Abstract

A compound external cavity is designed and implemented to achieve a homogeneous spectrum distribution of broad area laser diodes in an array and to narrow the spectral linewidth of the entire array. The compound external cavity is composed of an optical coupler and a Littrow external cavity with a telescope along the fast axis. The inhomogeneous distribution of individual laser diodes spectrum generated by the “smile” effect was reduced by the telescope. The effective transverse coupling among individual laser diodes in an array was enhanced by the optical coupler, which further reduced the spectrum inhomogeneous distribution of the entire array. The spectral linewidth of a 49-emitter laser array is reduced to 0.1nm at the output power of 12.5W.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. G. Walker and W. Happer, “Spin-exchange optical pumping of noble-gas nuclei,” Rev. Mod. Phys. 69, 629-642 (1997).
    [CrossRef]
  2. M. V. Romalis, E. Miron, and G. D. Cates, “Pressure broadening of Rb D1 and D2 lines by He3, He4, N2, and Xe: line cores and near wings,” Phys. Rev. A 56, 4569-4578 (1997).
    [CrossRef]
  3. B. Zhdanov, C. Maes, T. Ehrenreich, A. Havko, N. Koval, T. Meeker, B. Worker, B. Flusche, and R. J. Knize, “Optically pumped potassium laser,” Opt. Commun. 270, 353-355 (2007).
    [CrossRef]
  4. B. Zhdanov and R. J. Knize, “Diode-pumped 10 W continuous wave cesium laser,” Opt. Lett. 32, 2167-2169 (2007).
    [CrossRef] [PubMed]
  5. B. Chann, I. Nelson, and T. G. Walker, “Frequency-narrowed external-cavity diode-laser-array bar,” Opt. Lett. 25, 1352-1354 (2000).
    [CrossRef]
  6. E. Babcock, B. Chann, I. A. Nelson, and T. G. Walker, “Frequency-narrowed diode array bar,” Appl. Opt. 44, 3098-3104 (2005).
    [CrossRef] [PubMed]
  7. C. L. Talbot, M. E. J. Frese, D. Eang, I. Brereton, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Linewidth reduction in a large-smile laser diode array,” Appl. Opt. 44, 6264-6268 (2005).
    [CrossRef] [PubMed]
  8. L. S. Meng, B. Nizamov, P. Madasamy, J. K. Brasseur, T. Henshaw, and D. K. Neuman, “High power 7-GHz bandwidth laser array and its use in optically pump singlet delta oxygen,” Opt. Express 14, 10469-10474 (2006).
    [CrossRef] [PubMed]
  9. G. J. Steckman, W. Liu, R. Platz, D. Schroeder, C. Moser, and F. Havermeyer, “Volume holographic grating wavelength stabilized laser diodes,” IEEE J. Sel. Top. Quantum Electron. 13, 672-678 (2007).
    [CrossRef]
  10. A. Gourevitch, G. Venus, V. Smirnov, D. A. Hostutler, and L. Glebov, “Continous wave, 30 W laser-diode bar with 10 GHz linewidth for Rb laser pumping,” Opt. Lett. 33, 702-704 (2008).
    [CrossRef] [PubMed]
  11. B. V. Zhdanov, T. Ehrenreich, and R. J. Knize, “Narrowband external cavity laser diode array,” Electron. Lett. 43, 221-222 (2007).
    [CrossRef]
  12. J. T. Gopinath, B. Chann, T. Y. Fan, and A. Sanchez-Rubio, “1450-nm high-brightness wavelength-beam combined diode laser array,” Opt. Express 16, 9405-9410 (2008).
    [CrossRef] [PubMed]
  13. J. F. Monjardin, K. M. Nowak, H. J. Baker, and D. R. Hall, “Correction of beam errors in high power laser diode bars and stacks,” Opt. Express 14, 8178-8183 (2006).
    [CrossRef] [PubMed]
  14. G. L. Bourdet, I. Hassiaoui, R. McBride, J. F. Monjardin, H. Baker, N. Michel, and M. Krakowski, “High-power, low-divergence, linear array of quasi-diffraction-limited beams supplied by tapered diodes,” Appl. Opt. 46, 6297-6301(2007).
    [CrossRef] [PubMed]
  15. J. R. Leger, M. L. Scott, and W. B. Veldkamp, “Coherent addition of AlGaAs lasers using microlenses and diffractive coupling,” Appl. Phys. Lett. 52, 1771-1773 (1988).
    [CrossRef]
  16. J. R. Leger, “Lateral mode control of an AlGaAs laser array in a Talbot cavity,” Appl. Phys. Lett. 55, 334-336(1989).
    [CrossRef]
  17. F. X. D'Amato, E. T. Siebert, and C. Roychoudhuri, “Coherent operation of an array of diode lasers using a spatial filter in a Talbot cavity,” Appl. Phys. Lett. 55, 816-818 (1989).
    [CrossRef]
  18. Y. Liu and Y. Braiman, “Synchronization of high-power broad-area semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 10, 1013-1024 (2004).
    [CrossRef]

2008 (2)

2007 (5)

B. V. Zhdanov, T. Ehrenreich, and R. J. Knize, “Narrowband external cavity laser diode array,” Electron. Lett. 43, 221-222 (2007).
[CrossRef]

G. L. Bourdet, I. Hassiaoui, R. McBride, J. F. Monjardin, H. Baker, N. Michel, and M. Krakowski, “High-power, low-divergence, linear array of quasi-diffraction-limited beams supplied by tapered diodes,” Appl. Opt. 46, 6297-6301(2007).
[CrossRef] [PubMed]

B. Zhdanov, C. Maes, T. Ehrenreich, A. Havko, N. Koval, T. Meeker, B. Worker, B. Flusche, and R. J. Knize, “Optically pumped potassium laser,” Opt. Commun. 270, 353-355 (2007).
[CrossRef]

B. Zhdanov and R. J. Knize, “Diode-pumped 10 W continuous wave cesium laser,” Opt. Lett. 32, 2167-2169 (2007).
[CrossRef] [PubMed]

G. J. Steckman, W. Liu, R. Platz, D. Schroeder, C. Moser, and F. Havermeyer, “Volume holographic grating wavelength stabilized laser diodes,” IEEE J. Sel. Top. Quantum Electron. 13, 672-678 (2007).
[CrossRef]

2006 (2)

2005 (2)

2004 (1)

Y. Liu and Y. Braiman, “Synchronization of high-power broad-area semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 10, 1013-1024 (2004).
[CrossRef]

2000 (1)

1997 (2)

T. G. Walker and W. Happer, “Spin-exchange optical pumping of noble-gas nuclei,” Rev. Mod. Phys. 69, 629-642 (1997).
[CrossRef]

M. V. Romalis, E. Miron, and G. D. Cates, “Pressure broadening of Rb D1 and D2 lines by He3, He4, N2, and Xe: line cores and near wings,” Phys. Rev. A 56, 4569-4578 (1997).
[CrossRef]

1989 (2)

J. R. Leger, “Lateral mode control of an AlGaAs laser array in a Talbot cavity,” Appl. Phys. Lett. 55, 334-336(1989).
[CrossRef]

F. X. D'Amato, E. T. Siebert, and C. Roychoudhuri, “Coherent operation of an array of diode lasers using a spatial filter in a Talbot cavity,” Appl. Phys. Lett. 55, 816-818 (1989).
[CrossRef]

1988 (1)

J. R. Leger, M. L. Scott, and W. B. Veldkamp, “Coherent addition of AlGaAs lasers using microlenses and diffractive coupling,” Appl. Phys. Lett. 52, 1771-1773 (1988).
[CrossRef]

Babcock, E.

Baker, H.

Baker, H. J.

Bourdet, G. L.

Braiman, Y.

Y. Liu and Y. Braiman, “Synchronization of high-power broad-area semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 10, 1013-1024 (2004).
[CrossRef]

Brasseur, J. K.

Brereton, I.

Cates, G. D.

M. V. Romalis, E. Miron, and G. D. Cates, “Pressure broadening of Rb D1 and D2 lines by He3, He4, N2, and Xe: line cores and near wings,” Phys. Rev. A 56, 4569-4578 (1997).
[CrossRef]

Chann, B.

D'Amato, F. X.

F. X. D'Amato, E. T. Siebert, and C. Roychoudhuri, “Coherent operation of an array of diode lasers using a spatial filter in a Talbot cavity,” Appl. Phys. Lett. 55, 816-818 (1989).
[CrossRef]

Eang, D.

Ehrenreich, T.

B. V. Zhdanov, T. Ehrenreich, and R. J. Knize, “Narrowband external cavity laser diode array,” Electron. Lett. 43, 221-222 (2007).
[CrossRef]

B. Zhdanov, C. Maes, T. Ehrenreich, A. Havko, N. Koval, T. Meeker, B. Worker, B. Flusche, and R. J. Knize, “Optically pumped potassium laser,” Opt. Commun. 270, 353-355 (2007).
[CrossRef]

Fan, T. Y.

Flusche, B.

B. Zhdanov, C. Maes, T. Ehrenreich, A. Havko, N. Koval, T. Meeker, B. Worker, B. Flusche, and R. J. Knize, “Optically pumped potassium laser,” Opt. Commun. 270, 353-355 (2007).
[CrossRef]

Frese, M. E. J.

Glebov, L.

Gopinath, J. T.

Gourevitch, A.

Hall, D. R.

Happer, W.

T. G. Walker and W. Happer, “Spin-exchange optical pumping of noble-gas nuclei,” Rev. Mod. Phys. 69, 629-642 (1997).
[CrossRef]

Hassiaoui, I.

Havermeyer, F.

G. J. Steckman, W. Liu, R. Platz, D. Schroeder, C. Moser, and F. Havermeyer, “Volume holographic grating wavelength stabilized laser diodes,” IEEE J. Sel. Top. Quantum Electron. 13, 672-678 (2007).
[CrossRef]

Havko, A.

B. Zhdanov, C. Maes, T. Ehrenreich, A. Havko, N. Koval, T. Meeker, B. Worker, B. Flusche, and R. J. Knize, “Optically pumped potassium laser,” Opt. Commun. 270, 353-355 (2007).
[CrossRef]

Heckenberg, N. R.

Henshaw, T.

Hostutler, D. A.

Knize, R. J.

B. Zhdanov and R. J. Knize, “Diode-pumped 10 W continuous wave cesium laser,” Opt. Lett. 32, 2167-2169 (2007).
[CrossRef] [PubMed]

B. Zhdanov, C. Maes, T. Ehrenreich, A. Havko, N. Koval, T. Meeker, B. Worker, B. Flusche, and R. J. Knize, “Optically pumped potassium laser,” Opt. Commun. 270, 353-355 (2007).
[CrossRef]

B. V. Zhdanov, T. Ehrenreich, and R. J. Knize, “Narrowband external cavity laser diode array,” Electron. Lett. 43, 221-222 (2007).
[CrossRef]

Koval, N.

B. Zhdanov, C. Maes, T. Ehrenreich, A. Havko, N. Koval, T. Meeker, B. Worker, B. Flusche, and R. J. Knize, “Optically pumped potassium laser,” Opt. Commun. 270, 353-355 (2007).
[CrossRef]

Krakowski, M.

Leger, J. R.

J. R. Leger, “Lateral mode control of an AlGaAs laser array in a Talbot cavity,” Appl. Phys. Lett. 55, 334-336(1989).
[CrossRef]

J. R. Leger, M. L. Scott, and W. B. Veldkamp, “Coherent addition of AlGaAs lasers using microlenses and diffractive coupling,” Appl. Phys. Lett. 52, 1771-1773 (1988).
[CrossRef]

Liu, W.

G. J. Steckman, W. Liu, R. Platz, D. Schroeder, C. Moser, and F. Havermeyer, “Volume holographic grating wavelength stabilized laser diodes,” IEEE J. Sel. Top. Quantum Electron. 13, 672-678 (2007).
[CrossRef]

Liu, Y.

Y. Liu and Y. Braiman, “Synchronization of high-power broad-area semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 10, 1013-1024 (2004).
[CrossRef]

Madasamy, P.

Maes, C.

B. Zhdanov, C. Maes, T. Ehrenreich, A. Havko, N. Koval, T. Meeker, B. Worker, B. Flusche, and R. J. Knize, “Optically pumped potassium laser,” Opt. Commun. 270, 353-355 (2007).
[CrossRef]

McBride, R.

Meeker, T.

B. Zhdanov, C. Maes, T. Ehrenreich, A. Havko, N. Koval, T. Meeker, B. Worker, B. Flusche, and R. J. Knize, “Optically pumped potassium laser,” Opt. Commun. 270, 353-355 (2007).
[CrossRef]

Meng, L. S.

Michel, N.

Miron, E.

M. V. Romalis, E. Miron, and G. D. Cates, “Pressure broadening of Rb D1 and D2 lines by He3, He4, N2, and Xe: line cores and near wings,” Phys. Rev. A 56, 4569-4578 (1997).
[CrossRef]

Monjardin, J. F.

Moser, C.

G. J. Steckman, W. Liu, R. Platz, D. Schroeder, C. Moser, and F. Havermeyer, “Volume holographic grating wavelength stabilized laser diodes,” IEEE J. Sel. Top. Quantum Electron. 13, 672-678 (2007).
[CrossRef]

Nelson, I.

Nelson, I. A.

Neuman, D. K.

Nizamov, B.

Nowak, K. M.

Platz, R.

G. J. Steckman, W. Liu, R. Platz, D. Schroeder, C. Moser, and F. Havermeyer, “Volume holographic grating wavelength stabilized laser diodes,” IEEE J. Sel. Top. Quantum Electron. 13, 672-678 (2007).
[CrossRef]

Romalis, M. V.

M. V. Romalis, E. Miron, and G. D. Cates, “Pressure broadening of Rb D1 and D2 lines by He3, He4, N2, and Xe: line cores and near wings,” Phys. Rev. A 56, 4569-4578 (1997).
[CrossRef]

Roychoudhuri, C.

F. X. D'Amato, E. T. Siebert, and C. Roychoudhuri, “Coherent operation of an array of diode lasers using a spatial filter in a Talbot cavity,” Appl. Phys. Lett. 55, 816-818 (1989).
[CrossRef]

Rubinsztein-Dunlop, H.

Sanchez-Rubio, A.

Schroeder, D.

G. J. Steckman, W. Liu, R. Platz, D. Schroeder, C. Moser, and F. Havermeyer, “Volume holographic grating wavelength stabilized laser diodes,” IEEE J. Sel. Top. Quantum Electron. 13, 672-678 (2007).
[CrossRef]

Scott, M. L.

J. R. Leger, M. L. Scott, and W. B. Veldkamp, “Coherent addition of AlGaAs lasers using microlenses and diffractive coupling,” Appl. Phys. Lett. 52, 1771-1773 (1988).
[CrossRef]

Siebert, E. T.

F. X. D'Amato, E. T. Siebert, and C. Roychoudhuri, “Coherent operation of an array of diode lasers using a spatial filter in a Talbot cavity,” Appl. Phys. Lett. 55, 816-818 (1989).
[CrossRef]

Smirnov, V.

Steckman, G. J.

G. J. Steckman, W. Liu, R. Platz, D. Schroeder, C. Moser, and F. Havermeyer, “Volume holographic grating wavelength stabilized laser diodes,” IEEE J. Sel. Top. Quantum Electron. 13, 672-678 (2007).
[CrossRef]

Talbot, C. L.

Veldkamp, W. B.

J. R. Leger, M. L. Scott, and W. B. Veldkamp, “Coherent addition of AlGaAs lasers using microlenses and diffractive coupling,” Appl. Phys. Lett. 52, 1771-1773 (1988).
[CrossRef]

Venus, G.

Walker, T. G.

Worker, B.

B. Zhdanov, C. Maes, T. Ehrenreich, A. Havko, N. Koval, T. Meeker, B. Worker, B. Flusche, and R. J. Knize, “Optically pumped potassium laser,” Opt. Commun. 270, 353-355 (2007).
[CrossRef]

Zhdanov, B.

B. Zhdanov, C. Maes, T. Ehrenreich, A. Havko, N. Koval, T. Meeker, B. Worker, B. Flusche, and R. J. Knize, “Optically pumped potassium laser,” Opt. Commun. 270, 353-355 (2007).
[CrossRef]

B. Zhdanov and R. J. Knize, “Diode-pumped 10 W continuous wave cesium laser,” Opt. Lett. 32, 2167-2169 (2007).
[CrossRef] [PubMed]

Zhdanov, B. V.

B. V. Zhdanov, T. Ehrenreich, and R. J. Knize, “Narrowband external cavity laser diode array,” Electron. Lett. 43, 221-222 (2007).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. Lett. (3)

J. R. Leger, M. L. Scott, and W. B. Veldkamp, “Coherent addition of AlGaAs lasers using microlenses and diffractive coupling,” Appl. Phys. Lett. 52, 1771-1773 (1988).
[CrossRef]

J. R. Leger, “Lateral mode control of an AlGaAs laser array in a Talbot cavity,” Appl. Phys. Lett. 55, 334-336(1989).
[CrossRef]

F. X. D'Amato, E. T. Siebert, and C. Roychoudhuri, “Coherent operation of an array of diode lasers using a spatial filter in a Talbot cavity,” Appl. Phys. Lett. 55, 816-818 (1989).
[CrossRef]

Electron. Lett. (1)

B. V. Zhdanov, T. Ehrenreich, and R. J. Knize, “Narrowband external cavity laser diode array,” Electron. Lett. 43, 221-222 (2007).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

Y. Liu and Y. Braiman, “Synchronization of high-power broad-area semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 10, 1013-1024 (2004).
[CrossRef]

G. J. Steckman, W. Liu, R. Platz, D. Schroeder, C. Moser, and F. Havermeyer, “Volume holographic grating wavelength stabilized laser diodes,” IEEE J. Sel. Top. Quantum Electron. 13, 672-678 (2007).
[CrossRef]

Opt. Commun. (1)

B. Zhdanov, C. Maes, T. Ehrenreich, A. Havko, N. Koval, T. Meeker, B. Worker, B. Flusche, and R. J. Knize, “Optically pumped potassium laser,” Opt. Commun. 270, 353-355 (2007).
[CrossRef]

Opt. Express (3)

Opt. Lett. (3)

Phys. Rev. A (1)

M. V. Romalis, E. Miron, and G. D. Cates, “Pressure broadening of Rb D1 and D2 lines by He3, He4, N2, and Xe: line cores and near wings,” Phys. Rev. A 56, 4569-4578 (1997).
[CrossRef]

Rev. Mod. Phys. (1)

T. G. Walker and W. Happer, “Spin-exchange optical pumping of noble-gas nuclei,” Rev. Mod. Phys. 69, 629-642 (1997).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Top view of the compound external cavity design for a laser diode array (LDA). PBS is a polarization beam splitter, and OC is an optical coupler. CL1–CL5 are cylindrical lens with different focal lengths. D1–D7 are optical path lengths between different optical components.

Fig. 2
Fig. 2

(a) Side view of the LDA Littrow external cavity. (b) Side view of the compound external cavity that consists of an optical coupler and the Littrow external cavity.

Fig. 3
Fig. 3

(a) Sampled individual spectra of LDs in the LDA consisted of 49 lasers for the Littrow external cavity (without an optical coupler) LDA (the side mode is observed only in the spectrum of the first LD that is not coated) and (b) the compound external cavity (with an optical coupler) LDA (the side mode of the first LD appears on spectra of all the other lasers). The spectral peak position variation for the compound external cavity is less than for the Littrow external cavity.

Fig. 4
Fig. 4

Spectral peak position distribution of the LDA with the Littrow external cavity (solid-square curve) and the compound external cavity (open-circle curve). The LDA is driven by a 30 A injection current.

Fig. 5
Fig. 5

Curvature of the laser diode image with a GRIN lens collimation with a 0.5 μm smile.

Fig. 6
Fig. 6

(a) Spectral peak positions of the sampled laser emitters and (b) the spectrum of the entire LDA. The LDA was driven by an injection current of 50 A , and we employed the compound external cavity.

Fig. 7
Fig. 7

Diagram of light propagation along the fast-axis direction.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

δ λ λ = δ x · cot θ M f FAC ,
[ x θ ] = ( 1 d 2 0 1 ) ( 1 0 1 f 1 ) ( 1 d 1 0 1 ) ( 1 0 1 f FAC 1 ) ( 1 d 0 0 1 ) [ x 1 θ 1 ] ,
θ = ( 1 f 1 f FAC + d 1 f f FAC ) x 1 + ( d 0 ( 1 f 1 f FAC + d 1 f f FAC ) + 1 d 1 f ) θ 1 .
δ θ = ( 1 f 1 f FAC + d 1 f f FAC ) δ x 1 = ( d 1 f f FAC f f FAC ) δ x 1 ,
δ λ = 2 d cos θ δ θ = 2 d sin θ ( cos θ / sin θ ) δ θ = λ cot θ δ θ .
δ λ = λ δ θ cot θ = λ d 1 f f FAC f × f FAC δ x 1 cot θ = λ cot θ δ x 1 M f FAC ,

Metrics