S. Kim, and Y. S. Choi, “Third-order optical nonlinearities of solgel-processed Au-SiO2 thin films in the surface plasmon absorption region,” J. Non-Cryst. Solids 211, 143-149 (1997).
[CrossRef]

Kreibig, U.

U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters, Vol. 25 of Springer Series in Materials Science (Springer, 1995).

Krenn, J. R.

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: influence of dipolar particle interation on the plasmon resonance,” Phys. Rev. Lett. 84, 4721-4274(2000).
[CrossRef] [PubMed]

Lamprecht, B.

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: influence of dipolar particle interation on the plasmon resonance,” Phys. Rev. Lett. 84, 4721-4274(2000).
[CrossRef] [PubMed]

Lechner, R. T.

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: influence of dipolar particle interation on the plasmon resonance,” Phys. Rev. Lett. 84, 4721-4274(2000).
[CrossRef] [PubMed]

Ledoux, G.

H. Shen, G. Lu, M. Ou, C. A. Marquette, G. Ledoux, S. Roux, O. Tillement, P. Perriat, B. Chen, and Z. Chen, “How the morphology of biochips roughness increases surface-enhanced chemiluminescence,” Chem. Phys. Lett. 439, 105-109 (2007).
[CrossRef]

Lee, K. S.

J. S. Kim, K. S. Lee, and S. S. Kim, “Third-order optical nonlinearity of Cu nanoparticle-dispersed Ba0.5Sr0.5TiO3 films prepared by alternating pulsed laser deposition,” Thin Solid Films 515, 2332-2336 (2006).
[CrossRef]

Lee, M. Y.

M. Y. Lee, T. S. Kim, and Y. S. Choi, “Third-order optical nonlinearities of solgel-processed Au-SiO2 thin films in the surface plasmon absorption region,” J. Non-Cryst. Solids 211, 143-149 (1997).
[CrossRef]

Leitner, A.

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: influence of dipolar particle interation on the plasmon resonance,” Phys. Rev. Lett. 84, 4721-4274(2000).
[CrossRef] [PubMed]

Liao, H. B.

H. B. Liao, R. F. Xiao, H. Wang, K. S. Wong, and G. K. L. Wong, “Large third-order optical nonlinearity in Au:TiO2 composite films measured on a femtosecond time scale,” Appl. Phys. Lett. 72, 1817-1819 (1998).
[CrossRef]

Liao, P. F.

Liu, L. F.

H. Z. Guo, L. F. Liu, Z. H. Chen, S. Ding, H. B. Lu, K.-J. Jin, Y. L. Zhou, and B. L. Cheng, “Structure and optical properties of BaTiO3 ultrathin films,” Europhys. Lett. 73, 110-115(2006).
[CrossRef]

Lu, G.

H. Shen, G. Lu, M. Ou, C. A. Marquette, G. Ledoux, S. Roux, O. Tillement, P. Perriat, B. Chen, and Z. Chen, “How the morphology of biochips roughness increases surface-enhanced chemiluminescence,” Chem. Phys. Lett. 439, 105-109 (2007).
[CrossRef]

H. Shen, B. Chen, G. Lu, T. Ning, D. Guan, Y. Zhou, and Z. Chen, “Enhancement of optical nonlinearity in periodic gold nanoparticle arrays,” Nanotechnology 17, 4274-4277 (2006).
[CrossRef] [PubMed]

Lu, H. B.

H. Z. Guo, L. F. Liu, Z. H. Chen, S. Ding, H. B. Lu, K.-J. Jin, Y. L. Zhou, and B. L. Cheng, “Structure and optical properties of BaTiO3 ultrathin films,” Europhys. Lett. 73, 110-115(2006).
[CrossRef]

G. Yang, W. T. Wang, Y. L. Zhou, H. B. Lu, G. Z. Yang, and Z. H. Chen, “Linear and nonlinear optical properties of Ag nanocluster/BaTiO3 composite films,” Appl. Phys. Lett. 81, 3969-3971 (2002).
[CrossRef]

Maier, S. A.

S. A. Maier and H. A. Atwater, “Plasmonics: localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys. 98, 011101 (2005).
[CrossRef]

Manabe, Y.

I. Tanahashi, Y. Manabe, T. Tohda, S. Sasaki, and A. Nakamura, “Optical nonlinearities of Au/SiO2 composite thin films prepared by a sputtering method,” J. Appl. Phys. 79, 1244-1249 (1996).
[CrossRef]

Marquette, C. A.

H. Shen, G. Lu, M. Ou, C. A. Marquette, G. Ledoux, S. Roux, O. Tillement, P. Perriat, B. Chen, and Z. Chen, “How the morphology of biochips roughness increases surface-enhanced chemiluminescence,” Chem. Phys. Lett. 439, 105-109 (2007).
[CrossRef]

Meier, M.

Nakamura, A.

I. Tanahashi, Y. Manabe, T. Tohda, S. Sasaki, and A. Nakamura, “Optical nonlinearities of Au/SiO2 composite thin films prepared by a sputtering method,” J. Appl. Phys. 79, 1244-1249 (1996).
[CrossRef]

Ning, T.

H. Shen, B. Chen, G. Lu, T. Ning, D. Guan, Y. Zhou, and Z. Chen, “Enhancement of optical nonlinearity in periodic gold nanoparticle arrays,” Nanotechnology 17, 4274-4277 (2006).
[CrossRef] [PubMed]

Osborne, D. H.

J. M. Ballesteros, R. Serna, J. Solis, C. N. Afonso, A. K. Petford-Long, D. H. Osborne, and R. F. Haglund, Jr., “Pulsed laser deposition of Cu:Al2O3 nanocrystal thin films with high third-order optical susceptibility,” Appl. Phys. Lett. 71, 2445-2447 (1997).
[CrossRef]

Ou, M.

H. Shen, G. Lu, M. Ou, C. A. Marquette, G. Ledoux, S. Roux, O. Tillement, P. Perriat, B. Chen, and Z. Chen, “How the morphology of biochips roughness increases surface-enhanced chemiluminescence,” Chem. Phys. Lett. 439, 105-109 (2007).
[CrossRef]

Pennypacker, C. R.

E. M. Purcell and C. R. Pennypacker, “Scattering and adsorption of light by nonspherical dielectric grains,” Astrophys. J. 186, 705-714 (1973).
[CrossRef]

Perriat, P.

H. Shen, G. Lu, M. Ou, C. A. Marquette, G. Ledoux, S. Roux, O. Tillement, P. Perriat, B. Chen, and Z. Chen, “How the morphology of biochips roughness increases surface-enhanced chemiluminescence,” Chem. Phys. Lett. 439, 105-109 (2007).
[CrossRef]

Petford-Long, A. K.

J. M. Ballesteros, R. Serna, J. Solis, C. N. Afonso, A. K. Petford-Long, D. H. Osborne, and R. F. Haglund, Jr., “Pulsed laser deposition of Cu:Al2O3 nanocrystal thin films with high third-order optical susceptibility,” Appl. Phys. Lett. 71, 2445-2447 (1997).
[CrossRef]

Popp, J.

L. Baia, M. Baia, J. Popp, and S. Astilean, “Gold films deposited over regular arrays of polystyrene nanospheres as highly effective SERS substrates from visible to NIR,” J. Phys. Chem. B 110, 23982-23986 (2006).
[CrossRef] [PubMed]

Purcell, E. M.

E. M. Purcell and C. R. Pennypacker, “Scattering and adsorption of light by nonspherical dielectric grains,” Astrophys. J. 186, 705-714 (1973).
[CrossRef]

Ricard, D.

Roussignol, P.

Roux, S.

H. Shen, G. Lu, M. Ou, C. A. Marquette, G. Ledoux, S. Roux, O. Tillement, P. Perriat, B. Chen, and Z. Chen, “How the morphology of biochips roughness increases surface-enhanced chemiluminescence,” Chem. Phys. Lett. 439, 105-109 (2007).
[CrossRef]

Said, A. A.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760-769 (1990).
[CrossRef]

Sarychev, A. K.

D. A. Genov, A. K. Sarychev, V. M. Shalaev, and A. Wei, “Resonant field enhancements from metal nanoparticle arrays,” Nano Lett. 4, 153-158 (2004).
[CrossRef]

Sasaki, S.

I. Tanahashi, Y. Manabe, T. Tohda, S. Sasaki, and A. Nakamura, “Optical nonlinearities of Au/SiO2 composite thin films prepared by a sputtering method,” J. Appl. Phys. 79, 1244-1249 (1996).
[CrossRef]

Schatz, G. C.

S. Zou and G. C. Schatz, “Silver nanoparticle array structures that produce giant enhancements in electromagnetic fields,” Chem. Phys. Lett. 403, 62-67 (2005).
[CrossRef]

A. J. Haes, S. Zou, G. C. Schatz, and R. P. Van Duyne, “Nanoscale optical biosensor: short range distance dependence of the localized surface plasmon resonance of noble metal nanoparticles,” J. Phys. Chem. B 108, 6961-6968 (2004).
[CrossRef]

Schider, G.

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: influence of dipolar particle interation on the plasmon resonance,” Phys. Rev. Lett. 84, 4721-4274(2000).
[CrossRef] [PubMed]

Serna, R.

J. M. Ballesteros, R. Serna, J. Solis, C. N. Afonso, A. K. Petford-Long, D. H. Osborne, and R. F. Haglund, Jr., “Pulsed laser deposition of Cu:Al2O3 nanocrystal thin films with high third-order optical susceptibility,” Appl. Phys. Lett. 71, 2445-2447 (1997).
[CrossRef]

Shalaev, V. M.

D. A. Genov, A. K. Sarychev, V. M. Shalaev, and A. Wei, “Resonant field enhancements from metal nanoparticle arrays,” Nano Lett. 4, 153-158 (2004).
[CrossRef]

Sheik-Bahae, M.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760-769 (1990).
[CrossRef]

Shen, H.

H. Shen, G. Lu, M. Ou, C. A. Marquette, G. Ledoux, S. Roux, O. Tillement, P. Perriat, B. Chen, and Z. Chen, “How the morphology of biochips roughness increases surface-enhanced chemiluminescence,” Chem. Phys. Lett. 439, 105-109 (2007).
[CrossRef]

H. Shen, B. Chen, G. Lu, T. Ning, D. Guan, Y. Zhou, and Z. Chen, “Enhancement of optical nonlinearity in periodic gold nanoparticle arrays,” Nanotechnology 17, 4274-4277 (2006).
[CrossRef] [PubMed]

Smith, D. D.

Solis, J.

J. M. Ballesteros, R. Serna, J. Solis, C. N. Afonso, A. K. Petford-Long, D. H. Osborne, and R. F. Haglund, Jr., “Pulsed laser deposition of Cu:Al2O3 nanocrystal thin films with high third-order optical susceptibility,” Appl. Phys. Lett. 71, 2445-2447 (1997).
[CrossRef]

Tanahashi, I.

I. Tanahashi, Y. Manabe, T. Tohda, S. Sasaki, and A. Nakamura, “Optical nonlinearities of Au/SiO2 composite thin films prepared by a sputtering method,” J. Appl. Phys. 79, 1244-1249 (1996).
[CrossRef]

Tillement, O.

H. Shen, G. Lu, M. Ou, C. A. Marquette, G. Ledoux, S. Roux, O. Tillement, P. Perriat, B. Chen, and Z. Chen, “How the morphology of biochips roughness increases surface-enhanced chemiluminescence,” Chem. Phys. Lett. 439, 105-109 (2007).
[CrossRef]

Tohda, T.

I. Tanahashi, Y. Manabe, T. Tohda, S. Sasaki, and A. Nakamura, “Optical nonlinearities of Au/SiO2 composite thin films prepared by a sputtering method,” J. Appl. Phys. 79, 1244-1249 (1996).
[CrossRef]

Van Duyne, R. P.

A. J. Haes, S. Zou, G. C. Schatz, and R. P. Van Duyne, “Nanoscale optical biosensor: short range distance dependence of the localized surface plasmon resonance of noble metal nanoparticles,” J. Phys. Chem. B 108, 6961-6968 (2004).
[CrossRef]

J. C. Hulteen and R. P. Van Duyne, “Nanosphere lithography: A materials general fabrication process for periodic particle array surfaces,” J. Vac. Sci. Technol. A 13, 1553-1558 (1995).
[CrossRef]

Van Stryland, W.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760-769 (1990).
[CrossRef]

Vollmer, M.

U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters, Vol. 25 of Springer Series in Materials Science (Springer, 1995).

Wang, H.

H. B. Liao, R. F. Xiao, H. Wang, K. S. Wong, and G. K. L. Wong, “Large third-order optical nonlinearity in Au:TiO2 composite films measured on a femtosecond time scale,” Appl. Phys. Lett. 72, 1817-1819 (1998).
[CrossRef]

Wang, W. T.

G. Yang, W. T. Wang, Y. L. Zhou, H. B. Lu, G. Z. Yang, and Z. H. Chen, “Linear and nonlinear optical properties of Ag nanocluster/BaTiO3 composite films,” Appl. Phys. Lett. 81, 3969-3971 (2002).
[CrossRef]

Wei, A.

D. A. Genov, A. K. Sarychev, V. M. Shalaev, and A. Wei, “Resonant field enhancements from metal nanoparticle arrays,” Nano Lett. 4, 153-158 (2004).
[CrossRef]

Wei, T. H.

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760-769 (1990).
[CrossRef]

Wokaun, A.

Wong, G. K. L.

H. B. Liao, R. F. Xiao, H. Wang, K. S. Wong, and G. K. L. Wong, “Large third-order optical nonlinearity in Au:TiO2 composite films measured on a femtosecond time scale,” Appl. Phys. Lett. 72, 1817-1819 (1998).
[CrossRef]

Wong, K. S.

H. B. Liao, R. F. Xiao, H. Wang, K. S. Wong, and G. K. L. Wong, “Large third-order optical nonlinearity in Au:TiO2 composite films measured on a femtosecond time scale,” Appl. Phys. Lett. 72, 1817-1819 (1998).
[CrossRef]

Xiao, R. F.

H. B. Liao, R. F. Xiao, H. Wang, K. S. Wong, and G. K. L. Wong, “Large third-order optical nonlinearity in Au:TiO2 composite films measured on a femtosecond time scale,” Appl. Phys. Lett. 72, 1817-1819 (1998).
[CrossRef]

Yang, G.

G. Yang, W. T. Wang, Y. L. Zhou, H. B. Lu, G. Z. Yang, and Z. H. Chen, “Linear and nonlinear optical properties of Ag nanocluster/BaTiO3 composite films,” Appl. Phys. Lett. 81, 3969-3971 (2002).
[CrossRef]

Yang, G. Z.

G. Yang, W. T. Wang, Y. L. Zhou, H. B. Lu, G. Z. Yang, and Z. H. Chen, “Linear and nonlinear optical properties of Ag nanocluster/BaTiO3 composite films,” Appl. Phys. Lett. 81, 3969-3971 (2002).
[CrossRef]

Zhou, Y.

H. Shen, B. Chen, G. Lu, T. Ning, D. Guan, Y. Zhou, and Z. Chen, “Enhancement of optical nonlinearity in periodic gold nanoparticle arrays,” Nanotechnology 17, 4274-4277 (2006).
[CrossRef] [PubMed]

Zhou, Y. L.

H. Z. Guo, L. F. Liu, Z. H. Chen, S. Ding, H. B. Lu, K.-J. Jin, Y. L. Zhou, and B. L. Cheng, “Structure and optical properties of BaTiO3 ultrathin films,” Europhys. Lett. 73, 110-115(2006).
[CrossRef]

G. Yang, W. T. Wang, Y. L. Zhou, H. B. Lu, G. Z. Yang, and Z. H. Chen, “Linear and nonlinear optical properties of Ag nanocluster/BaTiO3 composite films,” Appl. Phys. Lett. 81, 3969-3971 (2002).
[CrossRef]

Zou, S.

S. Zou and G. C. Schatz, “Silver nanoparticle array structures that produce giant enhancements in electromagnetic fields,” Chem. Phys. Lett. 403, 62-67 (2005).
[CrossRef]

A. J. Haes, S. Zou, G. C. Schatz, and R. P. Van Duyne, “Nanoscale optical biosensor: short range distance dependence of the localized surface plasmon resonance of noble metal nanoparticles,” J. Phys. Chem. B 108, 6961-6968 (2004).
[CrossRef]

Appl. Phys. Lett. (4)

H. W. Deckman and J. H. Dunsmuir, “Natural lithography,” Appl. Phys. Lett. 41, 377-379 (1982).
[CrossRef]

H. B. Liao, R. F. Xiao, H. Wang, K. S. Wong, and G. K. L. Wong, “Large third-order optical nonlinearity in Au:TiO2 composite films measured on a femtosecond time scale,” Appl. Phys. Lett. 72, 1817-1819 (1998).
[CrossRef]

G. Yang, W. T. Wang, Y. L. Zhou, H. B. Lu, G. Z. Yang, and Z. H. Chen, “Linear and nonlinear optical properties of Ag nanocluster/BaTiO3 composite films,” Appl. Phys. Lett. 81, 3969-3971 (2002).
[CrossRef]

J. M. Ballesteros, R. Serna, J. Solis, C. N. Afonso, A. K. Petford-Long, D. H. Osborne, and R. F. Haglund, Jr., “Pulsed laser deposition of Cu:Al2O3 nanocrystal thin films with high third-order optical susceptibility,” Appl. Phys. Lett. 71, 2445-2447 (1997).
[CrossRef]

Astrophys. J. (1)

E. M. Purcell and C. R. Pennypacker, “Scattering and adsorption of light by nonspherical dielectric grains,” Astrophys. J. 186, 705-714 (1973).
[CrossRef]

Chem. Phys. Lett. (2)

S. Zou and G. C. Schatz, “Silver nanoparticle array structures that produce giant enhancements in electromagnetic fields,” Chem. Phys. Lett. 403, 62-67 (2005).
[CrossRef]

H. Shen, G. Lu, M. Ou, C. A. Marquette, G. Ledoux, S. Roux, O. Tillement, P. Perriat, B. Chen, and Z. Chen, “How the morphology of biochips roughness increases surface-enhanced chemiluminescence,” Chem. Phys. Lett. 439, 105-109 (2007).
[CrossRef]

Europhys. Lett. (1)

H. Z. Guo, L. F. Liu, Z. H. Chen, S. Ding, H. B. Lu, K.-J. Jin, Y. L. Zhou, and B. L. Cheng, “Structure and optical properties of BaTiO3 ultrathin films,” Europhys. Lett. 73, 110-115(2006).
[CrossRef]

IEEE J. Quantum Electron. (1)

M. Sheik-Bahae, A. A. Said, T. H. Wei, D. J. Hagan, and W. Van Stryland, “Sensitive measurement of optical nonlinearities using a single beam,” IEEE J. Quantum Electron. 26, 760-769 (1990).
[CrossRef]

J. Appl. Phys. (2)

S. A. Maier and H. A. Atwater, “Plasmonics: localization and guiding of electromagnetic energy in metal/dielectric structures,” J. Appl. Phys. 98, 011101 (2005).
[CrossRef]

I. Tanahashi, Y. Manabe, T. Tohda, S. Sasaki, and A. Nakamura, “Optical nonlinearities of Au/SiO2 composite thin films prepared by a sputtering method,” J. Appl. Phys. 79, 1244-1249 (1996).
[CrossRef]

J. Non-Cryst. Solids (1)

M. Y. Lee, T. S. Kim, and Y. S. Choi, “Third-order optical nonlinearities of solgel-processed Au-SiO2 thin films in the surface plasmon absorption region,” J. Non-Cryst. Solids 211, 143-149 (1997).
[CrossRef]

J. Opt. Soc. Am. B (2)

J. Phys. Chem. B (2)

L. Baia, M. Baia, J. Popp, and S. Astilean, “Gold films deposited over regular arrays of polystyrene nanospheres as highly effective SERS substrates from visible to NIR,” J. Phys. Chem. B 110, 23982-23986 (2006).
[CrossRef] [PubMed]

A. J. Haes, S. Zou, G. C. Schatz, and R. P. Van Duyne, “Nanoscale optical biosensor: short range distance dependence of the localized surface plasmon resonance of noble metal nanoparticles,” J. Phys. Chem. B 108, 6961-6968 (2004).
[CrossRef]

J. Vac. Sci. Technol. A (1)

J. C. Hulteen and R. P. Van Duyne, “Nanosphere lithography: A materials general fabrication process for periodic particle array surfaces,” J. Vac. Sci. Technol. A 13, 1553-1558 (1995).
[CrossRef]

Nano Lett. (1)

D. A. Genov, A. K. Sarychev, V. M. Shalaev, and A. Wei, “Resonant field enhancements from metal nanoparticle arrays,” Nano Lett. 4, 153-158 (2004).
[CrossRef]

Nanotechnology (1)

H. Shen, B. Chen, G. Lu, T. Ning, D. Guan, Y. Zhou, and Z. Chen, “Enhancement of optical nonlinearity in periodic gold nanoparticle arrays,” Nanotechnology 17, 4274-4277 (2006).
[CrossRef] [PubMed]

Opt. Lett. (1)

Phys. Rev. B (1)

P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6, 4370-4379 (1972).
[CrossRef]

Phys. Rev. Lett. (1)

B. Lamprecht, G. Schider, R. T. Lechner, H. Ditlbacher, J. R. Krenn, A. Leitner, and F. R. Aussenegg, “Metal nanoparticle gratings: influence of dipolar particle interation on the plasmon resonance,” Phys. Rev. Lett. 84, 4721-4274(2000).
[CrossRef] [PubMed]

Thin Solid Films (1)

J. S. Kim, K. S. Lee, and S. S. Kim, “Third-order optical nonlinearity of Cu nanoparticle-dispersed Ba0.5Sr0.5TiO3 films prepared by alternating pulsed laser deposition,” Thin Solid Films 515, 2332-2336 (2006).
[CrossRef]

Other (1)

U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters, Vol. 25 of Springer Series in Materials Science (Springer, 1995).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

AFM images of (a)  5 μm × 5 μm area of pure Au nanoparticle arrays and (b)  2 μm × 2 μm area of Au : Ba Ti O 3 composite film.

Fig. 2
Fig. 2

Optical extinction spectra properties of Au nanoparticle arrays embedded in the Ba Ti O 3 matrix. The spectrum of undoped Au : Ba Ti O 3 film was also recorded as a reference.

Fig. 3
Fig. 3

(a) Open-aperture and (b) closed-aperture Z-scan curves of Au : Ba Ti O 3 composite film: circles, experimental data; curves, theoretical fit.

Fig. 4
Fig. 4

Local electric field enhancement ( | E | 2 ) contours near the hexagonal Au nanoparticle embedded in the Ba Ti O 3 matrix at the wavelength of 532 nm , which is off the SPR.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

χ ( 3 ) = p f 2 | f | 2 χ m ( 3 ) ,
f = 3 ε d ε m + 2 ε d ,

Metrics