Abstract

We demonstrate surface plasmon resonance (SPR) fiber devices based upon ultraviolet inscription of a grating-type structure into both single-layered and multilayered thin films deposited on the flat side of a lapped D-shaped fiber. The single-layered devices were fabricated from germanium, while the multilayered ones comprised layers of germanium, silica, and silver. Some of the devices operated in air with high coupling efficiency in excess of 40dB and an estimated index sensitivity of Δλ/Δn=90nm from 1 to 1.15 index range, while others provided an index sensitivity of Δλ/Δn=6790nm for refractive indices from 1.33 to 1.37.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. S. Vasilev and O. Medvedkov, “Long-period refractive index fiber gratings: properties, applications and fabrication techniques,” Proc. SPIE 4083, 212-223 (2000).
    [CrossRef]
  2. K. Schroeder, W. Ecke, R. Mueller, R. Willsch, and A. Andreev, “A fiber Bragg grating refractometer,” Meas. Sci. Technol. 12, 757-764 (2001).
    [CrossRef]
  3. M. Piliarik, J. Homola, Z. Maníková, and J. Ctyroký, “Surface plasmon resonance sensor based on a single-mode polarization-maintaining optical fiber,” Sens. Actuators B 90, 236-242 (2003).
    [CrossRef]
  4. J. Homola, S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens.Actuators B 54, 3-15 (1999).
    [CrossRef]
  5. T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15, 1277-1292 (1997).
    [CrossRef]
  6. S. Patskovsky, A. Kabashin, M. Meunier, and J. Luong, “Properties and sensing characteristics of surface plasmon resonance in infrared light,” J. Opt. Soc. Am. A 20, 1644-1650(2003).
    [CrossRef]
  7. H.Raether, ed., Surface Plasmons on smooth and Rough Surfaces and on Gratings (Academic, 1997).
  8. J. M. Brockman, B. P. Nelson, and R. M. Corn, “Surface plasmon resonance imaging measurement of ultra-thin organic films,” Annu. Rev. Phys. Chem. 51, 41-63 (2000).
    [CrossRef] [PubMed]
  9. M. Iga, A. Seki, and K. Watanabe, “Gold thickness dependence of SPR-based hetero-core structured optical fiber sensor,” Sens. Actuators B 106, 363-368 (2005).
    [CrossRef]
  10. T. Allsop, R. Neal, S. Rehman, D. J. Webb, D. Mapps, and I. Bennion, “Surface plasmon resonance generation utilising gratings for biochemical sensing,” in Optical Fiber Sensors (OFS) (Optical Society of America, 2006), paper WA4.
  11. T. Allsop, R. Neal, S. Rehman, D. J. Webb, D. Mapps, and I. Bennion, “Characterization of infrared surface plasmon resonances generated from fiber optical sensor utilizing tilted Bragg gratings,” J. Opt. Soc. Am. B 25, 481-490 (2008).
    [CrossRef]
  12. A. K. Sharma, Rajan, and B. D. Gupta, “Influence of dopants on the performance of a fiber optic surface plasmon resonance sensor,” Opt. Commun. 274, 320-326 (2007).
    [CrossRef]
  13. M. Csete, A. Kőházi-Kis, Cs. Vass, Á. Sipos, G. Szekeres, M. Deli, K. Osvay, and Zs. Bor, “Atomic force microscopical and surface plasmon resonance spectroscopical investigation of sub-micrometer metal gratings generated by UV laser-based two-beam interference in Au-Ag bimetallic layers,” Appl. Surf. Sci. 253, 7662-7671 (2007).
    [CrossRef]
  14. D. L. Williams, S. T. Davey, R. Kashyap, J. R. Armitage, and B. J. Ainslie, “UV spectroscopy of optical fibers and preforms,” Proc. SPIE 1516, 29-37 (1991).
    [CrossRef]
  15. T. Allsop, R. Neal, P. Brown, S. Saied, S. Rehman, K. Kalli, D. J. Webb, J. Sullivan, D. Mapps, and I. Bennion, “A surface plasmon resonance fiber device for environmental sensing,” Proc. SPIE 7004, 700441 (2008)
  16. J. F. Young, J. E. Sipe, and H. M. van Driel, “Regimes of laser-induced periodic surface structure on germanium: radiation remnants and surface plasmons,” Opt Lett. 8, 431-433 (1983).
    [CrossRef] [PubMed]
  17. J. F. Young, J. F. Young, J. E. Sipe, and H. M. van Driel, “Laser-induced periodic surface structure. III. Fluence regimes, the role of feedback, and details of the induced topography in germanium,” Rev. B 30, 2001-2015 (1984).
    [CrossRef]
  18. E. M. Yeatman, “Resolution and sensitivity in surface plasmon microscopy and sensing,” Biosensors Bioelect. 11, 635-649(1996).
    [CrossRef]
  19. T. Allsop, R. Neal, S. Rehman, D. J. Webb, D. Mapps, and I. Bennion, Appl. Opt. 46, 5456-5470 (2007).
    [PubMed]
  20. T. Allsop, D. J. Webb, and I. Bennion, “A comparison of the sensing characteristics of long period gratings written in three different types of fiber,” Opt. Fiber Technol. 9, 210-223(2003).
    [CrossRef]
  21. T. Allsop, R. Reeves, D. J. Webb, I. Bennion, and R. Neal, “A high sensitivity refractometer based upon a long period grating Mach-Zehnder interferometer,” Rev. Sci. Instrum. 73, 1702-1705 (2002).
    [CrossRef]
  22. T. Allsop, F. Floreani, K. Jedrzejewski, P. Marques, R. Romero, D. Webb, and I. Bennion, “Refractive index sensing with long-period grating fabricated in biconical tapered fibre,” Electron. Lett. 41, 471-472 (2005).
    [CrossRef]
  23. R. Slavík, J. Homola, and J. Čtryoký, “Single mode optical fiber plasmon resonance sensor,” Sens. Actuators B 54, 74-79(1999).
    [CrossRef]
  24. E. Palik and G. Ghosh, Handbook of Optical Constants (Academic, 1998).
  25. NanoRule+, http://www.pacificnanotech.com/.
  26. D. E. Aspnes, J. B. Theeten, and F. Hottier, “Investigation of effective-medium models of microscopic surface roughness by spectroscopic ellipsometry,” Phys. Rev. B 20, 3292-3302(1979).
    [CrossRef]
  27. K. Johansen, H. Arwin, I. Lundström, and B. Liedberg, “Imaging surface plasmon resonance sensor based on multiple wavelengths: Sensitivity considerations,” Rev. Sci. Instrum. 71, 3530-3538 (2000).
    [CrossRef]
  28. W. Brattain and H. Briggs, “The optical constants of germanium in the infra-red and visible,” Phys. Rev. 75, 1705-1710(1949).
    [CrossRef]

2008 (2)

T. Allsop, R. Neal, S. Rehman, D. J. Webb, D. Mapps, and I. Bennion, “Characterization of infrared surface plasmon resonances generated from fiber optical sensor utilizing tilted Bragg gratings,” J. Opt. Soc. Am. B 25, 481-490 (2008).
[CrossRef]

T. Allsop, R. Neal, P. Brown, S. Saied, S. Rehman, K. Kalli, D. J. Webb, J. Sullivan, D. Mapps, and I. Bennion, “A surface plasmon resonance fiber device for environmental sensing,” Proc. SPIE 7004, 700441 (2008)

2007 (2)

A. K. Sharma, Rajan, and B. D. Gupta, “Influence of dopants on the performance of a fiber optic surface plasmon resonance sensor,” Opt. Commun. 274, 320-326 (2007).
[CrossRef]

M. Csete, A. Kőházi-Kis, Cs. Vass, Á. Sipos, G. Szekeres, M. Deli, K. Osvay, and Zs. Bor, “Atomic force microscopical and surface plasmon resonance spectroscopical investigation of sub-micrometer metal gratings generated by UV laser-based two-beam interference in Au-Ag bimetallic layers,” Appl. Surf. Sci. 253, 7662-7671 (2007).
[CrossRef]

2005 (2)

M. Iga, A. Seki, and K. Watanabe, “Gold thickness dependence of SPR-based hetero-core structured optical fiber sensor,” Sens. Actuators B 106, 363-368 (2005).
[CrossRef]

T. Allsop, F. Floreani, K. Jedrzejewski, P. Marques, R. Romero, D. Webb, and I. Bennion, “Refractive index sensing with long-period grating fabricated in biconical tapered fibre,” Electron. Lett. 41, 471-472 (2005).
[CrossRef]

2003 (3)

T. Allsop, D. J. Webb, and I. Bennion, “A comparison of the sensing characteristics of long period gratings written in three different types of fiber,” Opt. Fiber Technol. 9, 210-223(2003).
[CrossRef]

S. Patskovsky, A. Kabashin, M. Meunier, and J. Luong, “Properties and sensing characteristics of surface plasmon resonance in infrared light,” J. Opt. Soc. Am. A 20, 1644-1650(2003).
[CrossRef]

M. Piliarik, J. Homola, Z. Maníková, and J. Ctyroký, “Surface plasmon resonance sensor based on a single-mode polarization-maintaining optical fiber,” Sens. Actuators B 90, 236-242 (2003).
[CrossRef]

2002 (1)

T. Allsop, R. Reeves, D. J. Webb, I. Bennion, and R. Neal, “A high sensitivity refractometer based upon a long period grating Mach-Zehnder interferometer,” Rev. Sci. Instrum. 73, 1702-1705 (2002).
[CrossRef]

2001 (1)

K. Schroeder, W. Ecke, R. Mueller, R. Willsch, and A. Andreev, “A fiber Bragg grating refractometer,” Meas. Sci. Technol. 12, 757-764 (2001).
[CrossRef]

2000 (3)

S. Vasilev and O. Medvedkov, “Long-period refractive index fiber gratings: properties, applications and fabrication techniques,” Proc. SPIE 4083, 212-223 (2000).
[CrossRef]

J. M. Brockman, B. P. Nelson, and R. M. Corn, “Surface plasmon resonance imaging measurement of ultra-thin organic films,” Annu. Rev. Phys. Chem. 51, 41-63 (2000).
[CrossRef] [PubMed]

K. Johansen, H. Arwin, I. Lundström, and B. Liedberg, “Imaging surface plasmon resonance sensor based on multiple wavelengths: Sensitivity considerations,” Rev. Sci. Instrum. 71, 3530-3538 (2000).
[CrossRef]

1999 (2)

R. Slavík, J. Homola, and J. Čtryoký, “Single mode optical fiber plasmon resonance sensor,” Sens. Actuators B 54, 74-79(1999).
[CrossRef]

J. Homola, S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens.Actuators B 54, 3-15 (1999).
[CrossRef]

1997 (1)

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15, 1277-1292 (1997).
[CrossRef]

1996 (1)

E. M. Yeatman, “Resolution and sensitivity in surface plasmon microscopy and sensing,” Biosensors Bioelect. 11, 635-649(1996).
[CrossRef]

1991 (1)

D. L. Williams, S. T. Davey, R. Kashyap, J. R. Armitage, and B. J. Ainslie, “UV spectroscopy of optical fibers and preforms,” Proc. SPIE 1516, 29-37 (1991).
[CrossRef]

1984 (1)

J. F. Young, J. F. Young, J. E. Sipe, and H. M. van Driel, “Laser-induced periodic surface structure. III. Fluence regimes, the role of feedback, and details of the induced topography in germanium,” Rev. B 30, 2001-2015 (1984).
[CrossRef]

1983 (1)

J. F. Young, J. E. Sipe, and H. M. van Driel, “Regimes of laser-induced periodic surface structure on germanium: radiation remnants and surface plasmons,” Opt Lett. 8, 431-433 (1983).
[CrossRef] [PubMed]

1979 (1)

D. E. Aspnes, J. B. Theeten, and F. Hottier, “Investigation of effective-medium models of microscopic surface roughness by spectroscopic ellipsometry,” Phys. Rev. B 20, 3292-3302(1979).
[CrossRef]

1949 (1)

W. Brattain and H. Briggs, “The optical constants of germanium in the infra-red and visible,” Phys. Rev. 75, 1705-1710(1949).
[CrossRef]

Ainslie, B. J.

D. L. Williams, S. T. Davey, R. Kashyap, J. R. Armitage, and B. J. Ainslie, “UV spectroscopy of optical fibers and preforms,” Proc. SPIE 1516, 29-37 (1991).
[CrossRef]

Allsop, T.

T. Allsop, R. Neal, P. Brown, S. Saied, S. Rehman, K. Kalli, D. J. Webb, J. Sullivan, D. Mapps, and I. Bennion, “A surface plasmon resonance fiber device for environmental sensing,” Proc. SPIE 7004, 700441 (2008)

T. Allsop, R. Neal, S. Rehman, D. J. Webb, D. Mapps, and I. Bennion, “Characterization of infrared surface plasmon resonances generated from fiber optical sensor utilizing tilted Bragg gratings,” J. Opt. Soc. Am. B 25, 481-490 (2008).
[CrossRef]

T. Allsop, F. Floreani, K. Jedrzejewski, P. Marques, R. Romero, D. Webb, and I. Bennion, “Refractive index sensing with long-period grating fabricated in biconical tapered fibre,” Electron. Lett. 41, 471-472 (2005).
[CrossRef]

T. Allsop, D. J. Webb, and I. Bennion, “A comparison of the sensing characteristics of long period gratings written in three different types of fiber,” Opt. Fiber Technol. 9, 210-223(2003).
[CrossRef]

T. Allsop, R. Reeves, D. J. Webb, I. Bennion, and R. Neal, “A high sensitivity refractometer based upon a long period grating Mach-Zehnder interferometer,” Rev. Sci. Instrum. 73, 1702-1705 (2002).
[CrossRef]

T. Allsop, R. Neal, S. Rehman, D. J. Webb, D. Mapps, and I. Bennion, Appl. Opt. 46, 5456-5470 (2007).
[PubMed]

T. Allsop, R. Neal, S. Rehman, D. J. Webb, D. Mapps, and I. Bennion, “Surface plasmon resonance generation utilising gratings for biochemical sensing,” in Optical Fiber Sensors (OFS) (Optical Society of America, 2006), paper WA4.

Andreev, A.

K. Schroeder, W. Ecke, R. Mueller, R. Willsch, and A. Andreev, “A fiber Bragg grating refractometer,” Meas. Sci. Technol. 12, 757-764 (2001).
[CrossRef]

Armitage, J. R.

D. L. Williams, S. T. Davey, R. Kashyap, J. R. Armitage, and B. J. Ainslie, “UV spectroscopy of optical fibers and preforms,” Proc. SPIE 1516, 29-37 (1991).
[CrossRef]

Arwin, H.

K. Johansen, H. Arwin, I. Lundström, and B. Liedberg, “Imaging surface plasmon resonance sensor based on multiple wavelengths: Sensitivity considerations,” Rev. Sci. Instrum. 71, 3530-3538 (2000).
[CrossRef]

Aspnes, D. E.

D. E. Aspnes, J. B. Theeten, and F. Hottier, “Investigation of effective-medium models of microscopic surface roughness by spectroscopic ellipsometry,” Phys. Rev. B 20, 3292-3302(1979).
[CrossRef]

Bennion, I.

T. Allsop, R. Neal, P. Brown, S. Saied, S. Rehman, K. Kalli, D. J. Webb, J. Sullivan, D. Mapps, and I. Bennion, “A surface plasmon resonance fiber device for environmental sensing,” Proc. SPIE 7004, 700441 (2008)

T. Allsop, R. Neal, S. Rehman, D. J. Webb, D. Mapps, and I. Bennion, “Characterization of infrared surface plasmon resonances generated from fiber optical sensor utilizing tilted Bragg gratings,” J. Opt. Soc. Am. B 25, 481-490 (2008).
[CrossRef]

T. Allsop, F. Floreani, K. Jedrzejewski, P. Marques, R. Romero, D. Webb, and I. Bennion, “Refractive index sensing with long-period grating fabricated in biconical tapered fibre,” Electron. Lett. 41, 471-472 (2005).
[CrossRef]

T. Allsop, D. J. Webb, and I. Bennion, “A comparison of the sensing characteristics of long period gratings written in three different types of fiber,” Opt. Fiber Technol. 9, 210-223(2003).
[CrossRef]

T. Allsop, R. Reeves, D. J. Webb, I. Bennion, and R. Neal, “A high sensitivity refractometer based upon a long period grating Mach-Zehnder interferometer,” Rev. Sci. Instrum. 73, 1702-1705 (2002).
[CrossRef]

T. Allsop, R. Neal, S. Rehman, D. J. Webb, D. Mapps, and I. Bennion, Appl. Opt. 46, 5456-5470 (2007).
[PubMed]

T. Allsop, R. Neal, S. Rehman, D. J. Webb, D. Mapps, and I. Bennion, “Surface plasmon resonance generation utilising gratings for biochemical sensing,” in Optical Fiber Sensors (OFS) (Optical Society of America, 2006), paper WA4.

Bor, Zs.

M. Csete, A. Kőházi-Kis, Cs. Vass, Á. Sipos, G. Szekeres, M. Deli, K. Osvay, and Zs. Bor, “Atomic force microscopical and surface plasmon resonance spectroscopical investigation of sub-micrometer metal gratings generated by UV laser-based two-beam interference in Au-Ag bimetallic layers,” Appl. Surf. Sci. 253, 7662-7671 (2007).
[CrossRef]

Brattain, W.

W. Brattain and H. Briggs, “The optical constants of germanium in the infra-red and visible,” Phys. Rev. 75, 1705-1710(1949).
[CrossRef]

Briggs, H.

W. Brattain and H. Briggs, “The optical constants of germanium in the infra-red and visible,” Phys. Rev. 75, 1705-1710(1949).
[CrossRef]

Brockman, J. M.

J. M. Brockman, B. P. Nelson, and R. M. Corn, “Surface plasmon resonance imaging measurement of ultra-thin organic films,” Annu. Rev. Phys. Chem. 51, 41-63 (2000).
[CrossRef] [PubMed]

Brown, P.

T. Allsop, R. Neal, P. Brown, S. Saied, S. Rehman, K. Kalli, D. J. Webb, J. Sullivan, D. Mapps, and I. Bennion, “A surface plasmon resonance fiber device for environmental sensing,” Proc. SPIE 7004, 700441 (2008)

Corn, R. M.

J. M. Brockman, B. P. Nelson, and R. M. Corn, “Surface plasmon resonance imaging measurement of ultra-thin organic films,” Annu. Rev. Phys. Chem. 51, 41-63 (2000).
[CrossRef] [PubMed]

Csete, M.

M. Csete, A. Kőházi-Kis, Cs. Vass, Á. Sipos, G. Szekeres, M. Deli, K. Osvay, and Zs. Bor, “Atomic force microscopical and surface plasmon resonance spectroscopical investigation of sub-micrometer metal gratings generated by UV laser-based two-beam interference in Au-Ag bimetallic layers,” Appl. Surf. Sci. 253, 7662-7671 (2007).
[CrossRef]

Ctryoký, J.

R. Slavík, J. Homola, and J. Čtryoký, “Single mode optical fiber plasmon resonance sensor,” Sens. Actuators B 54, 74-79(1999).
[CrossRef]

Ctyroký, J.

M. Piliarik, J. Homola, Z. Maníková, and J. Ctyroký, “Surface plasmon resonance sensor based on a single-mode polarization-maintaining optical fiber,” Sens. Actuators B 90, 236-242 (2003).
[CrossRef]

Davey, S. T.

D. L. Williams, S. T. Davey, R. Kashyap, J. R. Armitage, and B. J. Ainslie, “UV spectroscopy of optical fibers and preforms,” Proc. SPIE 1516, 29-37 (1991).
[CrossRef]

Deli, M.

M. Csete, A. Kőházi-Kis, Cs. Vass, Á. Sipos, G. Szekeres, M. Deli, K. Osvay, and Zs. Bor, “Atomic force microscopical and surface plasmon resonance spectroscopical investigation of sub-micrometer metal gratings generated by UV laser-based two-beam interference in Au-Ag bimetallic layers,” Appl. Surf. Sci. 253, 7662-7671 (2007).
[CrossRef]

Ecke, W.

K. Schroeder, W. Ecke, R. Mueller, R. Willsch, and A. Andreev, “A fiber Bragg grating refractometer,” Meas. Sci. Technol. 12, 757-764 (2001).
[CrossRef]

Erdogan, T.

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15, 1277-1292 (1997).
[CrossRef]

Floreani, F.

T. Allsop, F. Floreani, K. Jedrzejewski, P. Marques, R. Romero, D. Webb, and I. Bennion, “Refractive index sensing with long-period grating fabricated in biconical tapered fibre,” Electron. Lett. 41, 471-472 (2005).
[CrossRef]

Gauglitz, G.

J. Homola, S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens.Actuators B 54, 3-15 (1999).
[CrossRef]

Ghosh, G.

E. Palik and G. Ghosh, Handbook of Optical Constants (Academic, 1998).

Gupta, B. D.

A. K. Sharma, Rajan, and B. D. Gupta, “Influence of dopants on the performance of a fiber optic surface plasmon resonance sensor,” Opt. Commun. 274, 320-326 (2007).
[CrossRef]

Homola, J.

M. Piliarik, J. Homola, Z. Maníková, and J. Ctyroký, “Surface plasmon resonance sensor based on a single-mode polarization-maintaining optical fiber,” Sens. Actuators B 90, 236-242 (2003).
[CrossRef]

J. Homola, S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens.Actuators B 54, 3-15 (1999).
[CrossRef]

R. Slavík, J. Homola, and J. Čtryoký, “Single mode optical fiber plasmon resonance sensor,” Sens. Actuators B 54, 74-79(1999).
[CrossRef]

Hottier, F.

D. E. Aspnes, J. B. Theeten, and F. Hottier, “Investigation of effective-medium models of microscopic surface roughness by spectroscopic ellipsometry,” Phys. Rev. B 20, 3292-3302(1979).
[CrossRef]

Iga, M.

M. Iga, A. Seki, and K. Watanabe, “Gold thickness dependence of SPR-based hetero-core structured optical fiber sensor,” Sens. Actuators B 106, 363-368 (2005).
[CrossRef]

Jedrzejewski, K.

T. Allsop, F. Floreani, K. Jedrzejewski, P. Marques, R. Romero, D. Webb, and I. Bennion, “Refractive index sensing with long-period grating fabricated in biconical tapered fibre,” Electron. Lett. 41, 471-472 (2005).
[CrossRef]

Johansen, K.

K. Johansen, H. Arwin, I. Lundström, and B. Liedberg, “Imaging surface plasmon resonance sensor based on multiple wavelengths: Sensitivity considerations,” Rev. Sci. Instrum. 71, 3530-3538 (2000).
[CrossRef]

Kabashin, A.

Kalli, K.

T. Allsop, R. Neal, P. Brown, S. Saied, S. Rehman, K. Kalli, D. J. Webb, J. Sullivan, D. Mapps, and I. Bennion, “A surface plasmon resonance fiber device for environmental sensing,” Proc. SPIE 7004, 700441 (2008)

Kashyap, R.

D. L. Williams, S. T. Davey, R. Kashyap, J. R. Armitage, and B. J. Ainslie, “UV spectroscopy of optical fibers and preforms,” Proc. SPIE 1516, 29-37 (1991).
[CrossRef]

Koházi-Kis, A.

M. Csete, A. Kőházi-Kis, Cs. Vass, Á. Sipos, G. Szekeres, M. Deli, K. Osvay, and Zs. Bor, “Atomic force microscopical and surface plasmon resonance spectroscopical investigation of sub-micrometer metal gratings generated by UV laser-based two-beam interference in Au-Ag bimetallic layers,” Appl. Surf. Sci. 253, 7662-7671 (2007).
[CrossRef]

Liedberg, B.

K. Johansen, H. Arwin, I. Lundström, and B. Liedberg, “Imaging surface plasmon resonance sensor based on multiple wavelengths: Sensitivity considerations,” Rev. Sci. Instrum. 71, 3530-3538 (2000).
[CrossRef]

Lundström, I.

K. Johansen, H. Arwin, I. Lundström, and B. Liedberg, “Imaging surface plasmon resonance sensor based on multiple wavelengths: Sensitivity considerations,” Rev. Sci. Instrum. 71, 3530-3538 (2000).
[CrossRef]

Luong, J.

Maníková, Z.

M. Piliarik, J. Homola, Z. Maníková, and J. Ctyroký, “Surface plasmon resonance sensor based on a single-mode polarization-maintaining optical fiber,” Sens. Actuators B 90, 236-242 (2003).
[CrossRef]

Mapps, D.

T. Allsop, R. Neal, S. Rehman, D. J. Webb, D. Mapps, and I. Bennion, “Characterization of infrared surface plasmon resonances generated from fiber optical sensor utilizing tilted Bragg gratings,” J. Opt. Soc. Am. B 25, 481-490 (2008).
[CrossRef]

T. Allsop, R. Neal, P. Brown, S. Saied, S. Rehman, K. Kalli, D. J. Webb, J. Sullivan, D. Mapps, and I. Bennion, “A surface plasmon resonance fiber device for environmental sensing,” Proc. SPIE 7004, 700441 (2008)

T. Allsop, R. Neal, S. Rehman, D. J. Webb, D. Mapps, and I. Bennion, “Surface plasmon resonance generation utilising gratings for biochemical sensing,” in Optical Fiber Sensors (OFS) (Optical Society of America, 2006), paper WA4.

T. Allsop, R. Neal, S. Rehman, D. J. Webb, D. Mapps, and I. Bennion, Appl. Opt. 46, 5456-5470 (2007).
[PubMed]

Marques, P.

T. Allsop, F. Floreani, K. Jedrzejewski, P. Marques, R. Romero, D. Webb, and I. Bennion, “Refractive index sensing with long-period grating fabricated in biconical tapered fibre,” Electron. Lett. 41, 471-472 (2005).
[CrossRef]

Medvedkov, O.

S. Vasilev and O. Medvedkov, “Long-period refractive index fiber gratings: properties, applications and fabrication techniques,” Proc. SPIE 4083, 212-223 (2000).
[CrossRef]

Meunier, M.

Mueller, R.

K. Schroeder, W. Ecke, R. Mueller, R. Willsch, and A. Andreev, “A fiber Bragg grating refractometer,” Meas. Sci. Technol. 12, 757-764 (2001).
[CrossRef]

Neal, R.

T. Allsop, R. Neal, S. Rehman, D. J. Webb, D. Mapps, and I. Bennion, “Characterization of infrared surface plasmon resonances generated from fiber optical sensor utilizing tilted Bragg gratings,” J. Opt. Soc. Am. B 25, 481-490 (2008).
[CrossRef]

T. Allsop, R. Neal, P. Brown, S. Saied, S. Rehman, K. Kalli, D. J. Webb, J. Sullivan, D. Mapps, and I. Bennion, “A surface plasmon resonance fiber device for environmental sensing,” Proc. SPIE 7004, 700441 (2008)

T. Allsop, R. Reeves, D. J. Webb, I. Bennion, and R. Neal, “A high sensitivity refractometer based upon a long period grating Mach-Zehnder interferometer,” Rev. Sci. Instrum. 73, 1702-1705 (2002).
[CrossRef]

T. Allsop, R. Neal, S. Rehman, D. J. Webb, D. Mapps, and I. Bennion, Appl. Opt. 46, 5456-5470 (2007).
[PubMed]

T. Allsop, R. Neal, S. Rehman, D. J. Webb, D. Mapps, and I. Bennion, “Surface plasmon resonance generation utilising gratings for biochemical sensing,” in Optical Fiber Sensors (OFS) (Optical Society of America, 2006), paper WA4.

Nelson, B. P.

J. M. Brockman, B. P. Nelson, and R. M. Corn, “Surface plasmon resonance imaging measurement of ultra-thin organic films,” Annu. Rev. Phys. Chem. 51, 41-63 (2000).
[CrossRef] [PubMed]

Osvay, K.

M. Csete, A. Kőházi-Kis, Cs. Vass, Á. Sipos, G. Szekeres, M. Deli, K. Osvay, and Zs. Bor, “Atomic force microscopical and surface plasmon resonance spectroscopical investigation of sub-micrometer metal gratings generated by UV laser-based two-beam interference in Au-Ag bimetallic layers,” Appl. Surf. Sci. 253, 7662-7671 (2007).
[CrossRef]

Palik, E.

E. Palik and G. Ghosh, Handbook of Optical Constants (Academic, 1998).

Patskovsky, S.

Piliarik, M.

M. Piliarik, J. Homola, Z. Maníková, and J. Ctyroký, “Surface plasmon resonance sensor based on a single-mode polarization-maintaining optical fiber,” Sens. Actuators B 90, 236-242 (2003).
[CrossRef]

Rajan,

A. K. Sharma, Rajan, and B. D. Gupta, “Influence of dopants on the performance of a fiber optic surface plasmon resonance sensor,” Opt. Commun. 274, 320-326 (2007).
[CrossRef]

Reeves, R.

T. Allsop, R. Reeves, D. J. Webb, I. Bennion, and R. Neal, “A high sensitivity refractometer based upon a long period grating Mach-Zehnder interferometer,” Rev. Sci. Instrum. 73, 1702-1705 (2002).
[CrossRef]

Rehman, S.

T. Allsop, R. Neal, P. Brown, S. Saied, S. Rehman, K. Kalli, D. J. Webb, J. Sullivan, D. Mapps, and I. Bennion, “A surface plasmon resonance fiber device for environmental sensing,” Proc. SPIE 7004, 700441 (2008)

T. Allsop, R. Neal, S. Rehman, D. J. Webb, D. Mapps, and I. Bennion, “Characterization of infrared surface plasmon resonances generated from fiber optical sensor utilizing tilted Bragg gratings,” J. Opt. Soc. Am. B 25, 481-490 (2008).
[CrossRef]

T. Allsop, R. Neal, S. Rehman, D. J. Webb, D. Mapps, and I. Bennion, “Surface plasmon resonance generation utilising gratings for biochemical sensing,” in Optical Fiber Sensors (OFS) (Optical Society of America, 2006), paper WA4.

T. Allsop, R. Neal, S. Rehman, D. J. Webb, D. Mapps, and I. Bennion, Appl. Opt. 46, 5456-5470 (2007).
[PubMed]

Romero, R.

T. Allsop, F. Floreani, K. Jedrzejewski, P. Marques, R. Romero, D. Webb, and I. Bennion, “Refractive index sensing with long-period grating fabricated in biconical tapered fibre,” Electron. Lett. 41, 471-472 (2005).
[CrossRef]

Saied, S.

T. Allsop, R. Neal, P. Brown, S. Saied, S. Rehman, K. Kalli, D. J. Webb, J. Sullivan, D. Mapps, and I. Bennion, “A surface plasmon resonance fiber device for environmental sensing,” Proc. SPIE 7004, 700441 (2008)

Schroeder, K.

K. Schroeder, W. Ecke, R. Mueller, R. Willsch, and A. Andreev, “A fiber Bragg grating refractometer,” Meas. Sci. Technol. 12, 757-764 (2001).
[CrossRef]

Seki, A.

M. Iga, A. Seki, and K. Watanabe, “Gold thickness dependence of SPR-based hetero-core structured optical fiber sensor,” Sens. Actuators B 106, 363-368 (2005).
[CrossRef]

Sharma, A. K.

A. K. Sharma, Rajan, and B. D. Gupta, “Influence of dopants on the performance of a fiber optic surface plasmon resonance sensor,” Opt. Commun. 274, 320-326 (2007).
[CrossRef]

Sipe, J. E.

J. F. Young, J. F. Young, J. E. Sipe, and H. M. van Driel, “Laser-induced periodic surface structure. III. Fluence regimes, the role of feedback, and details of the induced topography in germanium,” Rev. B 30, 2001-2015 (1984).
[CrossRef]

J. F. Young, J. E. Sipe, and H. M. van Driel, “Regimes of laser-induced periodic surface structure on germanium: radiation remnants and surface plasmons,” Opt Lett. 8, 431-433 (1983).
[CrossRef] [PubMed]

Sipos, Á.

M. Csete, A. Kőházi-Kis, Cs. Vass, Á. Sipos, G. Szekeres, M. Deli, K. Osvay, and Zs. Bor, “Atomic force microscopical and surface plasmon resonance spectroscopical investigation of sub-micrometer metal gratings generated by UV laser-based two-beam interference in Au-Ag bimetallic layers,” Appl. Surf. Sci. 253, 7662-7671 (2007).
[CrossRef]

Slavík, R.

R. Slavík, J. Homola, and J. Čtryoký, “Single mode optical fiber plasmon resonance sensor,” Sens. Actuators B 54, 74-79(1999).
[CrossRef]

Sullivan, J.

T. Allsop, R. Neal, P. Brown, S. Saied, S. Rehman, K. Kalli, D. J. Webb, J. Sullivan, D. Mapps, and I. Bennion, “A surface plasmon resonance fiber device for environmental sensing,” Proc. SPIE 7004, 700441 (2008)

Szekeres, G.

M. Csete, A. Kőházi-Kis, Cs. Vass, Á. Sipos, G. Szekeres, M. Deli, K. Osvay, and Zs. Bor, “Atomic force microscopical and surface plasmon resonance spectroscopical investigation of sub-micrometer metal gratings generated by UV laser-based two-beam interference in Au-Ag bimetallic layers,” Appl. Surf. Sci. 253, 7662-7671 (2007).
[CrossRef]

Theeten, J. B.

D. E. Aspnes, J. B. Theeten, and F. Hottier, “Investigation of effective-medium models of microscopic surface roughness by spectroscopic ellipsometry,” Phys. Rev. B 20, 3292-3302(1979).
[CrossRef]

van Driel, H. M.

J. F. Young, J. F. Young, J. E. Sipe, and H. M. van Driel, “Laser-induced periodic surface structure. III. Fluence regimes, the role of feedback, and details of the induced topography in germanium,” Rev. B 30, 2001-2015 (1984).
[CrossRef]

J. F. Young, J. E. Sipe, and H. M. van Driel, “Regimes of laser-induced periodic surface structure on germanium: radiation remnants and surface plasmons,” Opt Lett. 8, 431-433 (1983).
[CrossRef] [PubMed]

Vasilev, S.

S. Vasilev and O. Medvedkov, “Long-period refractive index fiber gratings: properties, applications and fabrication techniques,” Proc. SPIE 4083, 212-223 (2000).
[CrossRef]

Vass, Cs.

M. Csete, A. Kőházi-Kis, Cs. Vass, Á. Sipos, G. Szekeres, M. Deli, K. Osvay, and Zs. Bor, “Atomic force microscopical and surface plasmon resonance spectroscopical investigation of sub-micrometer metal gratings generated by UV laser-based two-beam interference in Au-Ag bimetallic layers,” Appl. Surf. Sci. 253, 7662-7671 (2007).
[CrossRef]

Watanabe, K.

M. Iga, A. Seki, and K. Watanabe, “Gold thickness dependence of SPR-based hetero-core structured optical fiber sensor,” Sens. Actuators B 106, 363-368 (2005).
[CrossRef]

Webb, D.

T. Allsop, F. Floreani, K. Jedrzejewski, P. Marques, R. Romero, D. Webb, and I. Bennion, “Refractive index sensing with long-period grating fabricated in biconical tapered fibre,” Electron. Lett. 41, 471-472 (2005).
[CrossRef]

Webb, D. J.

T. Allsop, R. Neal, S. Rehman, D. J. Webb, D. Mapps, and I. Bennion, “Characterization of infrared surface plasmon resonances generated from fiber optical sensor utilizing tilted Bragg gratings,” J. Opt. Soc. Am. B 25, 481-490 (2008).
[CrossRef]

T. Allsop, R. Neal, P. Brown, S. Saied, S. Rehman, K. Kalli, D. J. Webb, J. Sullivan, D. Mapps, and I. Bennion, “A surface plasmon resonance fiber device for environmental sensing,” Proc. SPIE 7004, 700441 (2008)

T. Allsop, D. J. Webb, and I. Bennion, “A comparison of the sensing characteristics of long period gratings written in three different types of fiber,” Opt. Fiber Technol. 9, 210-223(2003).
[CrossRef]

T. Allsop, R. Reeves, D. J. Webb, I. Bennion, and R. Neal, “A high sensitivity refractometer based upon a long period grating Mach-Zehnder interferometer,” Rev. Sci. Instrum. 73, 1702-1705 (2002).
[CrossRef]

T. Allsop, R. Neal, S. Rehman, D. J. Webb, D. Mapps, and I. Bennion, Appl. Opt. 46, 5456-5470 (2007).
[PubMed]

T. Allsop, R. Neal, S. Rehman, D. J. Webb, D. Mapps, and I. Bennion, “Surface plasmon resonance generation utilising gratings for biochemical sensing,” in Optical Fiber Sensors (OFS) (Optical Society of America, 2006), paper WA4.

Williams, D. L.

D. L. Williams, S. T. Davey, R. Kashyap, J. R. Armitage, and B. J. Ainslie, “UV spectroscopy of optical fibers and preforms,” Proc. SPIE 1516, 29-37 (1991).
[CrossRef]

Willsch, R.

K. Schroeder, W. Ecke, R. Mueller, R. Willsch, and A. Andreev, “A fiber Bragg grating refractometer,” Meas. Sci. Technol. 12, 757-764 (2001).
[CrossRef]

Yeatman, E. M.

E. M. Yeatman, “Resolution and sensitivity in surface plasmon microscopy and sensing,” Biosensors Bioelect. 11, 635-649(1996).
[CrossRef]

Yee, S.

J. Homola, S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens.Actuators B 54, 3-15 (1999).
[CrossRef]

Young, J. F.

J. F. Young, J. F. Young, J. E. Sipe, and H. M. van Driel, “Laser-induced periodic surface structure. III. Fluence regimes, the role of feedback, and details of the induced topography in germanium,” Rev. B 30, 2001-2015 (1984).
[CrossRef]

J. F. Young, J. F. Young, J. E. Sipe, and H. M. van Driel, “Laser-induced periodic surface structure. III. Fluence regimes, the role of feedback, and details of the induced topography in germanium,” Rev. B 30, 2001-2015 (1984).
[CrossRef]

J. F. Young, J. E. Sipe, and H. M. van Driel, “Regimes of laser-induced periodic surface structure on germanium: radiation remnants and surface plasmons,” Opt Lett. 8, 431-433 (1983).
[CrossRef] [PubMed]

Annu. Rev. Phys. Chem. (1)

J. M. Brockman, B. P. Nelson, and R. M. Corn, “Surface plasmon resonance imaging measurement of ultra-thin organic films,” Annu. Rev. Phys. Chem. 51, 41-63 (2000).
[CrossRef] [PubMed]

Appl. Opt. (1)

Appl. Surf. Sci. (1)

M. Csete, A. Kőházi-Kis, Cs. Vass, Á. Sipos, G. Szekeres, M. Deli, K. Osvay, and Zs. Bor, “Atomic force microscopical and surface plasmon resonance spectroscopical investigation of sub-micrometer metal gratings generated by UV laser-based two-beam interference in Au-Ag bimetallic layers,” Appl. Surf. Sci. 253, 7662-7671 (2007).
[CrossRef]

Biosensors Bioelect. (1)

E. M. Yeatman, “Resolution and sensitivity in surface plasmon microscopy and sensing,” Biosensors Bioelect. 11, 635-649(1996).
[CrossRef]

Electron. Lett. (1)

T. Allsop, F. Floreani, K. Jedrzejewski, P. Marques, R. Romero, D. Webb, and I. Bennion, “Refractive index sensing with long-period grating fabricated in biconical tapered fibre,” Electron. Lett. 41, 471-472 (2005).
[CrossRef]

J. Lightwave Technol. (1)

T. Erdogan, “Fiber grating spectra,” J. Lightwave Technol. 15, 1277-1292 (1997).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

Meas. Sci. Technol. (1)

K. Schroeder, W. Ecke, R. Mueller, R. Willsch, and A. Andreev, “A fiber Bragg grating refractometer,” Meas. Sci. Technol. 12, 757-764 (2001).
[CrossRef]

Opt Lett. (1)

J. F. Young, J. E. Sipe, and H. M. van Driel, “Regimes of laser-induced periodic surface structure on germanium: radiation remnants and surface plasmons,” Opt Lett. 8, 431-433 (1983).
[CrossRef] [PubMed]

Opt. Commun. (1)

A. K. Sharma, Rajan, and B. D. Gupta, “Influence of dopants on the performance of a fiber optic surface plasmon resonance sensor,” Opt. Commun. 274, 320-326 (2007).
[CrossRef]

Opt. Fiber Technol. (1)

T. Allsop, D. J. Webb, and I. Bennion, “A comparison of the sensing characteristics of long period gratings written in three different types of fiber,” Opt. Fiber Technol. 9, 210-223(2003).
[CrossRef]

Phys. Rev. (1)

W. Brattain and H. Briggs, “The optical constants of germanium in the infra-red and visible,” Phys. Rev. 75, 1705-1710(1949).
[CrossRef]

Phys. Rev. B (1)

D. E. Aspnes, J. B. Theeten, and F. Hottier, “Investigation of effective-medium models of microscopic surface roughness by spectroscopic ellipsometry,” Phys. Rev. B 20, 3292-3302(1979).
[CrossRef]

Proc. SPIE (2)

S. Vasilev and O. Medvedkov, “Long-period refractive index fiber gratings: properties, applications and fabrication techniques,” Proc. SPIE 4083, 212-223 (2000).
[CrossRef]

D. L. Williams, S. T. Davey, R. Kashyap, J. R. Armitage, and B. J. Ainslie, “UV spectroscopy of optical fibers and preforms,” Proc. SPIE 1516, 29-37 (1991).
[CrossRef]

Rev. B (1)

J. F. Young, J. F. Young, J. E. Sipe, and H. M. van Driel, “Laser-induced periodic surface structure. III. Fluence regimes, the role of feedback, and details of the induced topography in germanium,” Rev. B 30, 2001-2015 (1984).
[CrossRef]

Rev. Sci. Instrum. (2)

T. Allsop, R. Reeves, D. J. Webb, I. Bennion, and R. Neal, “A high sensitivity refractometer based upon a long period grating Mach-Zehnder interferometer,” Rev. Sci. Instrum. 73, 1702-1705 (2002).
[CrossRef]

K. Johansen, H. Arwin, I. Lundström, and B. Liedberg, “Imaging surface plasmon resonance sensor based on multiple wavelengths: Sensitivity considerations,” Rev. Sci. Instrum. 71, 3530-3538 (2000).
[CrossRef]

Sens. Actuators B (3)

R. Slavík, J. Homola, and J. Čtryoký, “Single mode optical fiber plasmon resonance sensor,” Sens. Actuators B 54, 74-79(1999).
[CrossRef]

M. Iga, A. Seki, and K. Watanabe, “Gold thickness dependence of SPR-based hetero-core structured optical fiber sensor,” Sens. Actuators B 106, 363-368 (2005).
[CrossRef]

M. Piliarik, J. Homola, Z. Maníková, and J. Ctyroký, “Surface plasmon resonance sensor based on a single-mode polarization-maintaining optical fiber,” Sens. Actuators B 90, 236-242 (2003).
[CrossRef]

Sens.Actuators B (1)

J. Homola, S. Yee, and G. Gauglitz, “Surface plasmon resonance sensors: review,” Sens.Actuators B 54, 3-15 (1999).
[CrossRef]

Other (5)

H.Raether, ed., Surface Plasmons on smooth and Rough Surfaces and on Gratings (Academic, 1997).

T. Allsop, R. Neal, S. Rehman, D. J. Webb, D. Mapps, and I. Bennion, “Surface plasmon resonance generation utilising gratings for biochemical sensing,” in Optical Fiber Sensors (OFS) (Optical Society of America, 2006), paper WA4.

T. Allsop, R. Neal, P. Brown, S. Saied, S. Rehman, K. Kalli, D. J. Webb, J. Sullivan, D. Mapps, and I. Bennion, “A surface plasmon resonance fiber device for environmental sensing,” Proc. SPIE 7004, 700441 (2008)

E. Palik and G. Ghosh, Handbook of Optical Constants (Academic, 1998).

NanoRule+, http://www.pacificnanotech.com/.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1
Fig. 1

Transmission and reflection spectra of post-UV exposed D-shaped fiber with a multilayered coating consisting of three layers, Ge - SiO 2 - Ag . (a) Polarization-dependent loss and transmission spectrum, (b)  reflection spectrum and coupling to a SP.

Fig. 2
Fig. 2

Scheme used for the characterization of the lapped and multilayer-coated fiber devices and the combinations of layers used in the coatings, (A)  Ge - SiO 2 - Ag , (B)  Ge - SiO 2 , (C) Ge, and a typical cross-section of the device.

Fig. 3
Fig. 3

Transmission spectra of the Ge - SiO 2 -coated fiber device surrounded by air for two polarization states of the illuminating light.

Fig. 4
Fig. 4

Transmission spectra of the Ge - SiO 2 - Ag -coated fiber device surrounded by air for two polarization states of the illuminating light.

Fig. 5
Fig. 5

(a) Transmission spectra of the Ge-coated fiber device surrounded by a medium with a refractive index of 1.36 with changing polarization. (b) Coupling efficiency and (c) wavelength shift of the resonance as the azimuth of polarization of the illuminating light is changed from the position providing maximum coupling.

Fig. 6
Fig. 6

(a) Transmission spectra of the Ge - SiO 2 -coated fiber device surrounded by air with changing polarization. (b) Coupling efficiency and (c) wavelength shift of the resonance as the azimuth of polarization of the illuminating light is changed from the position providing maximum coupling at 1450 nm .

Fig. 7
Fig. 7

(a) Transmission spectra of the Ge - SiO 2 - Ag -coated fiber device as a function of changing polarization from maximum coupling in air. (b) Coupling efficiency of the resonances at 1390 nm and 1550 nm and (c) wavelength shift of the coupling feature at 1390 nm as the azimuth of polarization of the illuminating light is changed from the position providing maximum coupling.

Fig. 8
Fig. 8

(a) Transmission spectra of the germanium-coated device as a function of refractive index (polarization of the illuminating light chosen to maximize coupling at index 1.3). (b) Wavelength shift and (c) coupling strength of the resonance as a function of refractive index.

Fig. 9
Fig. 9

(a) Transmission spectra of the Ge - SiO 2 -coated device as a function of refractive index (polarization of the illuminating light chosen to maximize coupling at index 1.3). (b) Wavelength shift and (c) coupling strength of the resonance as a function of refractive index.

Fig. 10
Fig. 10

Transmission spectra of the Ge - SiO 2 - Ag -coated fiber device as a function of refractive index. The polarization was adjusted to give maximum coupling at 1390 nm and 1550 nm .

Fig. 11
Fig. 11

(a) Wavelength shift and (b) the coupling efficiency of the Ge - SiO 2 - Ag coated fiber device as a function of refractive index. The polarization was adjusted to give maximum coupling at 1390 nm (coupling C) and 1550 nm (coupling D).

Fig. 12
Fig. 12

Predicted spectral behavior of a Ge-coated D-shaped fiber as a function of the surrounding medium’s index: (a) spectral variations, (b) wavelength shift, and (c) coupling strength as a function of index.

Fig. 13
Fig. 13

Predicted spectral behavior of a Ge - SiO 2 -coated D-shaped fiber as a function of the surrounding medium’s index: (a) spectral variations, (b) wavelength shift, and (c) coupling strength as a function of index with a thickness of 49.8 nm of germanium (roughness 12 nm , thickness ranging up to 80 nm ,) and 30.2 nm of silica (roughness 9 nm , thickness ranging up to 58 nm ,) using a fractional V r of 0.20.

Fig. 14
Fig. 14

Predicted spectral behavior of a Ge - SiO 2 - Ag -coated D-shaped fiber as a function of the surrounding medium’s index: (a) spectral variations, (b) wavelength shift, and (c) coupling strength as a function of index with a thickness of 49.8 nm of germanium (roughness 12 nm , thickness ranging up to 80 nm ), 30.2 nm of silica (roughness 9 nm , thickness ranging up to 58 nm ), using a fractional volume V r of 0.50 and 38 nm of silver (roughness 5 nm with the thickness ranging up to 68 nm ) using a fractional V r of 0.60.

Fig. 15
Fig. 15

Wavelength spectral sensitivity comparison of the three kinds of coated fiber devices as a function of refractive index along with a LPG ( period = 240 μm , length 5 cm ).

Fig. 16
Fig. 16

Optical power sensitivity comparison of the three kinds of coated fiber devices as a function of refractive index along with a LPG ( period = 240 μm , length 5 cm ).

Tables (1)

Tables Icon

Table 1 Comparison of fiber Device Index Sensitivity in the Index Regime of 1.33 to 1.39

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

β = k ( ε m · n s 2 ε m + n s 2 ) ,
R = | E r p E 0 p | 2 = | r n 2 n sc p + r n sc n s p · exp ( 2 i k zn sc d ) 1 + r n 2 n sc p · r n sc n s p · exp ( 2 i k zn sc d ) | 2 ,
ε eff = ( 3 2 V r ) ε i + 2 V r ε h V r ε i + ( 3 V r ) ε h · ε h ,
z sp = Im [ ( ε Ge ( λ ) + n s ( λ ) 2 ) · λ 4 π n s ( λ ) 2 ] ,

Metrics