Abstract

A hybrid technique for real-time direct detection of strain and temperature along a single-mode fiber is proposed. The temperature is directly detected from the Raman backscattering in the time domain. To retrieve the strain profile from the Brillouin backscattering, an edge technique is introduced and a response function of the Fabry–Perot interferometer for the Brillouin backscattering is defined for the first time to our knowledge. The outgoing laser and the Brillouin backscattering are measured on different interference orders through different channels of the Fabry–Perot interferometer. A low- resolution reference channel and a high-resolution Brillouin channel are designed to keep both a high measurement sensitivity and a wide dynamic range. The measurement is based on detecting the bandwidth changes and the frequency shifts of the Brillouin backscattering; thus the resulting measurement is insensitive to the power fluctuation of the backscattering and the laser frequency jitter or drift. Neither time-consuming frequency scanning nor heavy data processing is needed, which makes real-time detection possible. The dynamic range of the edge technique can be increased substantially by using a piezoelectric tunable and capacitive-servo-stabilized Fabry–Perot interferometer. We highlight the potential of this technique by numerical simulations. Given that the uncertainty of the temperature measurement is 0.5°C and that the spatial and temporal resolutions are 10cm and 1s, the strain uncertainty is less than 20με within a 2km distance when the strain is below 0.4%, and it is not more than 110με within a 4km distance when the strain is below 0.6%.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Kurashima, T. Horiguchi, and M. Teteda, “Thermal effects of Brillouin gain spectra in single-mode fibers,” IEEE Photon. Technol. Lett. 2, 718-720 (1990).
    [CrossRef]
  2. P. C. Wait and A. H. Hartog, “Spontaneous Brillouin-based distributed temperature sensor utilizing a fiber Bragg grating notch filter for the separation of the Brillouin signal,” IEEE Photon. Technol. Lett. 13, 508-510 (2001).
    [CrossRef]
  3. H. H. Kee, G. P. Lees, and T. P. Newson, “All-fiber system for simultaneous interrogation of distributed strain and temperature sensing by spontaneous Brillouin scattering,” Opt. Lett. 25, 695-697 (2000).
    [CrossRef]
  4. T. R. Parker, M. Farhadiroushan, V. A. Handerek, and A. J. Rogers, “Temperature and strain dependence of the power level and frequency of spontaneous Brillouin scattering in optical fibers,” Opt. Lett. 22, 787-789 (1997).
    [CrossRef] [PubMed]
  5. T. R. Parker, M. Farhadiroushan, V. A. Handerek, and A. J. Rogers, “A fully distributed simultaneous strain and temperature sensor using spontaneous Brillouin backscatter,” IEEE Photon. Technol. Lett. 9, 979-981 (1997).
    [CrossRef]
  6. T. R. Parker, M. Farhadiroushan, R. Feced, V. A. Handerek, and A. J. Rogers, “Simultaneous distributed measurement of strain and temperature from noise-initiated Brillouin scattering in optical fibers,” IEEE J. Quantum Electron. 34, 645-659 (1998).
    [CrossRef]
  7. J. Geng, S. Staines, M. Blake, and S. Jiang, “Distributed fiber temperature and strain sensor using coherent radio-frequency detection of spontaneous Brillouin scattering,” Appl. Opt. 46, 5928-5932 (2007).
    [CrossRef] [PubMed]
  8. X. Bao, D. J. Webb, and D. A. Jackson, “Combined distributed temperature and strain sensor based on Brillouin loss in an optical fiber,” Opt. Lett. 19, 141-143 (1994).
    [CrossRef] [PubMed]
  9. X. Bao, Q. Yu, and L. Chen, “Simultaneous strain and temperature measurements with polarization-maintaining fibers and their error analysis by use of a distributed Brillouin loss system,” Opt. Lett. 29, 1342-1344 (2004).
    [CrossRef] [PubMed]
  10. Q. Yu, X. Bao, and L. Chen, “Temperature dependence of Brillouin frequency, power, and bandwidth in panda, bow-tie, and tiger polarization-maintaining fibers,” Opt. Lett. 29, 17-19(2004).
    [CrossRef] [PubMed]
  11. Q. Yu, X. Bao, and L. Chen, “Strain dependence of Brillouin frequency, intensity, and bandwidth in polarization-maintaining fibers,” Opt. Lett. 29, 1605-1607 (2004).
    [CrossRef] [PubMed]
  12. C. C. Lee, P. W. Chiang, and S. Shi, “Utilization of a dispersion-shified fiber for simultaneous measurement of distributed strain and temperature through Brillouin frequency shift,” IEEE Photon. Technol. Lett. 13, 1094-1096(2001).
    [CrossRef]
  13. L. Zou, X. Bao, A. V. Shahraam, and L. Chen, “Dependence of the Brillouin frequency shift on strain and temperature in a photonic crystal fiber,” Opt. Lett. 29, 1485-1487 (2004).
    [CrossRef] [PubMed]
  14. M. N. Alahbabi, Y. T. Cho, and T. P. Newson, “Comparison of the methods for discriminating temperature and strain in spontaneous Brillouin-based distributed sensors,” Opt. Lett. 29, 26-28 (2004).
    [CrossRef] [PubMed]
  15. M. N. Alahbabi, Y. T. Cho, and T. P. Newson, “Simultaneous temperature and strain measurement with combined spontaneous Raman and Brillouin scattering,” Opt. Lett. 30, 1276-1278 (2005).
    [CrossRef] [PubMed]
  16. T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightwave Technol. 13, 1296-1302 (1995).
    [CrossRef]
  17. C. L. Korb, B. M. Gentry, and S. X. Li, “Edge technique Doppler lidar wind measurements with high vertical resolution,” Appl. Opt. 36, 5976-5983 (1997).
    [CrossRef] [PubMed]
  18. J. A. McKay, “Modeling of direct detection Doppler wind lidar. I. the edge technique,” Appl. Opt. 37, 6480-6486 (1998).
    [CrossRef]
  19. H. Xia, D. Sun, Y. Yang, F. Shen, J. Dong, and T. Kobayashi, “Fabry-Perot interferometer based Mie Doppler lidar for low tropospheric wind observation,” Appl. Opt. 46, 7120-7131(2007).
    [CrossRef] [PubMed]
  20. P. C. Wait, S. Gaubicher, J. M. Sommer, and T. P. Newson, “Raman backscatter distributed temperature sensor based on a self-starting passively mode locked fiber ring laser,” Electron. Lett. 32, 388-389 (1996).
    [CrossRef]
  21. R. M. Measures, Structural Monitoring with Fiber Optic Technology (Academic, 2001).
  22. D. Heiman, D. S. Hamilton, and R. W. Hellwarth, “Brillouin scattering measurements on optical glasses,” Phys. Rev. B 19, 6583-6589 (1979).
    [CrossRef]
  23. H. Naruse and M. Tateda, “Trade-off between the spatial and the frequency resolutions in measuring the power spectrum of the Brillouin backscattered light in an optical fiber,” Appl. Opt. 38, 6516-6521 (1999).
    [CrossRef]
  24. H. Naruse and M. Tateda, “Launched pulse-shape dependence of the power spectrum of the spontaneous Brillouin backscattered light in an optical fiber,” Appl. Opt. 39, 6376-6384 (2000).
    [CrossRef]
  25. J. Smith, A. Brown, M. DeMerchant, and X. Bao, “Pulsewidth dependence of the Brillouin loss spectrum,” Opt. Commun. 168, 393-398 (1999).
    [CrossRef]
  26. P. Jacquinot, “The luminosity of spectrometers with prisms, gratings, or Fabry-Perot etalon,” J. Opt. Soc. Am. 44, 761-765 (1954).
    [CrossRef]
  27. J. A. McKay and D. Rees, “High-performance Fabry-Perot etalon mount for spaceflight,” Opt. Eng. 39, 315-319 (2000).
    [CrossRef]
  28. Robert W. Boyd, Nonlinear Optics, 2nd ed. (Academic, 2003).
  29. M. Nikles, L. Thevenaz, and P. A. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15, 1842-1851 (1997).
    [CrossRef]
  30. Y. Li, F. Zhang, and T. Yoshino, “Wide-range temperature dependence of Brillouin shift in a dispersion-shifted fiber and its annealing effect,” J. Lightwave Technol. 21, 1663-1667(2003).
    [CrossRef]
  31. A. Lacaita, F. Zappa, S. Cova, and P. Lovati, “Single-photon detection beyond 1 μm: performance of commercially available InGaAs/InP detectors,” Appl. Opt. 35, 2986-2996(1996).
    [CrossRef] [PubMed]

2007 (2)

2005 (1)

2004 (5)

2003 (1)

2001 (2)

P. C. Wait and A. H. Hartog, “Spontaneous Brillouin-based distributed temperature sensor utilizing a fiber Bragg grating notch filter for the separation of the Brillouin signal,” IEEE Photon. Technol. Lett. 13, 508-510 (2001).
[CrossRef]

C. C. Lee, P. W. Chiang, and S. Shi, “Utilization of a dispersion-shified fiber for simultaneous measurement of distributed strain and temperature through Brillouin frequency shift,” IEEE Photon. Technol. Lett. 13, 1094-1096(2001).
[CrossRef]

2000 (3)

1999 (2)

1998 (2)

J. A. McKay, “Modeling of direct detection Doppler wind lidar. I. the edge technique,” Appl. Opt. 37, 6480-6486 (1998).
[CrossRef]

T. R. Parker, M. Farhadiroushan, R. Feced, V. A. Handerek, and A. J. Rogers, “Simultaneous distributed measurement of strain and temperature from noise-initiated Brillouin scattering in optical fibers,” IEEE J. Quantum Electron. 34, 645-659 (1998).
[CrossRef]

1997 (4)

T. R. Parker, M. Farhadiroushan, V. A. Handerek, and A. J. Rogers, “A fully distributed simultaneous strain and temperature sensor using spontaneous Brillouin backscatter,” IEEE Photon. Technol. Lett. 9, 979-981 (1997).
[CrossRef]

T. R. Parker, M. Farhadiroushan, V. A. Handerek, and A. J. Rogers, “Temperature and strain dependence of the power level and frequency of spontaneous Brillouin scattering in optical fibers,” Opt. Lett. 22, 787-789 (1997).
[CrossRef] [PubMed]

C. L. Korb, B. M. Gentry, and S. X. Li, “Edge technique Doppler lidar wind measurements with high vertical resolution,” Appl. Opt. 36, 5976-5983 (1997).
[CrossRef] [PubMed]

M. Nikles, L. Thevenaz, and P. A. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15, 1842-1851 (1997).
[CrossRef]

1996 (2)

P. C. Wait, S. Gaubicher, J. M. Sommer, and T. P. Newson, “Raman backscatter distributed temperature sensor based on a self-starting passively mode locked fiber ring laser,” Electron. Lett. 32, 388-389 (1996).
[CrossRef]

A. Lacaita, F. Zappa, S. Cova, and P. Lovati, “Single-photon detection beyond 1 μm: performance of commercially available InGaAs/InP detectors,” Appl. Opt. 35, 2986-2996(1996).
[CrossRef] [PubMed]

1995 (1)

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightwave Technol. 13, 1296-1302 (1995).
[CrossRef]

1994 (1)

1990 (1)

T. Kurashima, T. Horiguchi, and M. Teteda, “Thermal effects of Brillouin gain spectra in single-mode fibers,” IEEE Photon. Technol. Lett. 2, 718-720 (1990).
[CrossRef]

1979 (1)

D. Heiman, D. S. Hamilton, and R. W. Hellwarth, “Brillouin scattering measurements on optical glasses,” Phys. Rev. B 19, 6583-6589 (1979).
[CrossRef]

1954 (1)

Alahbabi, M. N.

Bao, X.

Blake, M.

Boyd, Robert W.

Robert W. Boyd, Nonlinear Optics, 2nd ed. (Academic, 2003).

Brown, A.

J. Smith, A. Brown, M. DeMerchant, and X. Bao, “Pulsewidth dependence of the Brillouin loss spectrum,” Opt. Commun. 168, 393-398 (1999).
[CrossRef]

Chen, L.

Chiang, P. W.

C. C. Lee, P. W. Chiang, and S. Shi, “Utilization of a dispersion-shified fiber for simultaneous measurement of distributed strain and temperature through Brillouin frequency shift,” IEEE Photon. Technol. Lett. 13, 1094-1096(2001).
[CrossRef]

Cho, Y. T.

Cova, S.

DeMerchant, M.

J. Smith, A. Brown, M. DeMerchant, and X. Bao, “Pulsewidth dependence of the Brillouin loss spectrum,” Opt. Commun. 168, 393-398 (1999).
[CrossRef]

Dong, J.

Farhadiroushan, M.

T. R. Parker, M. Farhadiroushan, R. Feced, V. A. Handerek, and A. J. Rogers, “Simultaneous distributed measurement of strain and temperature from noise-initiated Brillouin scattering in optical fibers,” IEEE J. Quantum Electron. 34, 645-659 (1998).
[CrossRef]

T. R. Parker, M. Farhadiroushan, V. A. Handerek, and A. J. Rogers, “A fully distributed simultaneous strain and temperature sensor using spontaneous Brillouin backscatter,” IEEE Photon. Technol. Lett. 9, 979-981 (1997).
[CrossRef]

T. R. Parker, M. Farhadiroushan, V. A. Handerek, and A. J. Rogers, “Temperature and strain dependence of the power level and frequency of spontaneous Brillouin scattering in optical fibers,” Opt. Lett. 22, 787-789 (1997).
[CrossRef] [PubMed]

Feced, R.

T. R. Parker, M. Farhadiroushan, R. Feced, V. A. Handerek, and A. J. Rogers, “Simultaneous distributed measurement of strain and temperature from noise-initiated Brillouin scattering in optical fibers,” IEEE J. Quantum Electron. 34, 645-659 (1998).
[CrossRef]

Gaubicher, S.

P. C. Wait, S. Gaubicher, J. M. Sommer, and T. P. Newson, “Raman backscatter distributed temperature sensor based on a self-starting passively mode locked fiber ring laser,” Electron. Lett. 32, 388-389 (1996).
[CrossRef]

Geng, J.

Gentry, B. M.

Hamilton, D. S.

D. Heiman, D. S. Hamilton, and R. W. Hellwarth, “Brillouin scattering measurements on optical glasses,” Phys. Rev. B 19, 6583-6589 (1979).
[CrossRef]

Handerek, V. A.

T. R. Parker, M. Farhadiroushan, R. Feced, V. A. Handerek, and A. J. Rogers, “Simultaneous distributed measurement of strain and temperature from noise-initiated Brillouin scattering in optical fibers,” IEEE J. Quantum Electron. 34, 645-659 (1998).
[CrossRef]

T. R. Parker, M. Farhadiroushan, V. A. Handerek, and A. J. Rogers, “A fully distributed simultaneous strain and temperature sensor using spontaneous Brillouin backscatter,” IEEE Photon. Technol. Lett. 9, 979-981 (1997).
[CrossRef]

T. R. Parker, M. Farhadiroushan, V. A. Handerek, and A. J. Rogers, “Temperature and strain dependence of the power level and frequency of spontaneous Brillouin scattering in optical fibers,” Opt. Lett. 22, 787-789 (1997).
[CrossRef] [PubMed]

Hartog, A. H.

P. C. Wait and A. H. Hartog, “Spontaneous Brillouin-based distributed temperature sensor utilizing a fiber Bragg grating notch filter for the separation of the Brillouin signal,” IEEE Photon. Technol. Lett. 13, 508-510 (2001).
[CrossRef]

Heiman, D.

D. Heiman, D. S. Hamilton, and R. W. Hellwarth, “Brillouin scattering measurements on optical glasses,” Phys. Rev. B 19, 6583-6589 (1979).
[CrossRef]

Hellwarth, R. W.

D. Heiman, D. S. Hamilton, and R. W. Hellwarth, “Brillouin scattering measurements on optical glasses,” Phys. Rev. B 19, 6583-6589 (1979).
[CrossRef]

Horiguchi, T.

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightwave Technol. 13, 1296-1302 (1995).
[CrossRef]

T. Kurashima, T. Horiguchi, and M. Teteda, “Thermal effects of Brillouin gain spectra in single-mode fibers,” IEEE Photon. Technol. Lett. 2, 718-720 (1990).
[CrossRef]

Jackson, D. A.

Jacquinot, P.

Jiang, S.

Kee, H. H.

Kobayashi, T.

Korb, C. L.

Koyamada, Y.

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightwave Technol. 13, 1296-1302 (1995).
[CrossRef]

Kurashima, T.

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightwave Technol. 13, 1296-1302 (1995).
[CrossRef]

T. Kurashima, T. Horiguchi, and M. Teteda, “Thermal effects of Brillouin gain spectra in single-mode fibers,” IEEE Photon. Technol. Lett. 2, 718-720 (1990).
[CrossRef]

Lacaita, A.

Lee, C. C.

C. C. Lee, P. W. Chiang, and S. Shi, “Utilization of a dispersion-shified fiber for simultaneous measurement of distributed strain and temperature through Brillouin frequency shift,” IEEE Photon. Technol. Lett. 13, 1094-1096(2001).
[CrossRef]

Lees, G. P.

Li, S. X.

Li, Y.

Lovati, P.

McKay, J. A.

J. A. McKay and D. Rees, “High-performance Fabry-Perot etalon mount for spaceflight,” Opt. Eng. 39, 315-319 (2000).
[CrossRef]

J. A. McKay, “Modeling of direct detection Doppler wind lidar. I. the edge technique,” Appl. Opt. 37, 6480-6486 (1998).
[CrossRef]

Measures, R. M.

R. M. Measures, Structural Monitoring with Fiber Optic Technology (Academic, 2001).

Naruse, H.

Newson, T. P.

Nikles, M.

M. Nikles, L. Thevenaz, and P. A. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15, 1842-1851 (1997).
[CrossRef]

Parker, T. R.

T. R. Parker, M. Farhadiroushan, R. Feced, V. A. Handerek, and A. J. Rogers, “Simultaneous distributed measurement of strain and temperature from noise-initiated Brillouin scattering in optical fibers,” IEEE J. Quantum Electron. 34, 645-659 (1998).
[CrossRef]

T. R. Parker, M. Farhadiroushan, V. A. Handerek, and A. J. Rogers, “A fully distributed simultaneous strain and temperature sensor using spontaneous Brillouin backscatter,” IEEE Photon. Technol. Lett. 9, 979-981 (1997).
[CrossRef]

T. R. Parker, M. Farhadiroushan, V. A. Handerek, and A. J. Rogers, “Temperature and strain dependence of the power level and frequency of spontaneous Brillouin scattering in optical fibers,” Opt. Lett. 22, 787-789 (1997).
[CrossRef] [PubMed]

Rees, D.

J. A. McKay and D. Rees, “High-performance Fabry-Perot etalon mount for spaceflight,” Opt. Eng. 39, 315-319 (2000).
[CrossRef]

Robert, P. A.

M. Nikles, L. Thevenaz, and P. A. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15, 1842-1851 (1997).
[CrossRef]

Rogers, A. J.

T. R. Parker, M. Farhadiroushan, R. Feced, V. A. Handerek, and A. J. Rogers, “Simultaneous distributed measurement of strain and temperature from noise-initiated Brillouin scattering in optical fibers,” IEEE J. Quantum Electron. 34, 645-659 (1998).
[CrossRef]

T. R. Parker, M. Farhadiroushan, V. A. Handerek, and A. J. Rogers, “A fully distributed simultaneous strain and temperature sensor using spontaneous Brillouin backscatter,” IEEE Photon. Technol. Lett. 9, 979-981 (1997).
[CrossRef]

T. R. Parker, M. Farhadiroushan, V. A. Handerek, and A. J. Rogers, “Temperature and strain dependence of the power level and frequency of spontaneous Brillouin scattering in optical fibers,” Opt. Lett. 22, 787-789 (1997).
[CrossRef] [PubMed]

Shahraam, A. V.

Shen, F.

Shi, S.

C. C. Lee, P. W. Chiang, and S. Shi, “Utilization of a dispersion-shified fiber for simultaneous measurement of distributed strain and temperature through Brillouin frequency shift,” IEEE Photon. Technol. Lett. 13, 1094-1096(2001).
[CrossRef]

Shimizu, K.

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightwave Technol. 13, 1296-1302 (1995).
[CrossRef]

Smith, J.

J. Smith, A. Brown, M. DeMerchant, and X. Bao, “Pulsewidth dependence of the Brillouin loss spectrum,” Opt. Commun. 168, 393-398 (1999).
[CrossRef]

Sommer, J. M.

P. C. Wait, S. Gaubicher, J. M. Sommer, and T. P. Newson, “Raman backscatter distributed temperature sensor based on a self-starting passively mode locked fiber ring laser,” Electron. Lett. 32, 388-389 (1996).
[CrossRef]

Staines, S.

Sun, D.

Tateda, M.

Teteda, M.

T. Kurashima, T. Horiguchi, and M. Teteda, “Thermal effects of Brillouin gain spectra in single-mode fibers,” IEEE Photon. Technol. Lett. 2, 718-720 (1990).
[CrossRef]

Thevenaz, L.

M. Nikles, L. Thevenaz, and P. A. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15, 1842-1851 (1997).
[CrossRef]

Wait, P. C.

P. C. Wait and A. H. Hartog, “Spontaneous Brillouin-based distributed temperature sensor utilizing a fiber Bragg grating notch filter for the separation of the Brillouin signal,” IEEE Photon. Technol. Lett. 13, 508-510 (2001).
[CrossRef]

P. C. Wait, S. Gaubicher, J. M. Sommer, and T. P. Newson, “Raman backscatter distributed temperature sensor based on a self-starting passively mode locked fiber ring laser,” Electron. Lett. 32, 388-389 (1996).
[CrossRef]

Webb, D. J.

Xia, H.

Yang, Y.

Yoshino, T.

Yu, Q.

Zappa, F.

Zhang, F.

Zou, L.

Appl. Opt. (7)

Electron. Lett. (1)

P. C. Wait, S. Gaubicher, J. M. Sommer, and T. P. Newson, “Raman backscatter distributed temperature sensor based on a self-starting passively mode locked fiber ring laser,” Electron. Lett. 32, 388-389 (1996).
[CrossRef]

IEEE J. Quantum Electron. (1)

T. R. Parker, M. Farhadiroushan, R. Feced, V. A. Handerek, and A. J. Rogers, “Simultaneous distributed measurement of strain and temperature from noise-initiated Brillouin scattering in optical fibers,” IEEE J. Quantum Electron. 34, 645-659 (1998).
[CrossRef]

IEEE Photon. Technol. Lett. (4)

C. C. Lee, P. W. Chiang, and S. Shi, “Utilization of a dispersion-shified fiber for simultaneous measurement of distributed strain and temperature through Brillouin frequency shift,” IEEE Photon. Technol. Lett. 13, 1094-1096(2001).
[CrossRef]

T. Kurashima, T. Horiguchi, and M. Teteda, “Thermal effects of Brillouin gain spectra in single-mode fibers,” IEEE Photon. Technol. Lett. 2, 718-720 (1990).
[CrossRef]

P. C. Wait and A. H. Hartog, “Spontaneous Brillouin-based distributed temperature sensor utilizing a fiber Bragg grating notch filter for the separation of the Brillouin signal,” IEEE Photon. Technol. Lett. 13, 508-510 (2001).
[CrossRef]

T. R. Parker, M. Farhadiroushan, V. A. Handerek, and A. J. Rogers, “A fully distributed simultaneous strain and temperature sensor using spontaneous Brillouin backscatter,” IEEE Photon. Technol. Lett. 9, 979-981 (1997).
[CrossRef]

J. Lightwave Technol. (3)

T. Horiguchi, K. Shimizu, T. Kurashima, M. Tateda, and Y. Koyamada, “Development of a distributed sensing technique using Brillouin scattering,” J. Lightwave Technol. 13, 1296-1302 (1995).
[CrossRef]

M. Nikles, L. Thevenaz, and P. A. Robert, “Brillouin gain spectrum characterization in single-mode optical fibers,” J. Lightwave Technol. 15, 1842-1851 (1997).
[CrossRef]

Y. Li, F. Zhang, and T. Yoshino, “Wide-range temperature dependence of Brillouin shift in a dispersion-shifted fiber and its annealing effect,” J. Lightwave Technol. 21, 1663-1667(2003).
[CrossRef]

J. Opt. Soc. Am. (1)

Opt. Commun. (1)

J. Smith, A. Brown, M. DeMerchant, and X. Bao, “Pulsewidth dependence of the Brillouin loss spectrum,” Opt. Commun. 168, 393-398 (1999).
[CrossRef]

Opt. Eng. (1)

J. A. McKay and D. Rees, “High-performance Fabry-Perot etalon mount for spaceflight,” Opt. Eng. 39, 315-319 (2000).
[CrossRef]

Opt. Lett. (9)

H. H. Kee, G. P. Lees, and T. P. Newson, “All-fiber system for simultaneous interrogation of distributed strain and temperature sensing by spontaneous Brillouin scattering,” Opt. Lett. 25, 695-697 (2000).
[CrossRef]

X. Bao, D. J. Webb, and D. A. Jackson, “Combined distributed temperature and strain sensor based on Brillouin loss in an optical fiber,” Opt. Lett. 19, 141-143 (1994).
[CrossRef] [PubMed]

T. R. Parker, M. Farhadiroushan, V. A. Handerek, and A. J. Rogers, “Temperature and strain dependence of the power level and frequency of spontaneous Brillouin scattering in optical fibers,” Opt. Lett. 22, 787-789 (1997).
[CrossRef] [PubMed]

Q. Yu, X. Bao, and L. Chen, “Temperature dependence of Brillouin frequency, power, and bandwidth in panda, bow-tie, and tiger polarization-maintaining fibers,” Opt. Lett. 29, 17-19(2004).
[CrossRef] [PubMed]

M. N. Alahbabi, Y. T. Cho, and T. P. Newson, “Comparison of the methods for discriminating temperature and strain in spontaneous Brillouin-based distributed sensors,” Opt. Lett. 29, 26-28 (2004).
[CrossRef] [PubMed]

X. Bao, Q. Yu, and L. Chen, “Simultaneous strain and temperature measurements with polarization-maintaining fibers and their error analysis by use of a distributed Brillouin loss system,” Opt. Lett. 29, 1342-1344 (2004).
[CrossRef] [PubMed]

L. Zou, X. Bao, A. V. Shahraam, and L. Chen, “Dependence of the Brillouin frequency shift on strain and temperature in a photonic crystal fiber,” Opt. Lett. 29, 1485-1487 (2004).
[CrossRef] [PubMed]

Q. Yu, X. Bao, and L. Chen, “Strain dependence of Brillouin frequency, intensity, and bandwidth in polarization-maintaining fibers,” Opt. Lett. 29, 1605-1607 (2004).
[CrossRef] [PubMed]

M. N. Alahbabi, Y. T. Cho, and T. P. Newson, “Simultaneous temperature and strain measurement with combined spontaneous Raman and Brillouin scattering,” Opt. Lett. 30, 1276-1278 (2005).
[CrossRef] [PubMed]

Phys. Rev. B (1)

D. Heiman, D. S. Hamilton, and R. W. Hellwarth, “Brillouin scattering measurements on optical glasses,” Phys. Rev. B 19, 6583-6589 (1979).
[CrossRef]

Other (2)

Robert W. Boyd, Nonlinear Optics, 2nd ed. (Academic, 2003).

R. M. Measures, Structural Monitoring with Fiber Optic Technology (Academic, 2001).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Spectral profiles of the twin-channel FPI. The frequency centers of the outgoing laser pulse and the Brillouin backscattering are labeled. Interference orders of the FPI are marked.

Fig. 2
Fig. 2

The FPI transmissions of the interference order of N + 1 and the Brillouin gain spectrums. S 0 A , S 0 B , and S 0 C corresponding to ( 25 ° C , 0 ε ), ( 25 ° C , 2 m ε ) and ( 45 ° C , 2 m ε ), respectively.

Fig. 3
Fig. 3

Response function versus the tensile strain the fiber experienced at different temperature when the minimum temperature is 25 ° C .

Fig. 4
Fig. 4

Schematic diagram of the proposed apparatus.

Fig. 5
Fig. 5

Strain measurement uncertainty versus tensile strain and length of the sensing fiber. The solid and dashed contour lines correspond to detected temperatures of 25 ° C and 45 ° C , respectively. The minimum temperature is 25 ° C .

Fig. 6
Fig. 6

Dependence of strain measurements on the uncertainty of temperature measurements. Both the minimum temperature and the detected temperature are 25 ° C .

Tables (1)

Tables Icon

Table 1 Parameters of the Proposed System

Equations (27)

Equations on this page are rendered with MathJax. Learn more.

r R = p as / p s = ( λ s / λ as ) 4 exp ( h Δ ν / k T ) ,
ν B = 2 n 1 V a / λ ,
g B ( ν ) = g 0 [ 1 + ( ν ν B ) 2 / ( w B / 2 ) 2 ] 1 ,
g 0 = 2 π n 1 7 p 12 2 / c λ p 2 ρ 0 V a w B ,
ν B ( T , ε ) = ν B ( T 0 , 0 ) + c ν B ε ε + c ν B T ( T T 0 ) ,
w B ( T , ε ) = w B ( T 0 , 0 ) + c w B ε ε + c w B T ( T T 0 ) .
S B ( ν , T D , ε ) = S 0 ( ν , T D , ε ) S P ( ν ) ,
S 0 ( ν , T D , ε ) = { 1 + [ ν ν B ( T D , ε ) ] 2 / [ w B ( T D , ε ) / 2 ] 2 } 1 .
h ( ν ) = 0 θ max T p / { 1 + 4 ( ν FSR / π ν F ) 2 sin 2 [ π ν cos ( θ ) / ν FSR ] } d θ ,
ν FSR = c / 2 n 2 l ,
ν 0 = ν FSR + ν 1 ν B ( T min , 0 ) .
Δ l = ν 0 l λ / c .
τ ( ε ) T D = S B ( ν , T D , ε ) h B ( ν + ν 0 ) d ν / S B ( ν , T D , ε ) d ν .
R ( ε ) T D = τ ( ε ) T D / [ 1 τ ( ε ) T D ] .
θ M = ( 2 ν F / ν ) 1 / 2 .
( A Ω ) FPI = 1 2 ( π D FPI ) 2 o θ M sin ( θ ) d θ .
( A Ω ) F = 1 2 ( π D f ) 2 o a sin ( NA ) sin ( θ ) d θ .
h ( ν ) = T p [ 1 + ν 2 / ( ν F / 2 ) 2 ] 1 .
S P ( ν ) = { 1 + [ 2 π W ( ν v L ) ] 2 } 1 .
w B = Γ ( 4 n 1 π / λ ) 2 ,
Γ = 1 ρ 0 [ 4 3 η S + η b + κ c p ( γ 1 ) ] ,
p B = ( G p 0 S α B W v / 2 ) exp ( 2 α z ) ,
N 1 = η 1 η 2 p B τ ( ε ) T D / ( h c / λ ) ,
N 2 = η 1 η 3 p B [ 1 τ ( ε ) T D ] / ( h c / λ ) ,
δ 1 ( ε ) = δ [ R ( ε ) T D ] / Θ ( ε ) ,
δ 2 [ R ( ε ) T D ] = { [ ( N 1 + N D ) R Δ t ] 1 / 2 N 2 R Δ t } 2 + { N 1 [ ( N 2 + N D ) R Δ t ] 1 / 2 N 2 2 R Δ t } 2 ,
δ 2 ( ε ) = | [ R ( ε ) T D / T ] δ ( T ) | / Θ ( ε ) ,

Metrics