Abstract

We report on a compact, tunable ultraviolet laser system that consists of an optical parametric oscillator (OPO) and a longitudinally diode-pumped Nd:YAG master oscillator–power amplifier (MOPA). The pump energy for the whole laser system is supplied via a single delivery fiber. Nanosecond pulses are produced by an oscillator that is passively Q-switched by a Cr4+:YAG crystal. The OPO is pumped by the second harmonic of the Nd:YAG MOPA. Continuously tunable radiation is generated by an intracavity sum- frequency mixing process within the OPO in the range of 245260nm with high beam quality. Maximum pulse energies of 1.2mJ were achieved, which correspond to an optical efficiency of 3.75%, relating to the pulse energy of the MOPA at 1064nm.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Fix, M. Wirth, A. Meister, G. Ehret, M. Pesch, and D. Weidauer, “Tunable ultraviolet optical parametric oscillator for differential absorption lidar measurements of tropospheric ozone,” Appl. Phys. B 75, 153-163 (2002).
    [CrossRef]
  2. D. M. Lubman, ed., Lasers and Mass Spectrometry (Oxford U. Press, New York, 1990).
  3. P. Misra and M. A. Dubinskii, eds., Ultraviolet Spectroscopy and UV Lasers, Vol. 30 of Practical Spectroscopy Series (CRC Press, 2002).
    [CrossRef]
  4. C. Illenseer, H.-G. Löhmannsröben, and R. Schultze, “Application of laser-based ion mobility (IM) spectrometry for the analysis of polycyclic aromatic compounds (PAC) and petroleum products in soils,” J. Environ. Monitor. 5, 780-785 (2003).
    [CrossRef]
  5. S. Imai, T. Yamada, Y. Fujimori, and K. Ishikawa, “Third-harmonic generation of an alexandrite laser in β−BaB2O4,” Appl. Phys. Lett. 54, 1206-1208 (1989).
    [CrossRef]
  6. J. Lublinski, M. Müller, F. Laeri, and K. Vogler, “Collinear and non-collinear sum-frequency mixing in β−BBO for a tunable 195-198 nm all-solid-state laser system,” Appl. Phys. B 61, 529-532 (1995).
    [CrossRef]
  7. S. B. Mirov, V. V. Fedorov, B. Boczar, R. Frost, and B. Pryor, “All-solid-state laser system tunable in deep ultraviolet based on sum-frequency generation in CLBO,” Opt. Commun. 198, 403-406 (2001).
    [CrossRef]
  8. M. Funayama, K. Mukaihara, H. Morita, T. Okada, N. Tomonaga, J. Izumi, and M. Maeda, “Continuously tunable coherent source over 202-3180 nm based on a Ti:sapphire laser,” Opt. Commun. 102, 457-460 (1993).
    [CrossRef]
  9. T. Meguro, T. Caughey, L. Wolf, and Y. Aoyagi, “Solid-state tunable deep-ultraviolet laser system from 198 to 300 nm,” Opt. Lett. 19, 102-104 (1994).
    [CrossRef] [PubMed]
  10. D. J. Binks, P. S. Golding, and T. A. King, “Compact all-solid-state high repetition rate tunable ultraviolet source for airborne atmospheric gas sensing,” J. Mod. Opt. 47, 1899-1912 (2000).
    [CrossRef]
  11. J. Sakuma, K. Deki, A. Finch, Y. Ohsako, and T. Yokota, “All-solid-state, high-power, deep-UV laser system based on cascaded sum-frequency mixing in CsLiB6O10 crystals,” Appl. Opt. 39, 5505-5511 (2000).
    [CrossRef]
  12. F. Huang, Q. Lou, T. Yu, J. Dong, B. Lei, and Y. Wie, “Tunable solid state UV laser,” Opt. Laser Technol. 33, 111-115 (2001).
    [CrossRef]
  13. K. A. Elsayed, S. Chen, L. B. Petway, B. L. Meadows, W. D. Marsh, W. C. Edwards, J. C. Barnes, and R. J. DeYoung, “High-energy, efficient, 30 Hz ultraviolet laser sources for airborne ozone-lidar systems,” Appl. Opt. 41, 2734-2739 (2002).
    [CrossRef] [PubMed]
  14. A. V. Kachynski, V. A. Orlovich, A. A. Bui, V. D. Kopachevsky, A. V. Kudryakov, and W. Kiefer, “All solid-state pulsed ultraviolet laser widely tunable down to 188.5 nm,” Opt. Commun. 218, 351-357 (2003).
    [CrossRef]
  15. J. F. Pinto, L. Esterowitz, and G. H. Rosenblatt, “Frequency tripling of a Q-switched Cr:LiSAF laser to the UV region,” IEEE J. Sel. Top. Quantum Electron. 1, 58-61 (1995).
    [CrossRef]
  16. A. Borsutzky, R. Brünger, and R. Wallenstein, “Tunable UV radiation at short wavelengths (188-240 nm) generated by sum frequency mixing in lithium borate,” Appl. Phys. B 52, 380 (1991).
    [CrossRef]
  17. B. Wu, F. Xie, C. Chen, D. Deng, and Z. Xu, “Generation of tunable coherent vacuum ultraviolet radiation in LiB3O5 crystal,” Opt. Commun. 88, 451-454 (1992).
    [CrossRef]
  18. I. Horn, D. Günther, and M. Guillong, “Evaluation and design of a solid-state 193 nm OPO-Nd:YAG laser ablation system,” Spectrochim. Acta Part B 58, 1837-1846 (2003).
    [CrossRef]
  19. D. J. Armstrong and A. V. Smith, “All solid-state high-efficiency tunable UV source for airborne or satellite-based ozone DIAL systems,” IEEE J. Sel. Top. Quantum Electron. 13, 721-731 (2007).
    [CrossRef]
  20. M. Tiihonen, V. Pasiskevicius, and F. Laurell, “Tailored UV-laser source for fluorescence spectroscopy of biomolecules,” Opt. Lasers Eng. 45, 444-449 (2007).
    [CrossRef]
  21. A. Fix and G. Ehret, “Intracavity frequency mixing in pulsed optical parametric oscillators for the efficient generation of continuously tunable ultraviolet radiation,” Appl. Phys. B 67, 331-338 (1998).
    [CrossRef]
  22. P. Peuser, W. Platz, P. Zeller, T. Brand, M. Haag, and B. Köhler, “High-power, longitudinally fiber-pumped, passively Q-switched Nd:YAG oscillator-amplifier,” Opt. Lett. 31, 1991-1993 (2006).
    [CrossRef] [PubMed]
  23. S. Forget, F. Balembois, P. Georges, P.-J. Devilder, “A new 3D multipass amplifier based on Nd:YAG or Nd:YVO4 crystals,” Appl. Phys. B 75, 481-485 (2002).
    [CrossRef]
  24. D. Kracht, S. Hahn, R. Huss, J. Neumann, R. Wilhelm, M. Frede, and P. Peuser, “High efficiency, passively Q-switched Nd:YAG MOPA for spaceborne laser-altimetry,” Proc. SPIE 6100, 610021 (2006).
    [CrossRef]

2007 (2)

D. J. Armstrong and A. V. Smith, “All solid-state high-efficiency tunable UV source for airborne or satellite-based ozone DIAL systems,” IEEE J. Sel. Top. Quantum Electron. 13, 721-731 (2007).
[CrossRef]

M. Tiihonen, V. Pasiskevicius, and F. Laurell, “Tailored UV-laser source for fluorescence spectroscopy of biomolecules,” Opt. Lasers Eng. 45, 444-449 (2007).
[CrossRef]

2006 (2)

D. Kracht, S. Hahn, R. Huss, J. Neumann, R. Wilhelm, M. Frede, and P. Peuser, “High efficiency, passively Q-switched Nd:YAG MOPA for spaceborne laser-altimetry,” Proc. SPIE 6100, 610021 (2006).
[CrossRef]

P. Peuser, W. Platz, P. Zeller, T. Brand, M. Haag, and B. Köhler, “High-power, longitudinally fiber-pumped, passively Q-switched Nd:YAG oscillator-amplifier,” Opt. Lett. 31, 1991-1993 (2006).
[CrossRef] [PubMed]

2003 (3)

A. V. Kachynski, V. A. Orlovich, A. A. Bui, V. D. Kopachevsky, A. V. Kudryakov, and W. Kiefer, “All solid-state pulsed ultraviolet laser widely tunable down to 188.5 nm,” Opt. Commun. 218, 351-357 (2003).
[CrossRef]

I. Horn, D. Günther, and M. Guillong, “Evaluation and design of a solid-state 193 nm OPO-Nd:YAG laser ablation system,” Spectrochim. Acta Part B 58, 1837-1846 (2003).
[CrossRef]

C. Illenseer, H.-G. Löhmannsröben, and R. Schultze, “Application of laser-based ion mobility (IM) spectrometry for the analysis of polycyclic aromatic compounds (PAC) and petroleum products in soils,” J. Environ. Monitor. 5, 780-785 (2003).
[CrossRef]

2002 (3)

A. Fix, M. Wirth, A. Meister, G. Ehret, M. Pesch, and D. Weidauer, “Tunable ultraviolet optical parametric oscillator for differential absorption lidar measurements of tropospheric ozone,” Appl. Phys. B 75, 153-163 (2002).
[CrossRef]

K. A. Elsayed, S. Chen, L. B. Petway, B. L. Meadows, W. D. Marsh, W. C. Edwards, J. C. Barnes, and R. J. DeYoung, “High-energy, efficient, 30 Hz ultraviolet laser sources for airborne ozone-lidar systems,” Appl. Opt. 41, 2734-2739 (2002).
[CrossRef] [PubMed]

S. Forget, F. Balembois, P. Georges, P.-J. Devilder, “A new 3D multipass amplifier based on Nd:YAG or Nd:YVO4 crystals,” Appl. Phys. B 75, 481-485 (2002).
[CrossRef]

2001 (2)

S. B. Mirov, V. V. Fedorov, B. Boczar, R. Frost, and B. Pryor, “All-solid-state laser system tunable in deep ultraviolet based on sum-frequency generation in CLBO,” Opt. Commun. 198, 403-406 (2001).
[CrossRef]

F. Huang, Q. Lou, T. Yu, J. Dong, B. Lei, and Y. Wie, “Tunable solid state UV laser,” Opt. Laser Technol. 33, 111-115 (2001).
[CrossRef]

2000 (2)

D. J. Binks, P. S. Golding, and T. A. King, “Compact all-solid-state high repetition rate tunable ultraviolet source for airborne atmospheric gas sensing,” J. Mod. Opt. 47, 1899-1912 (2000).
[CrossRef]

J. Sakuma, K. Deki, A. Finch, Y. Ohsako, and T. Yokota, “All-solid-state, high-power, deep-UV laser system based on cascaded sum-frequency mixing in CsLiB6O10 crystals,” Appl. Opt. 39, 5505-5511 (2000).
[CrossRef]

1998 (1)

A. Fix and G. Ehret, “Intracavity frequency mixing in pulsed optical parametric oscillators for the efficient generation of continuously tunable ultraviolet radiation,” Appl. Phys. B 67, 331-338 (1998).
[CrossRef]

1995 (2)

J. F. Pinto, L. Esterowitz, and G. H. Rosenblatt, “Frequency tripling of a Q-switched Cr:LiSAF laser to the UV region,” IEEE J. Sel. Top. Quantum Electron. 1, 58-61 (1995).
[CrossRef]

J. Lublinski, M. Müller, F. Laeri, and K. Vogler, “Collinear and non-collinear sum-frequency mixing in β−BBO for a tunable 195-198 nm all-solid-state laser system,” Appl. Phys. B 61, 529-532 (1995).
[CrossRef]

1994 (1)

1993 (1)

M. Funayama, K. Mukaihara, H. Morita, T. Okada, N. Tomonaga, J. Izumi, and M. Maeda, “Continuously tunable coherent source over 202-3180 nm based on a Ti:sapphire laser,” Opt. Commun. 102, 457-460 (1993).
[CrossRef]

1992 (1)

B. Wu, F. Xie, C. Chen, D. Deng, and Z. Xu, “Generation of tunable coherent vacuum ultraviolet radiation in LiB3O5 crystal,” Opt. Commun. 88, 451-454 (1992).
[CrossRef]

1991 (1)

A. Borsutzky, R. Brünger, and R. Wallenstein, “Tunable UV radiation at short wavelengths (188-240 nm) generated by sum frequency mixing in lithium borate,” Appl. Phys. B 52, 380 (1991).
[CrossRef]

1989 (1)

S. Imai, T. Yamada, Y. Fujimori, and K. Ishikawa, “Third-harmonic generation of an alexandrite laser in β−BaB2O4,” Appl. Phys. Lett. 54, 1206-1208 (1989).
[CrossRef]

Aoyagi, Y.

Armstrong, D. J.

D. J. Armstrong and A. V. Smith, “All solid-state high-efficiency tunable UV source for airborne or satellite-based ozone DIAL systems,” IEEE J. Sel. Top. Quantum Electron. 13, 721-731 (2007).
[CrossRef]

Balembois, F.

S. Forget, F. Balembois, P. Georges, P.-J. Devilder, “A new 3D multipass amplifier based on Nd:YAG or Nd:YVO4 crystals,” Appl. Phys. B 75, 481-485 (2002).
[CrossRef]

Barnes, J. C.

Binks, D. J.

D. J. Binks, P. S. Golding, and T. A. King, “Compact all-solid-state high repetition rate tunable ultraviolet source for airborne atmospheric gas sensing,” J. Mod. Opt. 47, 1899-1912 (2000).
[CrossRef]

Boczar, B.

S. B. Mirov, V. V. Fedorov, B. Boczar, R. Frost, and B. Pryor, “All-solid-state laser system tunable in deep ultraviolet based on sum-frequency generation in CLBO,” Opt. Commun. 198, 403-406 (2001).
[CrossRef]

Borsutzky, A.

A. Borsutzky, R. Brünger, and R. Wallenstein, “Tunable UV radiation at short wavelengths (188-240 nm) generated by sum frequency mixing in lithium borate,” Appl. Phys. B 52, 380 (1991).
[CrossRef]

Brand, T.

Brünger, R.

A. Borsutzky, R. Brünger, and R. Wallenstein, “Tunable UV radiation at short wavelengths (188-240 nm) generated by sum frequency mixing in lithium borate,” Appl. Phys. B 52, 380 (1991).
[CrossRef]

Bui, A. A.

A. V. Kachynski, V. A. Orlovich, A. A. Bui, V. D. Kopachevsky, A. V. Kudryakov, and W. Kiefer, “All solid-state pulsed ultraviolet laser widely tunable down to 188.5 nm,” Opt. Commun. 218, 351-357 (2003).
[CrossRef]

Caughey, T.

Chen, C.

B. Wu, F. Xie, C. Chen, D. Deng, and Z. Xu, “Generation of tunable coherent vacuum ultraviolet radiation in LiB3O5 crystal,” Opt. Commun. 88, 451-454 (1992).
[CrossRef]

Chen, S.

Deki, K.

Deng, D.

B. Wu, F. Xie, C. Chen, D. Deng, and Z. Xu, “Generation of tunable coherent vacuum ultraviolet radiation in LiB3O5 crystal,” Opt. Commun. 88, 451-454 (1992).
[CrossRef]

Devilder, P.-J.

S. Forget, F. Balembois, P. Georges, P.-J. Devilder, “A new 3D multipass amplifier based on Nd:YAG or Nd:YVO4 crystals,” Appl. Phys. B 75, 481-485 (2002).
[CrossRef]

DeYoung, R. J.

Dong, J.

F. Huang, Q. Lou, T. Yu, J. Dong, B. Lei, and Y. Wie, “Tunable solid state UV laser,” Opt. Laser Technol. 33, 111-115 (2001).
[CrossRef]

Dubinskii, M. A.

P. Misra and M. A. Dubinskii, eds., Ultraviolet Spectroscopy and UV Lasers, Vol. 30 of Practical Spectroscopy Series (CRC Press, 2002).
[CrossRef]

Edwards, W. C.

Ehret, G.

A. Fix, M. Wirth, A. Meister, G. Ehret, M. Pesch, and D. Weidauer, “Tunable ultraviolet optical parametric oscillator for differential absorption lidar measurements of tropospheric ozone,” Appl. Phys. B 75, 153-163 (2002).
[CrossRef]

A. Fix and G. Ehret, “Intracavity frequency mixing in pulsed optical parametric oscillators for the efficient generation of continuously tunable ultraviolet radiation,” Appl. Phys. B 67, 331-338 (1998).
[CrossRef]

Elsayed, K. A.

Esterowitz, L.

J. F. Pinto, L. Esterowitz, and G. H. Rosenblatt, “Frequency tripling of a Q-switched Cr:LiSAF laser to the UV region,” IEEE J. Sel. Top. Quantum Electron. 1, 58-61 (1995).
[CrossRef]

Fedorov, V. V.

S. B. Mirov, V. V. Fedorov, B. Boczar, R. Frost, and B. Pryor, “All-solid-state laser system tunable in deep ultraviolet based on sum-frequency generation in CLBO,” Opt. Commun. 198, 403-406 (2001).
[CrossRef]

Finch, A.

Fix, A.

A. Fix, M. Wirth, A. Meister, G. Ehret, M. Pesch, and D. Weidauer, “Tunable ultraviolet optical parametric oscillator for differential absorption lidar measurements of tropospheric ozone,” Appl. Phys. B 75, 153-163 (2002).
[CrossRef]

A. Fix and G. Ehret, “Intracavity frequency mixing in pulsed optical parametric oscillators for the efficient generation of continuously tunable ultraviolet radiation,” Appl. Phys. B 67, 331-338 (1998).
[CrossRef]

Forget, S.

S. Forget, F. Balembois, P. Georges, P.-J. Devilder, “A new 3D multipass amplifier based on Nd:YAG or Nd:YVO4 crystals,” Appl. Phys. B 75, 481-485 (2002).
[CrossRef]

Frede, M.

D. Kracht, S. Hahn, R. Huss, J. Neumann, R. Wilhelm, M. Frede, and P. Peuser, “High efficiency, passively Q-switched Nd:YAG MOPA for spaceborne laser-altimetry,” Proc. SPIE 6100, 610021 (2006).
[CrossRef]

Frost, R.

S. B. Mirov, V. V. Fedorov, B. Boczar, R. Frost, and B. Pryor, “All-solid-state laser system tunable in deep ultraviolet based on sum-frequency generation in CLBO,” Opt. Commun. 198, 403-406 (2001).
[CrossRef]

Fujimori, Y.

S. Imai, T. Yamada, Y. Fujimori, and K. Ishikawa, “Third-harmonic generation of an alexandrite laser in β−BaB2O4,” Appl. Phys. Lett. 54, 1206-1208 (1989).
[CrossRef]

Funayama, M.

M. Funayama, K. Mukaihara, H. Morita, T. Okada, N. Tomonaga, J. Izumi, and M. Maeda, “Continuously tunable coherent source over 202-3180 nm based on a Ti:sapphire laser,” Opt. Commun. 102, 457-460 (1993).
[CrossRef]

Georges, P.

S. Forget, F. Balembois, P. Georges, P.-J. Devilder, “A new 3D multipass amplifier based on Nd:YAG or Nd:YVO4 crystals,” Appl. Phys. B 75, 481-485 (2002).
[CrossRef]

Golding, P. S.

D. J. Binks, P. S. Golding, and T. A. King, “Compact all-solid-state high repetition rate tunable ultraviolet source for airborne atmospheric gas sensing,” J. Mod. Opt. 47, 1899-1912 (2000).
[CrossRef]

Guillong, M.

I. Horn, D. Günther, and M. Guillong, “Evaluation and design of a solid-state 193 nm OPO-Nd:YAG laser ablation system,” Spectrochim. Acta Part B 58, 1837-1846 (2003).
[CrossRef]

Günther, D.

I. Horn, D. Günther, and M. Guillong, “Evaluation and design of a solid-state 193 nm OPO-Nd:YAG laser ablation system,” Spectrochim. Acta Part B 58, 1837-1846 (2003).
[CrossRef]

Haag, M.

Hahn, S.

D. Kracht, S. Hahn, R. Huss, J. Neumann, R. Wilhelm, M. Frede, and P. Peuser, “High efficiency, passively Q-switched Nd:YAG MOPA for spaceborne laser-altimetry,” Proc. SPIE 6100, 610021 (2006).
[CrossRef]

Horn, I.

I. Horn, D. Günther, and M. Guillong, “Evaluation and design of a solid-state 193 nm OPO-Nd:YAG laser ablation system,” Spectrochim. Acta Part B 58, 1837-1846 (2003).
[CrossRef]

Huang, F.

F. Huang, Q. Lou, T. Yu, J. Dong, B. Lei, and Y. Wie, “Tunable solid state UV laser,” Opt. Laser Technol. 33, 111-115 (2001).
[CrossRef]

Huss, R.

D. Kracht, S. Hahn, R. Huss, J. Neumann, R. Wilhelm, M. Frede, and P. Peuser, “High efficiency, passively Q-switched Nd:YAG MOPA for spaceborne laser-altimetry,” Proc. SPIE 6100, 610021 (2006).
[CrossRef]

Illenseer, C.

C. Illenseer, H.-G. Löhmannsröben, and R. Schultze, “Application of laser-based ion mobility (IM) spectrometry for the analysis of polycyclic aromatic compounds (PAC) and petroleum products in soils,” J. Environ. Monitor. 5, 780-785 (2003).
[CrossRef]

Imai, S.

S. Imai, T. Yamada, Y. Fujimori, and K. Ishikawa, “Third-harmonic generation of an alexandrite laser in β−BaB2O4,” Appl. Phys. Lett. 54, 1206-1208 (1989).
[CrossRef]

Ishikawa, K.

S. Imai, T. Yamada, Y. Fujimori, and K. Ishikawa, “Third-harmonic generation of an alexandrite laser in β−BaB2O4,” Appl. Phys. Lett. 54, 1206-1208 (1989).
[CrossRef]

Izumi, J.

M. Funayama, K. Mukaihara, H. Morita, T. Okada, N. Tomonaga, J. Izumi, and M. Maeda, “Continuously tunable coherent source over 202-3180 nm based on a Ti:sapphire laser,” Opt. Commun. 102, 457-460 (1993).
[CrossRef]

Kachynski, A. V.

A. V. Kachynski, V. A. Orlovich, A. A. Bui, V. D. Kopachevsky, A. V. Kudryakov, and W. Kiefer, “All solid-state pulsed ultraviolet laser widely tunable down to 188.5 nm,” Opt. Commun. 218, 351-357 (2003).
[CrossRef]

Kiefer, W.

A. V. Kachynski, V. A. Orlovich, A. A. Bui, V. D. Kopachevsky, A. V. Kudryakov, and W. Kiefer, “All solid-state pulsed ultraviolet laser widely tunable down to 188.5 nm,” Opt. Commun. 218, 351-357 (2003).
[CrossRef]

King, T. A.

D. J. Binks, P. S. Golding, and T. A. King, “Compact all-solid-state high repetition rate tunable ultraviolet source for airborne atmospheric gas sensing,” J. Mod. Opt. 47, 1899-1912 (2000).
[CrossRef]

Köhler, B.

Kopachevsky, V. D.

A. V. Kachynski, V. A. Orlovich, A. A. Bui, V. D. Kopachevsky, A. V. Kudryakov, and W. Kiefer, “All solid-state pulsed ultraviolet laser widely tunable down to 188.5 nm,” Opt. Commun. 218, 351-357 (2003).
[CrossRef]

Kracht, D.

D. Kracht, S. Hahn, R. Huss, J. Neumann, R. Wilhelm, M. Frede, and P. Peuser, “High efficiency, passively Q-switched Nd:YAG MOPA for spaceborne laser-altimetry,” Proc. SPIE 6100, 610021 (2006).
[CrossRef]

Kudryakov, A. V.

A. V. Kachynski, V. A. Orlovich, A. A. Bui, V. D. Kopachevsky, A. V. Kudryakov, and W. Kiefer, “All solid-state pulsed ultraviolet laser widely tunable down to 188.5 nm,” Opt. Commun. 218, 351-357 (2003).
[CrossRef]

Laeri, F.

J. Lublinski, M. Müller, F. Laeri, and K. Vogler, “Collinear and non-collinear sum-frequency mixing in β−BBO for a tunable 195-198 nm all-solid-state laser system,” Appl. Phys. B 61, 529-532 (1995).
[CrossRef]

Laurell, F.

M. Tiihonen, V. Pasiskevicius, and F. Laurell, “Tailored UV-laser source for fluorescence spectroscopy of biomolecules,” Opt. Lasers Eng. 45, 444-449 (2007).
[CrossRef]

Lei, B.

F. Huang, Q. Lou, T. Yu, J. Dong, B. Lei, and Y. Wie, “Tunable solid state UV laser,” Opt. Laser Technol. 33, 111-115 (2001).
[CrossRef]

Löhmannsröben, H.-G.

C. Illenseer, H.-G. Löhmannsröben, and R. Schultze, “Application of laser-based ion mobility (IM) spectrometry for the analysis of polycyclic aromatic compounds (PAC) and petroleum products in soils,” J. Environ. Monitor. 5, 780-785 (2003).
[CrossRef]

Lou, Q.

F. Huang, Q. Lou, T. Yu, J. Dong, B. Lei, and Y. Wie, “Tunable solid state UV laser,” Opt. Laser Technol. 33, 111-115 (2001).
[CrossRef]

Lublinski, J.

J. Lublinski, M. Müller, F. Laeri, and K. Vogler, “Collinear and non-collinear sum-frequency mixing in β−BBO for a tunable 195-198 nm all-solid-state laser system,” Appl. Phys. B 61, 529-532 (1995).
[CrossRef]

Lubman, D. M.

D. M. Lubman, ed., Lasers and Mass Spectrometry (Oxford U. Press, New York, 1990).

Maeda, M.

M. Funayama, K. Mukaihara, H. Morita, T. Okada, N. Tomonaga, J. Izumi, and M. Maeda, “Continuously tunable coherent source over 202-3180 nm based on a Ti:sapphire laser,” Opt. Commun. 102, 457-460 (1993).
[CrossRef]

Marsh, W. D.

Meadows, B. L.

Meguro, T.

Meister, A.

A. Fix, M. Wirth, A. Meister, G. Ehret, M. Pesch, and D. Weidauer, “Tunable ultraviolet optical parametric oscillator for differential absorption lidar measurements of tropospheric ozone,” Appl. Phys. B 75, 153-163 (2002).
[CrossRef]

Mirov, S. B.

S. B. Mirov, V. V. Fedorov, B. Boczar, R. Frost, and B. Pryor, “All-solid-state laser system tunable in deep ultraviolet based on sum-frequency generation in CLBO,” Opt. Commun. 198, 403-406 (2001).
[CrossRef]

Misra, P.

P. Misra and M. A. Dubinskii, eds., Ultraviolet Spectroscopy and UV Lasers, Vol. 30 of Practical Spectroscopy Series (CRC Press, 2002).
[CrossRef]

Morita, H.

M. Funayama, K. Mukaihara, H. Morita, T. Okada, N. Tomonaga, J. Izumi, and M. Maeda, “Continuously tunable coherent source over 202-3180 nm based on a Ti:sapphire laser,” Opt. Commun. 102, 457-460 (1993).
[CrossRef]

Mukaihara, K.

M. Funayama, K. Mukaihara, H. Morita, T. Okada, N. Tomonaga, J. Izumi, and M. Maeda, “Continuously tunable coherent source over 202-3180 nm based on a Ti:sapphire laser,” Opt. Commun. 102, 457-460 (1993).
[CrossRef]

Müller, M.

J. Lublinski, M. Müller, F. Laeri, and K. Vogler, “Collinear and non-collinear sum-frequency mixing in β−BBO for a tunable 195-198 nm all-solid-state laser system,” Appl. Phys. B 61, 529-532 (1995).
[CrossRef]

Neumann, J.

D. Kracht, S. Hahn, R. Huss, J. Neumann, R. Wilhelm, M. Frede, and P. Peuser, “High efficiency, passively Q-switched Nd:YAG MOPA for spaceborne laser-altimetry,” Proc. SPIE 6100, 610021 (2006).
[CrossRef]

Ohsako, Y.

Okada, T.

M. Funayama, K. Mukaihara, H. Morita, T. Okada, N. Tomonaga, J. Izumi, and M. Maeda, “Continuously tunable coherent source over 202-3180 nm based on a Ti:sapphire laser,” Opt. Commun. 102, 457-460 (1993).
[CrossRef]

Orlovich, V. A.

A. V. Kachynski, V. A. Orlovich, A. A. Bui, V. D. Kopachevsky, A. V. Kudryakov, and W. Kiefer, “All solid-state pulsed ultraviolet laser widely tunable down to 188.5 nm,” Opt. Commun. 218, 351-357 (2003).
[CrossRef]

Pasiskevicius, V.

M. Tiihonen, V. Pasiskevicius, and F. Laurell, “Tailored UV-laser source for fluorescence spectroscopy of biomolecules,” Opt. Lasers Eng. 45, 444-449 (2007).
[CrossRef]

Pesch, M.

A. Fix, M. Wirth, A. Meister, G. Ehret, M. Pesch, and D. Weidauer, “Tunable ultraviolet optical parametric oscillator for differential absorption lidar measurements of tropospheric ozone,” Appl. Phys. B 75, 153-163 (2002).
[CrossRef]

Petway, L. B.

Peuser, P.

D. Kracht, S. Hahn, R. Huss, J. Neumann, R. Wilhelm, M. Frede, and P. Peuser, “High efficiency, passively Q-switched Nd:YAG MOPA for spaceborne laser-altimetry,” Proc. SPIE 6100, 610021 (2006).
[CrossRef]

P. Peuser, W. Platz, P. Zeller, T. Brand, M. Haag, and B. Köhler, “High-power, longitudinally fiber-pumped, passively Q-switched Nd:YAG oscillator-amplifier,” Opt. Lett. 31, 1991-1993 (2006).
[CrossRef] [PubMed]

Pinto, J. F.

J. F. Pinto, L. Esterowitz, and G. H. Rosenblatt, “Frequency tripling of a Q-switched Cr:LiSAF laser to the UV region,” IEEE J. Sel. Top. Quantum Electron. 1, 58-61 (1995).
[CrossRef]

Platz, W.

Pryor, B.

S. B. Mirov, V. V. Fedorov, B. Boczar, R. Frost, and B. Pryor, “All-solid-state laser system tunable in deep ultraviolet based on sum-frequency generation in CLBO,” Opt. Commun. 198, 403-406 (2001).
[CrossRef]

Rosenblatt, G. H.

J. F. Pinto, L. Esterowitz, and G. H. Rosenblatt, “Frequency tripling of a Q-switched Cr:LiSAF laser to the UV region,” IEEE J. Sel. Top. Quantum Electron. 1, 58-61 (1995).
[CrossRef]

Sakuma, J.

Schultze, R.

C. Illenseer, H.-G. Löhmannsröben, and R. Schultze, “Application of laser-based ion mobility (IM) spectrometry for the analysis of polycyclic aromatic compounds (PAC) and petroleum products in soils,” J. Environ. Monitor. 5, 780-785 (2003).
[CrossRef]

Smith, A. V.

D. J. Armstrong and A. V. Smith, “All solid-state high-efficiency tunable UV source for airborne or satellite-based ozone DIAL systems,” IEEE J. Sel. Top. Quantum Electron. 13, 721-731 (2007).
[CrossRef]

Tiihonen, M.

M. Tiihonen, V. Pasiskevicius, and F. Laurell, “Tailored UV-laser source for fluorescence spectroscopy of biomolecules,” Opt. Lasers Eng. 45, 444-449 (2007).
[CrossRef]

Tomonaga, N.

M. Funayama, K. Mukaihara, H. Morita, T. Okada, N. Tomonaga, J. Izumi, and M. Maeda, “Continuously tunable coherent source over 202-3180 nm based on a Ti:sapphire laser,” Opt. Commun. 102, 457-460 (1993).
[CrossRef]

Vogler, K.

J. Lublinski, M. Müller, F. Laeri, and K. Vogler, “Collinear and non-collinear sum-frequency mixing in β−BBO for a tunable 195-198 nm all-solid-state laser system,” Appl. Phys. B 61, 529-532 (1995).
[CrossRef]

Wallenstein, R.

A. Borsutzky, R. Brünger, and R. Wallenstein, “Tunable UV radiation at short wavelengths (188-240 nm) generated by sum frequency mixing in lithium borate,” Appl. Phys. B 52, 380 (1991).
[CrossRef]

Weidauer, D.

A. Fix, M. Wirth, A. Meister, G. Ehret, M. Pesch, and D. Weidauer, “Tunable ultraviolet optical parametric oscillator for differential absorption lidar measurements of tropospheric ozone,” Appl. Phys. B 75, 153-163 (2002).
[CrossRef]

Wie, Y.

F. Huang, Q. Lou, T. Yu, J. Dong, B. Lei, and Y. Wie, “Tunable solid state UV laser,” Opt. Laser Technol. 33, 111-115 (2001).
[CrossRef]

Wilhelm, R.

D. Kracht, S. Hahn, R. Huss, J. Neumann, R. Wilhelm, M. Frede, and P. Peuser, “High efficiency, passively Q-switched Nd:YAG MOPA for spaceborne laser-altimetry,” Proc. SPIE 6100, 610021 (2006).
[CrossRef]

Wirth, M.

A. Fix, M. Wirth, A. Meister, G. Ehret, M. Pesch, and D. Weidauer, “Tunable ultraviolet optical parametric oscillator for differential absorption lidar measurements of tropospheric ozone,” Appl. Phys. B 75, 153-163 (2002).
[CrossRef]

Wolf, L.

Wu, B.

B. Wu, F. Xie, C. Chen, D. Deng, and Z. Xu, “Generation of tunable coherent vacuum ultraviolet radiation in LiB3O5 crystal,” Opt. Commun. 88, 451-454 (1992).
[CrossRef]

Xie, F.

B. Wu, F. Xie, C. Chen, D. Deng, and Z. Xu, “Generation of tunable coherent vacuum ultraviolet radiation in LiB3O5 crystal,” Opt. Commun. 88, 451-454 (1992).
[CrossRef]

Xu, Z.

B. Wu, F. Xie, C. Chen, D. Deng, and Z. Xu, “Generation of tunable coherent vacuum ultraviolet radiation in LiB3O5 crystal,” Opt. Commun. 88, 451-454 (1992).
[CrossRef]

Yamada, T.

S. Imai, T. Yamada, Y. Fujimori, and K. Ishikawa, “Third-harmonic generation of an alexandrite laser in β−BaB2O4,” Appl. Phys. Lett. 54, 1206-1208 (1989).
[CrossRef]

Yokota, T.

Yu, T.

F. Huang, Q. Lou, T. Yu, J. Dong, B. Lei, and Y. Wie, “Tunable solid state UV laser,” Opt. Laser Technol. 33, 111-115 (2001).
[CrossRef]

Zeller, P.

Appl. Opt. (2)

Appl. Phys. B (5)

A. Fix, M. Wirth, A. Meister, G. Ehret, M. Pesch, and D. Weidauer, “Tunable ultraviolet optical parametric oscillator for differential absorption lidar measurements of tropospheric ozone,” Appl. Phys. B 75, 153-163 (2002).
[CrossRef]

J. Lublinski, M. Müller, F. Laeri, and K. Vogler, “Collinear and non-collinear sum-frequency mixing in β−BBO for a tunable 195-198 nm all-solid-state laser system,” Appl. Phys. B 61, 529-532 (1995).
[CrossRef]

A. Borsutzky, R. Brünger, and R. Wallenstein, “Tunable UV radiation at short wavelengths (188-240 nm) generated by sum frequency mixing in lithium borate,” Appl. Phys. B 52, 380 (1991).
[CrossRef]

A. Fix and G. Ehret, “Intracavity frequency mixing in pulsed optical parametric oscillators for the efficient generation of continuously tunable ultraviolet radiation,” Appl. Phys. B 67, 331-338 (1998).
[CrossRef]

S. Forget, F. Balembois, P. Georges, P.-J. Devilder, “A new 3D multipass amplifier based on Nd:YAG or Nd:YVO4 crystals,” Appl. Phys. B 75, 481-485 (2002).
[CrossRef]

Appl. Phys. Lett. (1)

S. Imai, T. Yamada, Y. Fujimori, and K. Ishikawa, “Third-harmonic generation of an alexandrite laser in β−BaB2O4,” Appl. Phys. Lett. 54, 1206-1208 (1989).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (2)

D. J. Armstrong and A. V. Smith, “All solid-state high-efficiency tunable UV source for airborne or satellite-based ozone DIAL systems,” IEEE J. Sel. Top. Quantum Electron. 13, 721-731 (2007).
[CrossRef]

J. F. Pinto, L. Esterowitz, and G. H. Rosenblatt, “Frequency tripling of a Q-switched Cr:LiSAF laser to the UV region,” IEEE J. Sel. Top. Quantum Electron. 1, 58-61 (1995).
[CrossRef]

J. Environ. Monitor. (1)

C. Illenseer, H.-G. Löhmannsröben, and R. Schultze, “Application of laser-based ion mobility (IM) spectrometry for the analysis of polycyclic aromatic compounds (PAC) and petroleum products in soils,” J. Environ. Monitor. 5, 780-785 (2003).
[CrossRef]

J. Mod. Opt. (1)

D. J. Binks, P. S. Golding, and T. A. King, “Compact all-solid-state high repetition rate tunable ultraviolet source for airborne atmospheric gas sensing,” J. Mod. Opt. 47, 1899-1912 (2000).
[CrossRef]

Opt. Commun. (4)

B. Wu, F. Xie, C. Chen, D. Deng, and Z. Xu, “Generation of tunable coherent vacuum ultraviolet radiation in LiB3O5 crystal,” Opt. Commun. 88, 451-454 (1992).
[CrossRef]

S. B. Mirov, V. V. Fedorov, B. Boczar, R. Frost, and B. Pryor, “All-solid-state laser system tunable in deep ultraviolet based on sum-frequency generation in CLBO,” Opt. Commun. 198, 403-406 (2001).
[CrossRef]

M. Funayama, K. Mukaihara, H. Morita, T. Okada, N. Tomonaga, J. Izumi, and M. Maeda, “Continuously tunable coherent source over 202-3180 nm based on a Ti:sapphire laser,” Opt. Commun. 102, 457-460 (1993).
[CrossRef]

A. V. Kachynski, V. A. Orlovich, A. A. Bui, V. D. Kopachevsky, A. V. Kudryakov, and W. Kiefer, “All solid-state pulsed ultraviolet laser widely tunable down to 188.5 nm,” Opt. Commun. 218, 351-357 (2003).
[CrossRef]

Opt. Laser Technol. (1)

F. Huang, Q. Lou, T. Yu, J. Dong, B. Lei, and Y. Wie, “Tunable solid state UV laser,” Opt. Laser Technol. 33, 111-115 (2001).
[CrossRef]

Opt. Lasers Eng. (1)

M. Tiihonen, V. Pasiskevicius, and F. Laurell, “Tailored UV-laser source for fluorescence spectroscopy of biomolecules,” Opt. Lasers Eng. 45, 444-449 (2007).
[CrossRef]

Opt. Lett. (2)

Proc. SPIE (1)

D. Kracht, S. Hahn, R. Huss, J. Neumann, R. Wilhelm, M. Frede, and P. Peuser, “High efficiency, passively Q-switched Nd:YAG MOPA for spaceborne laser-altimetry,” Proc. SPIE 6100, 610021 (2006).
[CrossRef]

Spectrochim. Acta Part B (1)

I. Horn, D. Günther, and M. Guillong, “Evaluation and design of a solid-state 193 nm OPO-Nd:YAG laser ablation system,” Spectrochim. Acta Part B 58, 1837-1846 (2003).
[CrossRef]

Other (2)

D. M. Lubman, ed., Lasers and Mass Spectrometry (Oxford U. Press, New York, 1990).

P. Misra and M. A. Dubinskii, eds., Ultraviolet Spectroscopy and UV Lasers, Vol. 30 of Practical Spectroscopy Series (CRC Press, 2002).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Setup of the laser system on a 45 cm × 45 cm breadboard. DM, diode laser module; F, optical fiber; M1, partially reflecting 45 ° mirror; M2, highly reflecting 45 ° mirror; LS1–LS3, lens systems; D, diaphragm; M3, pump mirror of laser oscillator; QS, passive Q-switch crystal; P, polarizer; OC, outcoupling laser mirror; λ / 2 , half-wave plate; FI, Faraday isolator; L, lens; M4, pump mirror of amplifier; MA, mirror configuration of amplifier; T1–T3, telescopes; SHG, crystal for second harmonic generation; THG, crystal for third harmonic generation; M5, M6, dichroic mirrors; BD, beam dump; DL, delay line; M7–M11, mirrors of OPO setup; KTP, OPO crystal; BBO, mixing crystal.

Fig. 2
Fig. 2

Pulse energy of the Nd:YAG MOPA as a function of the total pump energy.

Fig. 3
Fig. 3

Pulse energy of the Nd:YAG MOPA as a function of the diode temperature at a constant diode current of 80 A .

Fig. 4
Fig. 4

Pulse energy of the UV-OPO, measured at a wavelength of 256 nm , as a function of the pump energy of the Nd:YAG MOPA. The straight line is from a linear data fit.

Fig. 5
Fig. 5

Pulse energy of the UV-OPO as a result of a continuous wavelength tuning.

Fig. 6
Fig. 6

Results from measurements of the beam profiles of the UV OPO (left) and of the Nd:YAG MOPA (right).

Metrics