Abstract

Free space optical links underwater have the potential to enable short range (<100m) high-bandwidth (megabits per second) data links that have a low probability of detection and interception. The use of a retroreflecting free space optical link in water has the added advantage of allowing much of the weight and power burden of the link to remain at one end. While modulating retroreflectors have been successfully implemented in above-water links, the underwater environment introduces new challenges. The focus of this paper is to address these challenges and to investigate techniques for minimizing their effect on the link performance.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. S. Rabinovich, R. Mahon, H. R. Burris, G. C. Gilbreath, P. G. Goetz, C. I. Moore, M. F. Stell, M. J. Vilcheck, J. L. Witkowsky, L. Swingen, M. R. Suite, E. Oh, and J. Koplow, “Free space optical communications link at 1550 nm using multiple-quantum-well modulating retroreflectors in a marine environment,” Opt. Eng. 44, 56001-56012 (2005).
    [CrossRef]
  2. M. P. Strand, “Underwater electro-optical system for mine identification,” Proc. SPIE 2496, 487-497 (1995).
    [CrossRef]
  3. A. Weidemann, G. R. Fournier, L. Forand, and P. Mathieu, “In harbor underwater threat detection/identification using active imaging,” Proc. SPIE 5780, 59-70 (2005).
    [CrossRef]
  4. E. V. Miasinikov and T. V. Kondranin, “Effectiveness of the polarization discrimination technique for underwater viewing systems,” Proc. SPIE 1750, 433-442 (1992).
    [CrossRef]
  5. G. D. Lewis, D. L. Jordan, and P. J. Roberts, “Backscattering target detection in a turbid medium by polarization discrimination,” Appl. Opt. 38, 3937-3944 (1999).
    [CrossRef]
  6. J. G. Walker, P. Chang, and K. I. Hopcraft, “Visibility depth improvement in active polarization imaging in scattering media,” Appl. Opt. 39, 4933-4941 (2000).
    [CrossRef]
  7. A. P. Vasilkov, Y. A. Goldin, B. A. Gureev, F. E. Hoge, R. N. Swift, and C. W. Wright, “Aiborne polarized lidar detection of scattering layers in the ocean,” Appl. Opt. 40, 4353-4364(2001).
    [CrossRef]
  8. A. Kouzoubov, M. J. Brennan, and J. C. Thomas, “Treatment of polarization in laser remote sensing of ocean water,” Appl. Opt. 37, 3873-3885 (1998).
    [CrossRef]
  9. K. J. Voss and E. S. Fry, “Measurement of the Mueller matrix for ocean water,” Appl. Opt. 23, 4427-4439 (1984).
    [CrossRef] [PubMed]
  10. G. D. Gilbert and J. C. Pernicka, “Improvement of underwater visibility by reduction of backscatter with a circular polarization technique,” Appl. Opt. 6, 741-746 (1967).
    [CrossRef] [PubMed]
  11. G. M. Krekov, M. M. Krekova, and V. S. Sarmanaev, “Laser sensing of a subsurface oceanic layer. II. Polarization characteristics of signals,” Appl. Opt. 37, 1596-1601 (1998).
    [CrossRef]
  12. J. H. Churnside, V. V. Tatarskii, and J. J. Wilson, “Oceanographic lidar attenuation coefficients and signal fluctuations measured on a ship in the Southern California Bight,” Appl. Opt. 37, 3105-3112 (1998).
    [CrossRef]
  13. S. Q. Duntley, “Underwater lighting by submerged lasers and incandescent sources,” SIO Ref. 71-1 (Scripps Insitution of Oceanography Visibility Laboratory, University of California, San Diego, 1971).
  14. A. Laux, R. Billmers, L. Mullen, B. Concannon, J. Davis, J. Prentice, and V. Contarino, “The a, b, cs of oceanographic lidar predictions: a significant step toward closing the loop between theory and experiment,” J. Mod. Opt. 49, 439-451(2002).
    [CrossRef]
  15. G. D. Gilbert, “The effects of particle size on contrast improvement by polarization discrimination for underwater targets,” Appl. Opt. 9, 421-428 (1970).
    [CrossRef] [PubMed]
  16. C. J. Funk, S. B. Bryant, and P. J. Heckman, Jr., Handbook of Underwater Imaging System Design (Naval Undersea Center, 1972).
  17. C. D. Mobley, Light and Water: Radiative Transfer in Natural Waters (Academic, 1994).

2005

W. S. Rabinovich, R. Mahon, H. R. Burris, G. C. Gilbreath, P. G. Goetz, C. I. Moore, M. F. Stell, M. J. Vilcheck, J. L. Witkowsky, L. Swingen, M. R. Suite, E. Oh, and J. Koplow, “Free space optical communications link at 1550 nm using multiple-quantum-well modulating retroreflectors in a marine environment,” Opt. Eng. 44, 56001-56012 (2005).
[CrossRef]

A. Weidemann, G. R. Fournier, L. Forand, and P. Mathieu, “In harbor underwater threat detection/identification using active imaging,” Proc. SPIE 5780, 59-70 (2005).
[CrossRef]

2002

A. Laux, R. Billmers, L. Mullen, B. Concannon, J. Davis, J. Prentice, and V. Contarino, “The a, b, cs of oceanographic lidar predictions: a significant step toward closing the loop between theory and experiment,” J. Mod. Opt. 49, 439-451(2002).
[CrossRef]

2001

2000

1999

1998

1995

M. P. Strand, “Underwater electro-optical system for mine identification,” Proc. SPIE 2496, 487-497 (1995).
[CrossRef]

1992

E. V. Miasinikov and T. V. Kondranin, “Effectiveness of the polarization discrimination technique for underwater viewing systems,” Proc. SPIE 1750, 433-442 (1992).
[CrossRef]

1984

1970

1967

Billmers, R.

A. Laux, R. Billmers, L. Mullen, B. Concannon, J. Davis, J. Prentice, and V. Contarino, “The a, b, cs of oceanographic lidar predictions: a significant step toward closing the loop between theory and experiment,” J. Mod. Opt. 49, 439-451(2002).
[CrossRef]

Brennan, M. J.

Bryant, S. B.

C. J. Funk, S. B. Bryant, and P. J. Heckman, Jr., Handbook of Underwater Imaging System Design (Naval Undersea Center, 1972).

Burris, H. R.

W. S. Rabinovich, R. Mahon, H. R. Burris, G. C. Gilbreath, P. G. Goetz, C. I. Moore, M. F. Stell, M. J. Vilcheck, J. L. Witkowsky, L. Swingen, M. R. Suite, E. Oh, and J. Koplow, “Free space optical communications link at 1550 nm using multiple-quantum-well modulating retroreflectors in a marine environment,” Opt. Eng. 44, 56001-56012 (2005).
[CrossRef]

Chang, P.

Churnside, J. H.

Concannon, B.

A. Laux, R. Billmers, L. Mullen, B. Concannon, J. Davis, J. Prentice, and V. Contarino, “The a, b, cs of oceanographic lidar predictions: a significant step toward closing the loop between theory and experiment,” J. Mod. Opt. 49, 439-451(2002).
[CrossRef]

Contarino, V.

A. Laux, R. Billmers, L. Mullen, B. Concannon, J. Davis, J. Prentice, and V. Contarino, “The a, b, cs of oceanographic lidar predictions: a significant step toward closing the loop between theory and experiment,” J. Mod. Opt. 49, 439-451(2002).
[CrossRef]

Davis, J.

A. Laux, R. Billmers, L. Mullen, B. Concannon, J. Davis, J. Prentice, and V. Contarino, “The a, b, cs of oceanographic lidar predictions: a significant step toward closing the loop between theory and experiment,” J. Mod. Opt. 49, 439-451(2002).
[CrossRef]

Duntley, S. Q.

S. Q. Duntley, “Underwater lighting by submerged lasers and incandescent sources,” SIO Ref. 71-1 (Scripps Insitution of Oceanography Visibility Laboratory, University of California, San Diego, 1971).

Forand, L.

A. Weidemann, G. R. Fournier, L. Forand, and P. Mathieu, “In harbor underwater threat detection/identification using active imaging,” Proc. SPIE 5780, 59-70 (2005).
[CrossRef]

Fournier, G. R.

A. Weidemann, G. R. Fournier, L. Forand, and P. Mathieu, “In harbor underwater threat detection/identification using active imaging,” Proc. SPIE 5780, 59-70 (2005).
[CrossRef]

Fry, E. S.

Funk, C. J.

C. J. Funk, S. B. Bryant, and P. J. Heckman, Jr., Handbook of Underwater Imaging System Design (Naval Undersea Center, 1972).

Gilbert, G. D.

Gilbreath, G. C.

W. S. Rabinovich, R. Mahon, H. R. Burris, G. C. Gilbreath, P. G. Goetz, C. I. Moore, M. F. Stell, M. J. Vilcheck, J. L. Witkowsky, L. Swingen, M. R. Suite, E. Oh, and J. Koplow, “Free space optical communications link at 1550 nm using multiple-quantum-well modulating retroreflectors in a marine environment,” Opt. Eng. 44, 56001-56012 (2005).
[CrossRef]

Goetz, P. G.

W. S. Rabinovich, R. Mahon, H. R. Burris, G. C. Gilbreath, P. G. Goetz, C. I. Moore, M. F. Stell, M. J. Vilcheck, J. L. Witkowsky, L. Swingen, M. R. Suite, E. Oh, and J. Koplow, “Free space optical communications link at 1550 nm using multiple-quantum-well modulating retroreflectors in a marine environment,” Opt. Eng. 44, 56001-56012 (2005).
[CrossRef]

Goldin, Y. A.

Gureev, B. A.

Heckman, P. J.

C. J. Funk, S. B. Bryant, and P. J. Heckman, Jr., Handbook of Underwater Imaging System Design (Naval Undersea Center, 1972).

Hoge, F. E.

Hopcraft, K. I.

Jordan, D. L.

Kondranin, T. V.

E. V. Miasinikov and T. V. Kondranin, “Effectiveness of the polarization discrimination technique for underwater viewing systems,” Proc. SPIE 1750, 433-442 (1992).
[CrossRef]

Koplow, J.

W. S. Rabinovich, R. Mahon, H. R. Burris, G. C. Gilbreath, P. G. Goetz, C. I. Moore, M. F. Stell, M. J. Vilcheck, J. L. Witkowsky, L. Swingen, M. R. Suite, E. Oh, and J. Koplow, “Free space optical communications link at 1550 nm using multiple-quantum-well modulating retroreflectors in a marine environment,” Opt. Eng. 44, 56001-56012 (2005).
[CrossRef]

Kouzoubov, A.

Krekov, G. M.

Krekova, M. M.

Laux, A.

A. Laux, R. Billmers, L. Mullen, B. Concannon, J. Davis, J. Prentice, and V. Contarino, “The a, b, cs of oceanographic lidar predictions: a significant step toward closing the loop between theory and experiment,” J. Mod. Opt. 49, 439-451(2002).
[CrossRef]

Lewis, G. D.

Mahon, R.

W. S. Rabinovich, R. Mahon, H. R. Burris, G. C. Gilbreath, P. G. Goetz, C. I. Moore, M. F. Stell, M. J. Vilcheck, J. L. Witkowsky, L. Swingen, M. R. Suite, E. Oh, and J. Koplow, “Free space optical communications link at 1550 nm using multiple-quantum-well modulating retroreflectors in a marine environment,” Opt. Eng. 44, 56001-56012 (2005).
[CrossRef]

Mathieu, P.

A. Weidemann, G. R. Fournier, L. Forand, and P. Mathieu, “In harbor underwater threat detection/identification using active imaging,” Proc. SPIE 5780, 59-70 (2005).
[CrossRef]

Miasinikov, E. V.

E. V. Miasinikov and T. V. Kondranin, “Effectiveness of the polarization discrimination technique for underwater viewing systems,” Proc. SPIE 1750, 433-442 (1992).
[CrossRef]

Mobley, C. D.

C. D. Mobley, Light and Water: Radiative Transfer in Natural Waters (Academic, 1994).

Moore, C. I.

W. S. Rabinovich, R. Mahon, H. R. Burris, G. C. Gilbreath, P. G. Goetz, C. I. Moore, M. F. Stell, M. J. Vilcheck, J. L. Witkowsky, L. Swingen, M. R. Suite, E. Oh, and J. Koplow, “Free space optical communications link at 1550 nm using multiple-quantum-well modulating retroreflectors in a marine environment,” Opt. Eng. 44, 56001-56012 (2005).
[CrossRef]

Mullen, L.

A. Laux, R. Billmers, L. Mullen, B. Concannon, J. Davis, J. Prentice, and V. Contarino, “The a, b, cs of oceanographic lidar predictions: a significant step toward closing the loop between theory and experiment,” J. Mod. Opt. 49, 439-451(2002).
[CrossRef]

Oh, E.

W. S. Rabinovich, R. Mahon, H. R. Burris, G. C. Gilbreath, P. G. Goetz, C. I. Moore, M. F. Stell, M. J. Vilcheck, J. L. Witkowsky, L. Swingen, M. R. Suite, E. Oh, and J. Koplow, “Free space optical communications link at 1550 nm using multiple-quantum-well modulating retroreflectors in a marine environment,” Opt. Eng. 44, 56001-56012 (2005).
[CrossRef]

Pernicka, J. C.

Prentice, J.

A. Laux, R. Billmers, L. Mullen, B. Concannon, J. Davis, J. Prentice, and V. Contarino, “The a, b, cs of oceanographic lidar predictions: a significant step toward closing the loop between theory and experiment,” J. Mod. Opt. 49, 439-451(2002).
[CrossRef]

Rabinovich, W. S.

W. S. Rabinovich, R. Mahon, H. R. Burris, G. C. Gilbreath, P. G. Goetz, C. I. Moore, M. F. Stell, M. J. Vilcheck, J. L. Witkowsky, L. Swingen, M. R. Suite, E. Oh, and J. Koplow, “Free space optical communications link at 1550 nm using multiple-quantum-well modulating retroreflectors in a marine environment,” Opt. Eng. 44, 56001-56012 (2005).
[CrossRef]

Roberts, P. J.

Sarmanaev, V. S.

Stell, M. F.

W. S. Rabinovich, R. Mahon, H. R. Burris, G. C. Gilbreath, P. G. Goetz, C. I. Moore, M. F. Stell, M. J. Vilcheck, J. L. Witkowsky, L. Swingen, M. R. Suite, E. Oh, and J. Koplow, “Free space optical communications link at 1550 nm using multiple-quantum-well modulating retroreflectors in a marine environment,” Opt. Eng. 44, 56001-56012 (2005).
[CrossRef]

Strand, M. P.

M. P. Strand, “Underwater electro-optical system for mine identification,” Proc. SPIE 2496, 487-497 (1995).
[CrossRef]

Suite, M. R.

W. S. Rabinovich, R. Mahon, H. R. Burris, G. C. Gilbreath, P. G. Goetz, C. I. Moore, M. F. Stell, M. J. Vilcheck, J. L. Witkowsky, L. Swingen, M. R. Suite, E. Oh, and J. Koplow, “Free space optical communications link at 1550 nm using multiple-quantum-well modulating retroreflectors in a marine environment,” Opt. Eng. 44, 56001-56012 (2005).
[CrossRef]

Swift, R. N.

Swingen, L.

W. S. Rabinovich, R. Mahon, H. R. Burris, G. C. Gilbreath, P. G. Goetz, C. I. Moore, M. F. Stell, M. J. Vilcheck, J. L. Witkowsky, L. Swingen, M. R. Suite, E. Oh, and J. Koplow, “Free space optical communications link at 1550 nm using multiple-quantum-well modulating retroreflectors in a marine environment,” Opt. Eng. 44, 56001-56012 (2005).
[CrossRef]

Tatarskii, V. V.

Thomas, J. C.

Vasilkov, A. P.

Vilcheck, M. J.

W. S. Rabinovich, R. Mahon, H. R. Burris, G. C. Gilbreath, P. G. Goetz, C. I. Moore, M. F. Stell, M. J. Vilcheck, J. L. Witkowsky, L. Swingen, M. R. Suite, E. Oh, and J. Koplow, “Free space optical communications link at 1550 nm using multiple-quantum-well modulating retroreflectors in a marine environment,” Opt. Eng. 44, 56001-56012 (2005).
[CrossRef]

Voss, K. J.

Walker, J. G.

Weidemann, A.

A. Weidemann, G. R. Fournier, L. Forand, and P. Mathieu, “In harbor underwater threat detection/identification using active imaging,” Proc. SPIE 5780, 59-70 (2005).
[CrossRef]

Wilson, J. J.

Witkowsky, J. L.

W. S. Rabinovich, R. Mahon, H. R. Burris, G. C. Gilbreath, P. G. Goetz, C. I. Moore, M. F. Stell, M. J. Vilcheck, J. L. Witkowsky, L. Swingen, M. R. Suite, E. Oh, and J. Koplow, “Free space optical communications link at 1550 nm using multiple-quantum-well modulating retroreflectors in a marine environment,” Opt. Eng. 44, 56001-56012 (2005).
[CrossRef]

Wright, C. W.

Appl. Opt.

G. D. Lewis, D. L. Jordan, and P. J. Roberts, “Backscattering target detection in a turbid medium by polarization discrimination,” Appl. Opt. 38, 3937-3944 (1999).
[CrossRef]

J. G. Walker, P. Chang, and K. I. Hopcraft, “Visibility depth improvement in active polarization imaging in scattering media,” Appl. Opt. 39, 4933-4941 (2000).
[CrossRef]

A. P. Vasilkov, Y. A. Goldin, B. A. Gureev, F. E. Hoge, R. N. Swift, and C. W. Wright, “Aiborne polarized lidar detection of scattering layers in the ocean,” Appl. Opt. 40, 4353-4364(2001).
[CrossRef]

A. Kouzoubov, M. J. Brennan, and J. C. Thomas, “Treatment of polarization in laser remote sensing of ocean water,” Appl. Opt. 37, 3873-3885 (1998).
[CrossRef]

K. J. Voss and E. S. Fry, “Measurement of the Mueller matrix for ocean water,” Appl. Opt. 23, 4427-4439 (1984).
[CrossRef] [PubMed]

G. D. Gilbert and J. C. Pernicka, “Improvement of underwater visibility by reduction of backscatter with a circular polarization technique,” Appl. Opt. 6, 741-746 (1967).
[CrossRef] [PubMed]

G. M. Krekov, M. M. Krekova, and V. S. Sarmanaev, “Laser sensing of a subsurface oceanic layer. II. Polarization characteristics of signals,” Appl. Opt. 37, 1596-1601 (1998).
[CrossRef]

J. H. Churnside, V. V. Tatarskii, and J. J. Wilson, “Oceanographic lidar attenuation coefficients and signal fluctuations measured on a ship in the Southern California Bight,” Appl. Opt. 37, 3105-3112 (1998).
[CrossRef]

G. D. Gilbert, “The effects of particle size on contrast improvement by polarization discrimination for underwater targets,” Appl. Opt. 9, 421-428 (1970).
[CrossRef] [PubMed]

J. Mod. Opt.

A. Laux, R. Billmers, L. Mullen, B. Concannon, J. Davis, J. Prentice, and V. Contarino, “The a, b, cs of oceanographic lidar predictions: a significant step toward closing the loop between theory and experiment,” J. Mod. Opt. 49, 439-451(2002).
[CrossRef]

Opt. Eng.

W. S. Rabinovich, R. Mahon, H. R. Burris, G. C. Gilbreath, P. G. Goetz, C. I. Moore, M. F. Stell, M. J. Vilcheck, J. L. Witkowsky, L. Swingen, M. R. Suite, E. Oh, and J. Koplow, “Free space optical communications link at 1550 nm using multiple-quantum-well modulating retroreflectors in a marine environment,” Opt. Eng. 44, 56001-56012 (2005).
[CrossRef]

Proc. SPIE

M. P. Strand, “Underwater electro-optical system for mine identification,” Proc. SPIE 2496, 487-497 (1995).
[CrossRef]

A. Weidemann, G. R. Fournier, L. Forand, and P. Mathieu, “In harbor underwater threat detection/identification using active imaging,” Proc. SPIE 5780, 59-70 (2005).
[CrossRef]

E. V. Miasinikov and T. V. Kondranin, “Effectiveness of the polarization discrimination technique for underwater viewing systems,” Proc. SPIE 1750, 433-442 (1992).
[CrossRef]

Other

C. J. Funk, S. B. Bryant, and P. J. Heckman, Jr., Handbook of Underwater Imaging System Design (Naval Undersea Center, 1972).

C. D. Mobley, Light and Water: Radiative Transfer in Natural Waters (Academic, 1994).

S. Q. Duntley, “Underwater lighting by submerged lasers and incandescent sources,” SIO Ref. 71-1 (Scripps Insitution of Oceanography Visibility Laboratory, University of California, San Diego, 1971).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Experimental setup for measuring the degree of polarization of forward-scattered light in Maalox-enhanced tank water. PMT, photomultiplier tube.

Fig. 2
Fig. 2

Experimental results showing the amplitudes of copolarized and cross-polarized forward-scattered light (left axis) and the corresponding degrees of polarization (right axis) for two different fields of view. The data are plotted as a function of the attenuation length.

Fig. 3
Fig. 3

Data from Fig. 2 plotted along with the nonscattered components of the copolarized and cross-polarized signals.

Fig. 4
Fig. 4

Experimental setup for measuring the degree of polarization of backscattered light. PMT, photomultiplier tube.

Fig. 5
Fig. 5

Experimental results showing the amplitudes of copolarized and cross-polarized backscattered light (left axis) and the corresponding degrees of polarization (right axis) for two different fields of view. The data are plotted as a function of the attenuation length.

Fig. 6
Fig. 6

Experimental setup for testing a modulating retro reflector link that implements polarization discrimination. PMT, photomultiplier tube.

Fig. 7
Fig. 7

Experimental results for a 1 ° field of view showing the amplitudes of the maximum ( P max ) and minimum ( P min ) levels of the detected signal as a function of the attenuation length (left axis). The nonscattered component of P max ( P ns ) is also plotted (left axis). The resulting contrast between the maximum and minimum signal levels is plotted on the right axis.

Fig. 8
Fig. 8

Experimental results for a 1 ° field of view obtained without using a polarizer in the receiver path.

Fig. 9
Fig. 9

Experimental results obtained using a 4.5 ° field of view with a polarizer in the receiver path.

Fig. 10
Fig. 10

Graph of the contrasts from Figs. 7, 8, 9 showing the difference between narrow and wide fields of view and the effect of using a polarizer in the receiver path.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

DOP FS ( z ) DOP 0 exp ( ϕ b z ) ,
ϕ = 1 2 0 ( M 11 M 22 ) θ d θ ,
θ 0 π 2 , 1 2 θ 0 π M 11 ( θ ) sin θ d θ 1 .
DOP BS ( z ) = M 22 ( π ) M 11 ( π ) exp ( 2 ϕ b z ) ,
DOP ( z ) = P co ( z ) P CROSS ( z ) P co ( z ) + P CROSS ( z ) .
P NS , co ( c ) = P 0 , co e c d , P NS , cross ( c ) = P 0 , cross e c d ,
Contrast = P max ¯ P min ¯ P max ¯ + P min ¯ ,

Metrics