Abstract

A method for measuring the photoluminescent quantum yields (PLQY) of luminescent organic dyes is presented. The self-absorption probability calculated at different dye concentrations is used to determine the absolute quantum yield from the observed values. The results for a range of commercially available dyes show high quantum yields, even at high concentrations, and an absence of quenching. The PLQY of several dye mixtures are also presented. The results indicate an absence of any reduction of PLQY in a dye mixture as compared with the individual PLQY of the dyes.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. S. Batchelder, A. H. Zewail, and T. Cole, “Luminescent solar concentrators. 1: Theory of operation and techniques for performance evaluation,” Appl. Opt. 18, 3090-3110 (1979).
    [CrossRef] [PubMed]
  2. J. S. Batchelder, A. H. Zewail, and T. Cole, “Luminescent solar concentrators. 2: Experimental and theoretical analysis of their possible efficiencies,” Appl. Opt. 20, 3733-3754 (1981).
    [CrossRef] [PubMed]
  3. A. Goetzberger and W. Greubel, “Solar energy conversion with fluorescent collectors,” Appl. Phys. 14, 123-139 (1977).
    [CrossRef]
  4. A. Goetzberger, “Fluorescent solar energy collectors: operating conditions with diffuse light,” Appl. Phys. 16, 399-404 (1978).
    [CrossRef]
  5. A. Goetzberger and O. Schirmer, “Second stage concentration with tapers for fluorescent solar collectors,” Appl. Phys. 19, 53-58 (1979).
    [CrossRef]
  6. W. H. Weber and J. Lambe, “Luminescent greenhouse collector for solar radiation,” Appl. Opt. 15, 2299-2300 (1976).
    [CrossRef] [PubMed]
  7. B. Rowan, L. Wilson, and B. S. Richards, “Advanced concepts for luminescent solar concentrators,” IEEE J. Select. Top. Quantum Electron. 14, 1312-1322 (2008).
  8. G. Seybold and G. Wagenblast, “New perylene and violanthrone dyestuffs for fluorescent collectors,” Dyes Pigments 11, 303-317 (1989).
    [CrossRef]
  9. L. R. Wilson, B. S. Richards, A. C. Jones, P. R. Richardson, A. Cole, Ian Fraser, N. Kirtley, and L. Minto, “Quantum yield measurements of high-efficiency dyes for luminescent solar concentrators,” presented at the 4th Photovoltaic Science Application and Technology Conference, Bath, UK, 2-4 April 2008.
  10. B. S. Richards and K. R. McIntosh, “Ray-tracing simulations of luminescent solar concentrators containing multiple luminescent species,” in 21st European Photovoltaic Solar Energy Conference (WIP Renewable Energies, 2006), pp. 185-188.
  11. “Fluorescence quantum yield standards,” http://www.iss.com/resources/yield.html.
  12. J. R. Lakowicz, Principles of Fluorescence Spectroscopy, 2nd ed. (Kluwer Academic/Plenum, 1999).
  13. D. Magde, G. E. Rojas, and P. Seybold, “Solvent dependence of the fluorescence lifetimes of xanthene dyes,” Photochem. Photobiol. 70, 737-744 (1999).
    [CrossRef]
  14. J. H. Brannon and D. Magde, “Absolute quantum yield determination by thermal blooming. Fluorescein,” J. Phys. Chem. 82, 705-709 (1978).
    [CrossRef]
  15. K. L. Jansen and J. M. Harris, “Double-beam thermal lens spectrometry,” Anal. Chem. 57, 2434-2436 (1985).
    [CrossRef]
  16. A. Kurian, K. P. Unnikrishnan, T. S. Lee, V. P. N. Nampoori, and C. P. G. Vallabhan, “Realization of optical logic gates using the thermal lens effect,” Laser Chem. 20, 81-87 (2002).
    [CrossRef]
  17. A. Kurian, “Characterization of photonic materials using thermal lens technique,” Ph.D. disseration (Cochin University of Science and Technology, 2002).
  18. M. L. Lesiecki and J. M. Drake, “Use of the thermal lens technique to measure the luminescent quantum yields of dyes in PMMA for luminescent solar concentrators,” Appl. Opt. 21, 557-560 (1982).
    [CrossRef] [PubMed]
  19. S. M. Lima, A. A. Andrade, R. Lebullenger, A. C. Hernandes, T. Catunda, and M. L. Baesso, “Multiwavelength thermal lens determination of fluorescence quantum efficiency of solids: application to Nd3+-doped fluoride glass,” Appl. Phys. Lett. 78, 3220-3222 (2001).
    [CrossRef]
  20. V. Pilla, D. T. Balogh, R. M. Faria, and T. Catunda, “Thermal-lens study of thermo-optical and spectroscopic properties of polyaniline,” Rev. Sci. Instrum. 74, 866-868(2003).
    [CrossRef]
  21. J. W. Verhoeven, “Glossary of terms used in photochemistry,” Pure Appl. Chem. 68, 2223-2286 (1996).
    [CrossRef]
  22. F. L. Pedrotti and L. S. Pedrotti, Introduction to Optics, 2nd ed. (Prentice-Hall, 1993).
  23. MicroChem, “NANOTM PMMA resist,” http://www.microchem.com/products/pdf/PMMA_Data_Sheet.pdf.
  24. R. Vieweg and F. Esser, Kunststoff-Handbuch Bd. IX Polymethacrylate (Hanser Verlag, 1975), Vol. IX.
  25. A. A. Earp, G. B. Smith, P. D. Swift, and J. Franklin, “Maximizing the light output of a luminescent solar concentrator,” Solar Energy 76, 655-667 (2004).
    [CrossRef]
  26. T. Ahn, R. O. Al-Kaysi, A. M. Muller, K. M. Wentz, and C. J. Bardeen, “Self-absorption correction for solid-state photoluminescence quantum yields obtained from integrating sphere measurements,” Rev. Sci. Instrum. 78, 086105 (2007).
    [CrossRef] [PubMed]

2007

T. Ahn, R. O. Al-Kaysi, A. M. Muller, K. M. Wentz, and C. J. Bardeen, “Self-absorption correction for solid-state photoluminescence quantum yields obtained from integrating sphere measurements,” Rev. Sci. Instrum. 78, 086105 (2007).
[CrossRef] [PubMed]

2004

A. A. Earp, G. B. Smith, P. D. Swift, and J. Franklin, “Maximizing the light output of a luminescent solar concentrator,” Solar Energy 76, 655-667 (2004).
[CrossRef]

2003

V. Pilla, D. T. Balogh, R. M. Faria, and T. Catunda, “Thermal-lens study of thermo-optical and spectroscopic properties of polyaniline,” Rev. Sci. Instrum. 74, 866-868(2003).
[CrossRef]

2002

A. Kurian, K. P. Unnikrishnan, T. S. Lee, V. P. N. Nampoori, and C. P. G. Vallabhan, “Realization of optical logic gates using the thermal lens effect,” Laser Chem. 20, 81-87 (2002).
[CrossRef]

2001

S. M. Lima, A. A. Andrade, R. Lebullenger, A. C. Hernandes, T. Catunda, and M. L. Baesso, “Multiwavelength thermal lens determination of fluorescence quantum efficiency of solids: application to Nd3+-doped fluoride glass,” Appl. Phys. Lett. 78, 3220-3222 (2001).
[CrossRef]

1999

D. Magde, G. E. Rojas, and P. Seybold, “Solvent dependence of the fluorescence lifetimes of xanthene dyes,” Photochem. Photobiol. 70, 737-744 (1999).
[CrossRef]

1996

J. W. Verhoeven, “Glossary of terms used in photochemistry,” Pure Appl. Chem. 68, 2223-2286 (1996).
[CrossRef]

1989

G. Seybold and G. Wagenblast, “New perylene and violanthrone dyestuffs for fluorescent collectors,” Dyes Pigments 11, 303-317 (1989).
[CrossRef]

1985

K. L. Jansen and J. M. Harris, “Double-beam thermal lens spectrometry,” Anal. Chem. 57, 2434-2436 (1985).
[CrossRef]

1982

1981

1979

1978

A. Goetzberger, “Fluorescent solar energy collectors: operating conditions with diffuse light,” Appl. Phys. 16, 399-404 (1978).
[CrossRef]

J. H. Brannon and D. Magde, “Absolute quantum yield determination by thermal blooming. Fluorescein,” J. Phys. Chem. 82, 705-709 (1978).
[CrossRef]

1977

A. Goetzberger and W. Greubel, “Solar energy conversion with fluorescent collectors,” Appl. Phys. 14, 123-139 (1977).
[CrossRef]

1976

Ahn, T.

T. Ahn, R. O. Al-Kaysi, A. M. Muller, K. M. Wentz, and C. J. Bardeen, “Self-absorption correction for solid-state photoluminescence quantum yields obtained from integrating sphere measurements,” Rev. Sci. Instrum. 78, 086105 (2007).
[CrossRef] [PubMed]

Al-Kaysi, R. O.

T. Ahn, R. O. Al-Kaysi, A. M. Muller, K. M. Wentz, and C. J. Bardeen, “Self-absorption correction for solid-state photoluminescence quantum yields obtained from integrating sphere measurements,” Rev. Sci. Instrum. 78, 086105 (2007).
[CrossRef] [PubMed]

Andrade, A. A.

S. M. Lima, A. A. Andrade, R. Lebullenger, A. C. Hernandes, T. Catunda, and M. L. Baesso, “Multiwavelength thermal lens determination of fluorescence quantum efficiency of solids: application to Nd3+-doped fluoride glass,” Appl. Phys. Lett. 78, 3220-3222 (2001).
[CrossRef]

Baesso, M. L.

S. M. Lima, A. A. Andrade, R. Lebullenger, A. C. Hernandes, T. Catunda, and M. L. Baesso, “Multiwavelength thermal lens determination of fluorescence quantum efficiency of solids: application to Nd3+-doped fluoride glass,” Appl. Phys. Lett. 78, 3220-3222 (2001).
[CrossRef]

Balogh, D. T.

V. Pilla, D. T. Balogh, R. M. Faria, and T. Catunda, “Thermal-lens study of thermo-optical and spectroscopic properties of polyaniline,” Rev. Sci. Instrum. 74, 866-868(2003).
[CrossRef]

Bardeen, C. J.

T. Ahn, R. O. Al-Kaysi, A. M. Muller, K. M. Wentz, and C. J. Bardeen, “Self-absorption correction for solid-state photoluminescence quantum yields obtained from integrating sphere measurements,” Rev. Sci. Instrum. 78, 086105 (2007).
[CrossRef] [PubMed]

Batchelder, J. S.

Brannon, J. H.

J. H. Brannon and D. Magde, “Absolute quantum yield determination by thermal blooming. Fluorescein,” J. Phys. Chem. 82, 705-709 (1978).
[CrossRef]

Catunda, T.

V. Pilla, D. T. Balogh, R. M. Faria, and T. Catunda, “Thermal-lens study of thermo-optical and spectroscopic properties of polyaniline,” Rev. Sci. Instrum. 74, 866-868(2003).
[CrossRef]

S. M. Lima, A. A. Andrade, R. Lebullenger, A. C. Hernandes, T. Catunda, and M. L. Baesso, “Multiwavelength thermal lens determination of fluorescence quantum efficiency of solids: application to Nd3+-doped fluoride glass,” Appl. Phys. Lett. 78, 3220-3222 (2001).
[CrossRef]

Cole, A.

L. R. Wilson, B. S. Richards, A. C. Jones, P. R. Richardson, A. Cole, Ian Fraser, N. Kirtley, and L. Minto, “Quantum yield measurements of high-efficiency dyes for luminescent solar concentrators,” presented at the 4th Photovoltaic Science Application and Technology Conference, Bath, UK, 2-4 April 2008.

Cole, T.

Drake, J. M.

Earp, A. A.

A. A. Earp, G. B. Smith, P. D. Swift, and J. Franklin, “Maximizing the light output of a luminescent solar concentrator,” Solar Energy 76, 655-667 (2004).
[CrossRef]

Esser, F.

R. Vieweg and F. Esser, Kunststoff-Handbuch Bd. IX Polymethacrylate (Hanser Verlag, 1975), Vol. IX.

Faria, R. M.

V. Pilla, D. T. Balogh, R. M. Faria, and T. Catunda, “Thermal-lens study of thermo-optical and spectroscopic properties of polyaniline,” Rev. Sci. Instrum. 74, 866-868(2003).
[CrossRef]

Franklin, J.

A. A. Earp, G. B. Smith, P. D. Swift, and J. Franklin, “Maximizing the light output of a luminescent solar concentrator,” Solar Energy 76, 655-667 (2004).
[CrossRef]

Fraser, Ian

L. R. Wilson, B. S. Richards, A. C. Jones, P. R. Richardson, A. Cole, Ian Fraser, N. Kirtley, and L. Minto, “Quantum yield measurements of high-efficiency dyes for luminescent solar concentrators,” presented at the 4th Photovoltaic Science Application and Technology Conference, Bath, UK, 2-4 April 2008.

Goetzberger, A.

A. Goetzberger and O. Schirmer, “Second stage concentration with tapers for fluorescent solar collectors,” Appl. Phys. 19, 53-58 (1979).
[CrossRef]

A. Goetzberger, “Fluorescent solar energy collectors: operating conditions with diffuse light,” Appl. Phys. 16, 399-404 (1978).
[CrossRef]

A. Goetzberger and W. Greubel, “Solar energy conversion with fluorescent collectors,” Appl. Phys. 14, 123-139 (1977).
[CrossRef]

Greubel, W.

A. Goetzberger and W. Greubel, “Solar energy conversion with fluorescent collectors,” Appl. Phys. 14, 123-139 (1977).
[CrossRef]

Harris, J. M.

K. L. Jansen and J. M. Harris, “Double-beam thermal lens spectrometry,” Anal. Chem. 57, 2434-2436 (1985).
[CrossRef]

Hernandes, A. C.

S. M. Lima, A. A. Andrade, R. Lebullenger, A. C. Hernandes, T. Catunda, and M. L. Baesso, “Multiwavelength thermal lens determination of fluorescence quantum efficiency of solids: application to Nd3+-doped fluoride glass,” Appl. Phys. Lett. 78, 3220-3222 (2001).
[CrossRef]

Jansen, K. L.

K. L. Jansen and J. M. Harris, “Double-beam thermal lens spectrometry,” Anal. Chem. 57, 2434-2436 (1985).
[CrossRef]

Jones, A. C.

L. R. Wilson, B. S. Richards, A. C. Jones, P. R. Richardson, A. Cole, Ian Fraser, N. Kirtley, and L. Minto, “Quantum yield measurements of high-efficiency dyes for luminescent solar concentrators,” presented at the 4th Photovoltaic Science Application and Technology Conference, Bath, UK, 2-4 April 2008.

Kirtley, N.

L. R. Wilson, B. S. Richards, A. C. Jones, P. R. Richardson, A. Cole, Ian Fraser, N. Kirtley, and L. Minto, “Quantum yield measurements of high-efficiency dyes for luminescent solar concentrators,” presented at the 4th Photovoltaic Science Application and Technology Conference, Bath, UK, 2-4 April 2008.

Kurian, A.

A. Kurian, K. P. Unnikrishnan, T. S. Lee, V. P. N. Nampoori, and C. P. G. Vallabhan, “Realization of optical logic gates using the thermal lens effect,” Laser Chem. 20, 81-87 (2002).
[CrossRef]

A. Kurian, “Characterization of photonic materials using thermal lens technique,” Ph.D. disseration (Cochin University of Science and Technology, 2002).

Lakowicz, J. R.

J. R. Lakowicz, Principles of Fluorescence Spectroscopy, 2nd ed. (Kluwer Academic/Plenum, 1999).

Lambe, J.

Lebullenger, R.

S. M. Lima, A. A. Andrade, R. Lebullenger, A. C. Hernandes, T. Catunda, and M. L. Baesso, “Multiwavelength thermal lens determination of fluorescence quantum efficiency of solids: application to Nd3+-doped fluoride glass,” Appl. Phys. Lett. 78, 3220-3222 (2001).
[CrossRef]

Lee, T. S.

A. Kurian, K. P. Unnikrishnan, T. S. Lee, V. P. N. Nampoori, and C. P. G. Vallabhan, “Realization of optical logic gates using the thermal lens effect,” Laser Chem. 20, 81-87 (2002).
[CrossRef]

Lesiecki, M. L.

Lima, S. M.

S. M. Lima, A. A. Andrade, R. Lebullenger, A. C. Hernandes, T. Catunda, and M. L. Baesso, “Multiwavelength thermal lens determination of fluorescence quantum efficiency of solids: application to Nd3+-doped fluoride glass,” Appl. Phys. Lett. 78, 3220-3222 (2001).
[CrossRef]

Magde, D.

D. Magde, G. E. Rojas, and P. Seybold, “Solvent dependence of the fluorescence lifetimes of xanthene dyes,” Photochem. Photobiol. 70, 737-744 (1999).
[CrossRef]

J. H. Brannon and D. Magde, “Absolute quantum yield determination by thermal blooming. Fluorescein,” J. Phys. Chem. 82, 705-709 (1978).
[CrossRef]

McIntosh, K. R.

B. S. Richards and K. R. McIntosh, “Ray-tracing simulations of luminescent solar concentrators containing multiple luminescent species,” in 21st European Photovoltaic Solar Energy Conference (WIP Renewable Energies, 2006), pp. 185-188.

Minto, L.

L. R. Wilson, B. S. Richards, A. C. Jones, P. R. Richardson, A. Cole, Ian Fraser, N. Kirtley, and L. Minto, “Quantum yield measurements of high-efficiency dyes for luminescent solar concentrators,” presented at the 4th Photovoltaic Science Application and Technology Conference, Bath, UK, 2-4 April 2008.

Muller, A. M.

T. Ahn, R. O. Al-Kaysi, A. M. Muller, K. M. Wentz, and C. J. Bardeen, “Self-absorption correction for solid-state photoluminescence quantum yields obtained from integrating sphere measurements,” Rev. Sci. Instrum. 78, 086105 (2007).
[CrossRef] [PubMed]

Nampoori, V. P. N.

A. Kurian, K. P. Unnikrishnan, T. S. Lee, V. P. N. Nampoori, and C. P. G. Vallabhan, “Realization of optical logic gates using the thermal lens effect,” Laser Chem. 20, 81-87 (2002).
[CrossRef]

Pedrotti, F. L.

F. L. Pedrotti and L. S. Pedrotti, Introduction to Optics, 2nd ed. (Prentice-Hall, 1993).

Pedrotti, L. S.

F. L. Pedrotti and L. S. Pedrotti, Introduction to Optics, 2nd ed. (Prentice-Hall, 1993).

Pilla, V.

V. Pilla, D. T. Balogh, R. M. Faria, and T. Catunda, “Thermal-lens study of thermo-optical and spectroscopic properties of polyaniline,” Rev. Sci. Instrum. 74, 866-868(2003).
[CrossRef]

Richards, B. S.

L. R. Wilson, B. S. Richards, A. C. Jones, P. R. Richardson, A. Cole, Ian Fraser, N. Kirtley, and L. Minto, “Quantum yield measurements of high-efficiency dyes for luminescent solar concentrators,” presented at the 4th Photovoltaic Science Application and Technology Conference, Bath, UK, 2-4 April 2008.

B. S. Richards and K. R. McIntosh, “Ray-tracing simulations of luminescent solar concentrators containing multiple luminescent species,” in 21st European Photovoltaic Solar Energy Conference (WIP Renewable Energies, 2006), pp. 185-188.

B. Rowan, L. Wilson, and B. S. Richards, “Advanced concepts for luminescent solar concentrators,” IEEE J. Select. Top. Quantum Electron. 14, 1312-1322 (2008).

Richardson, P. R.

L. R. Wilson, B. S. Richards, A. C. Jones, P. R. Richardson, A. Cole, Ian Fraser, N. Kirtley, and L. Minto, “Quantum yield measurements of high-efficiency dyes for luminescent solar concentrators,” presented at the 4th Photovoltaic Science Application and Technology Conference, Bath, UK, 2-4 April 2008.

Rojas, G. E.

D. Magde, G. E. Rojas, and P. Seybold, “Solvent dependence of the fluorescence lifetimes of xanthene dyes,” Photochem. Photobiol. 70, 737-744 (1999).
[CrossRef]

Rowan, B.

B. Rowan, L. Wilson, and B. S. Richards, “Advanced concepts for luminescent solar concentrators,” IEEE J. Select. Top. Quantum Electron. 14, 1312-1322 (2008).

Schirmer, O.

A. Goetzberger and O. Schirmer, “Second stage concentration with tapers for fluorescent solar collectors,” Appl. Phys. 19, 53-58 (1979).
[CrossRef]

Seybold, G.

G. Seybold and G. Wagenblast, “New perylene and violanthrone dyestuffs for fluorescent collectors,” Dyes Pigments 11, 303-317 (1989).
[CrossRef]

Seybold, P.

D. Magde, G. E. Rojas, and P. Seybold, “Solvent dependence of the fluorescence lifetimes of xanthene dyes,” Photochem. Photobiol. 70, 737-744 (1999).
[CrossRef]

Smith, G. B.

A. A. Earp, G. B. Smith, P. D. Swift, and J. Franklin, “Maximizing the light output of a luminescent solar concentrator,” Solar Energy 76, 655-667 (2004).
[CrossRef]

Swift, P. D.

A. A. Earp, G. B. Smith, P. D. Swift, and J. Franklin, “Maximizing the light output of a luminescent solar concentrator,” Solar Energy 76, 655-667 (2004).
[CrossRef]

Unnikrishnan, K. P.

A. Kurian, K. P. Unnikrishnan, T. S. Lee, V. P. N. Nampoori, and C. P. G. Vallabhan, “Realization of optical logic gates using the thermal lens effect,” Laser Chem. 20, 81-87 (2002).
[CrossRef]

Vallabhan, C. P. G.

A. Kurian, K. P. Unnikrishnan, T. S. Lee, V. P. N. Nampoori, and C. P. G. Vallabhan, “Realization of optical logic gates using the thermal lens effect,” Laser Chem. 20, 81-87 (2002).
[CrossRef]

Verhoeven, J. W.

J. W. Verhoeven, “Glossary of terms used in photochemistry,” Pure Appl. Chem. 68, 2223-2286 (1996).
[CrossRef]

Vieweg, R.

R. Vieweg and F. Esser, Kunststoff-Handbuch Bd. IX Polymethacrylate (Hanser Verlag, 1975), Vol. IX.

Wagenblast, G.

G. Seybold and G. Wagenblast, “New perylene and violanthrone dyestuffs for fluorescent collectors,” Dyes Pigments 11, 303-317 (1989).
[CrossRef]

Weber, W. H.

Wentz, K. M.

T. Ahn, R. O. Al-Kaysi, A. M. Muller, K. M. Wentz, and C. J. Bardeen, “Self-absorption correction for solid-state photoluminescence quantum yields obtained from integrating sphere measurements,” Rev. Sci. Instrum. 78, 086105 (2007).
[CrossRef] [PubMed]

Wilson, L.

B. Rowan, L. Wilson, and B. S. Richards, “Advanced concepts for luminescent solar concentrators,” IEEE J. Select. Top. Quantum Electron. 14, 1312-1322 (2008).

Wilson, L. R.

L. R. Wilson, B. S. Richards, A. C. Jones, P. R. Richardson, A. Cole, Ian Fraser, N. Kirtley, and L. Minto, “Quantum yield measurements of high-efficiency dyes for luminescent solar concentrators,” presented at the 4th Photovoltaic Science Application and Technology Conference, Bath, UK, 2-4 April 2008.

Zewail, A. H.

Anal. Chem.

K. L. Jansen and J. M. Harris, “Double-beam thermal lens spectrometry,” Anal. Chem. 57, 2434-2436 (1985).
[CrossRef]

Appl. Opt.

Appl. Phys.

A. Goetzberger and W. Greubel, “Solar energy conversion with fluorescent collectors,” Appl. Phys. 14, 123-139 (1977).
[CrossRef]

A. Goetzberger, “Fluorescent solar energy collectors: operating conditions with diffuse light,” Appl. Phys. 16, 399-404 (1978).
[CrossRef]

A. Goetzberger and O. Schirmer, “Second stage concentration with tapers for fluorescent solar collectors,” Appl. Phys. 19, 53-58 (1979).
[CrossRef]

Appl. Phys. Lett.

S. M. Lima, A. A. Andrade, R. Lebullenger, A. C. Hernandes, T. Catunda, and M. L. Baesso, “Multiwavelength thermal lens determination of fluorescence quantum efficiency of solids: application to Nd3+-doped fluoride glass,” Appl. Phys. Lett. 78, 3220-3222 (2001).
[CrossRef]

Dyes Pigments

G. Seybold and G. Wagenblast, “New perylene and violanthrone dyestuffs for fluorescent collectors,” Dyes Pigments 11, 303-317 (1989).
[CrossRef]

J. Phys. Chem.

J. H. Brannon and D. Magde, “Absolute quantum yield determination by thermal blooming. Fluorescein,” J. Phys. Chem. 82, 705-709 (1978).
[CrossRef]

Laser Chem.

A. Kurian, K. P. Unnikrishnan, T. S. Lee, V. P. N. Nampoori, and C. P. G. Vallabhan, “Realization of optical logic gates using the thermal lens effect,” Laser Chem. 20, 81-87 (2002).
[CrossRef]

Photochem. Photobiol.

D. Magde, G. E. Rojas, and P. Seybold, “Solvent dependence of the fluorescence lifetimes of xanthene dyes,” Photochem. Photobiol. 70, 737-744 (1999).
[CrossRef]

Pure Appl. Chem.

J. W. Verhoeven, “Glossary of terms used in photochemistry,” Pure Appl. Chem. 68, 2223-2286 (1996).
[CrossRef]

Rev. Sci. Instrum.

V. Pilla, D. T. Balogh, R. M. Faria, and T. Catunda, “Thermal-lens study of thermo-optical and spectroscopic properties of polyaniline,” Rev. Sci. Instrum. 74, 866-868(2003).
[CrossRef]

T. Ahn, R. O. Al-Kaysi, A. M. Muller, K. M. Wentz, and C. J. Bardeen, “Self-absorption correction for solid-state photoluminescence quantum yields obtained from integrating sphere measurements,” Rev. Sci. Instrum. 78, 086105 (2007).
[CrossRef] [PubMed]

Solar Energy

A. A. Earp, G. B. Smith, P. D. Swift, and J. Franklin, “Maximizing the light output of a luminescent solar concentrator,” Solar Energy 76, 655-667 (2004).
[CrossRef]

Other

F. L. Pedrotti and L. S. Pedrotti, Introduction to Optics, 2nd ed. (Prentice-Hall, 1993).

MicroChem, “NANOTM PMMA resist,” http://www.microchem.com/products/pdf/PMMA_Data_Sheet.pdf.

R. Vieweg and F. Esser, Kunststoff-Handbuch Bd. IX Polymethacrylate (Hanser Verlag, 1975), Vol. IX.

B. Rowan, L. Wilson, and B. S. Richards, “Advanced concepts for luminescent solar concentrators,” IEEE J. Select. Top. Quantum Electron. 14, 1312-1322 (2008).

A. Kurian, “Characterization of photonic materials using thermal lens technique,” Ph.D. disseration (Cochin University of Science and Technology, 2002).

L. R. Wilson, B. S. Richards, A. C. Jones, P. R. Richardson, A. Cole, Ian Fraser, N. Kirtley, and L. Minto, “Quantum yield measurements of high-efficiency dyes for luminescent solar concentrators,” presented at the 4th Photovoltaic Science Application and Technology Conference, Bath, UK, 2-4 April 2008.

B. S. Richards and K. R. McIntosh, “Ray-tracing simulations of luminescent solar concentrators containing multiple luminescent species,” in 21st European Photovoltaic Solar Energy Conference (WIP Renewable Energies, 2006), pp. 185-188.

“Fluorescence quantum yield standards,” http://www.iss.com/resources/yield.html.

J. R. Lakowicz, Principles of Fluorescence Spectroscopy, 2nd ed. (Kluwer Academic/Plenum, 1999).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Integrating sphere and self-absorption mechanisms. 1 Excitation light. 2 Fluorescence light reabsorbed by sample. 3 Fluorescence light internally reabsorbed by sample.

Fig. 2
Fig. 2

Scaling of the molecular emission spectrum.

Fig. 3
Fig. 3

Measurement of sample fluorescence.

Fig. 4
Fig. 4

Absorption (solid curve) and emission (dotted curve) spectra. Spectra offset vertically for clarity.

Fig. 5
Fig. 5

Violett 570 properties. Measured PLQY (circles) and self-absorption coefficient (squares).

Fig. 6
Fig. 6

Gelb 083 properties. Measured PLQY (circles), corrected PLQY (triangles), and self-absorption coefficient (squares).

Fig. 7
Fig. 7

Gelb 170 properties. Measured PLQY (circles), corrected PLQY (triangles), and self-absorption coefficient (squares).

Fig. 8
Fig. 8

Orange 240 properties. Measured PLQY (circles) and self-absorption coefficient (squares).

Fig. 9
Fig. 9

Rot 305 properties. Measured PLQY (circles) and self-absorption coefficient (squares).

Tables (4)

Tables Icon

Table 1 Sample Concentrations

Tables Icon

Table 2 Spectral Features

Tables Icon

Table 3 Mixed-Dye Concentrations

Tables Icon

Table 4 Mixed-Dye PLQY

Equations (5)

Equations on this page are rendered with MathJax. Learn more.

n = A + B λ 2 + C λ 4 ,
A 1.48763 , B 3230.8581 , C 121652590.8071 ,
PLQY = E C E A L A L C ,
a = 1 F obs ( λ ) d λ F ( λ ) d λ .
PLQY corr = PLQY obs 1 a + a PLQY obs .

Metrics