Abstract

Retinal photography requires the use of a complex optical system, called a fundus camera, capable of illuminating and imaging the retina simultaneously. The patent literature shows two design forms but does not provide the specifics necessary for a thorough analysis of the designs to be performed. We have constructed our own designs based on the patent literature in optical design software and compared them for illumination efficiency, image quality, ability to accommodate for patient refractive error, and manufacturing tolerances, a comparison lacking in the existing literature.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. Shibata and M. Torii, “Fundus camera,” U.S. patent 6,654,553 (25 November 2003).
  2. T. Nanjo and M. Kawamura, “Fundus camera,” U.S. patent 5,742,374 (21 April 1998).
  3. H. A. Knoll, “Ophthalmic instruments,” in Applied Optics and Optical Engineering, Optical Instruments Part 2, R. Kingslake, ed. (Academic, 1969), Vol. 5, pp. 281-304.
  4. M. Hammer and D. Schweitzer, “Quantitative reflection spectroscopy at the human ocular fundus,” Phys. Med. Biol. 47, 179-191 (2002).
    [CrossRef] [PubMed]
  5. F. C. Delori and K. P. Pflibsen, “Spectral reflectance of the human ocular fundus,” Appl. Opt. 28, 1065-1077 (1989).
    [CrossRef]
  6. D. A. Atchison and G. Smith, Optics of the Human Eye (Butterworth-Heinemann, 2000).
  7. J. Schwiegerling, Field Guide to Visual and Ophthalmic Optics (SPIE, 2004).
    [CrossRef]
  8. L. N. Thibos, X. Hong, A. Bradley, and X. Cheng, “Statistical variation of aberration structure and image quality in a normal population of healthy eyes,” J. Opt. Soc. Am. A 19, 2329-2348 (2002).
    [CrossRef]
  9. E. DeHoog and J. Schweigerling, Ophthalmic Optics Laboratory, University of Arizona, 1630 E. University Boulevard, Tucson, Arizona 85721, USA, are preparing a manuscript to be called “Optimal parameters for retinal illumination and imaging in fundus cameras.”
  10. J. Liang, D. R. Williams, and D. T. Miller, “Supernormal vision and high-resolution retinal imaging through adaptive optics,” J. Opt. Soc. Am. A 14, 2884-2892 (1997).
    [CrossRef]
  11. J. Liang and D. R. Williams, “Aberrations and retinal image quality of the normal human eye,” J. Opt. Soc. Am. A 14, 2873-2883 (1997).
    [CrossRef]
  12. Optimax Systems Inc., “Manufacturing tolerances,” http://www.optimaxsi.com/0404/Products/Spheres.htm.
  13. Kreicher Optics, “Aspheric Design Guide for Manufacturability,” http://www.kreischer.com/aspheric_design_guide.htm.
  14. M. Kidger, Fundamental Optical Design (SPIE, 2001).
    [CrossRef]
  15. I. Escudero-Sanz and R. Navarro, “Off-axis aberrations of a wide--angle schematic eye model,” J. Opt. Soc. Am. A 16, 1881-1891 (1999).
    [CrossRef]
  16. M. Kidger, Intermediate Optical Design (SPIE, 2004).
    [CrossRef]
  17. R. R. Shannon, The Art and Science of Optical Design (Cambridge, 1997).
  18. CVI Melles Griot, “Optical fabrication tolerances,” http://www.cvilaser.com/Common/PDFs/CVIMG-Capabilities_Matrix.pdf.
  19. Rochester Precision Optics, “Traditional optics capability,” http://www.rpoptics.com/TraditionalOpticsCapabilities.htm.

2002

1999

1997

1989

F. C. Delori and K. P. Pflibsen, “Spectral reflectance of the human ocular fundus,” Appl. Opt. 28, 1065-1077 (1989).
[CrossRef]

Atchison, D. A.

D. A. Atchison and G. Smith, Optics of the Human Eye (Butterworth-Heinemann, 2000).

Bradley, A.

Cheng, X.

DeHoog, E.

E. DeHoog and J. Schweigerling, Ophthalmic Optics Laboratory, University of Arizona, 1630 E. University Boulevard, Tucson, Arizona 85721, USA, are preparing a manuscript to be called “Optimal parameters for retinal illumination and imaging in fundus cameras.”

Delori, F. C.

F. C. Delori and K. P. Pflibsen, “Spectral reflectance of the human ocular fundus,” Appl. Opt. 28, 1065-1077 (1989).
[CrossRef]

Escudero-Sanz, I.

Hammer, M.

M. Hammer and D. Schweitzer, “Quantitative reflection spectroscopy at the human ocular fundus,” Phys. Med. Biol. 47, 179-191 (2002).
[CrossRef] [PubMed]

Hong, X.

Kawamura, M.

T. Nanjo and M. Kawamura, “Fundus camera,” U.S. patent 5,742,374 (21 April 1998).

Kidger, M.

M. Kidger, Fundamental Optical Design (SPIE, 2001).
[CrossRef]

M. Kidger, Intermediate Optical Design (SPIE, 2004).
[CrossRef]

Knoll, H. A.

H. A. Knoll, “Ophthalmic instruments,” in Applied Optics and Optical Engineering, Optical Instruments Part 2, R. Kingslake, ed. (Academic, 1969), Vol. 5, pp. 281-304.

Liang, J.

Miller, D. T.

Nanjo, T.

T. Nanjo and M. Kawamura, “Fundus camera,” U.S. patent 5,742,374 (21 April 1998).

Navarro, R.

Pflibsen, K. P.

F. C. Delori and K. P. Pflibsen, “Spectral reflectance of the human ocular fundus,” Appl. Opt. 28, 1065-1077 (1989).
[CrossRef]

Schweigerling, J.

E. DeHoog and J. Schweigerling, Ophthalmic Optics Laboratory, University of Arizona, 1630 E. University Boulevard, Tucson, Arizona 85721, USA, are preparing a manuscript to be called “Optimal parameters for retinal illumination and imaging in fundus cameras.”

Schweitzer, D.

M. Hammer and D. Schweitzer, “Quantitative reflection spectroscopy at the human ocular fundus,” Phys. Med. Biol. 47, 179-191 (2002).
[CrossRef] [PubMed]

Schwiegerling, J.

J. Schwiegerling, Field Guide to Visual and Ophthalmic Optics (SPIE, 2004).
[CrossRef]

Shannon, R. R.

R. R. Shannon, The Art and Science of Optical Design (Cambridge, 1997).

Shibata, N.

N. Shibata and M. Torii, “Fundus camera,” U.S. patent 6,654,553 (25 November 2003).

Smith, G.

D. A. Atchison and G. Smith, Optics of the Human Eye (Butterworth-Heinemann, 2000).

Thibos, L. N.

Torii, M.

N. Shibata and M. Torii, “Fundus camera,” U.S. patent 6,654,553 (25 November 2003).

Williams, D. R.

Appl. Opt.

F. C. Delori and K. P. Pflibsen, “Spectral reflectance of the human ocular fundus,” Appl. Opt. 28, 1065-1077 (1989).
[CrossRef]

J. Opt. Soc. Am. A

Phys. Med. Biol.

M. Hammer and D. Schweitzer, “Quantitative reflection spectroscopy at the human ocular fundus,” Phys. Med. Biol. 47, 179-191 (2002).
[CrossRef] [PubMed]

Other

N. Shibata and M. Torii, “Fundus camera,” U.S. patent 6,654,553 (25 November 2003).

T. Nanjo and M. Kawamura, “Fundus camera,” U.S. patent 5,742,374 (21 April 1998).

H. A. Knoll, “Ophthalmic instruments,” in Applied Optics and Optical Engineering, Optical Instruments Part 2, R. Kingslake, ed. (Academic, 1969), Vol. 5, pp. 281-304.

D. A. Atchison and G. Smith, Optics of the Human Eye (Butterworth-Heinemann, 2000).

J. Schwiegerling, Field Guide to Visual and Ophthalmic Optics (SPIE, 2004).
[CrossRef]

Optimax Systems Inc., “Manufacturing tolerances,” http://www.optimaxsi.com/0404/Products/Spheres.htm.

Kreicher Optics, “Aspheric Design Guide for Manufacturability,” http://www.kreischer.com/aspheric_design_guide.htm.

M. Kidger, Fundamental Optical Design (SPIE, 2001).
[CrossRef]

M. Kidger, Intermediate Optical Design (SPIE, 2004).
[CrossRef]

R. R. Shannon, The Art and Science of Optical Design (Cambridge, 1997).

CVI Melles Griot, “Optical fabrication tolerances,” http://www.cvilaser.com/Common/PDFs/CVIMG-Capabilities_Matrix.pdf.

Rochester Precision Optics, “Traditional optics capability,” http://www.rpoptics.com/TraditionalOpticsCapabilities.htm.

E. DeHoog and J. Schweigerling, Ophthalmic Optics Laboratory, University of Arizona, 1630 E. University Boulevard, Tucson, Arizona 85721, USA, are preparing a manuscript to be called “Optimal parameters for retinal illumination and imaging in fundus cameras.”

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Fundus camera system designed by the authors modeling schematics in the patent literature: (a) external illumination design and (b) internal illumination design.

Fig. 2
Fig. 2

Objective diameter as a function of a FOV for working distances 25 and 35 mm .

Fig. 3
Fig. 3

MTF and field curvature of internal fundus camera system: (a) polychromatic MTF, (b) MTF at 656.3 nm , and (c) field curvature and distortion.

Fig. 4
Fig. 4

MTF and field curvature of external fundus camera system: (a) polychromatic MTF, (b) MTF at 656.3 nm , and (c) field curvature and distortion.

Fig. 5
Fig. 5

External fundus camera defocus accommodations: (a) polychromatic MTF and (b) MTF at 656.3 nm .

Fig. 6
Fig. 6

Internal fundus camera defocus accommodation: (a) polychromatic MTF and (b) MTF at 656.3 nm .

Fig. 7
Fig. 7

Illumination patterns of the external system at (a) the retina, (b) the pupil of the eye, and (c) the CCD.

Fig. 8
Fig. 8

Illumination patterns of the internal system at (a) the retina, (b) the pupil of the eye, and (c) the CCD.

Tables (4)

Tables Icon

Table 1 Travel of Zoom Lens Component for Accommodation of Defocus

Tables Icon

Table 2 Efficiency Measurements for External and Internal Fundus Camera Systems

Tables Icon

Table 3 Tolerance Values Selected for Fundus Camera Systems

Tables Icon

Table 4 Results of 100 Monte Carlo Trials of Fundus Camera Systems

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

η = Φ det Φ in * 100 % ,

Metrics