Abstract

We describe a widely tunable coupled-cavity semiconductor laser with a nearly continuous tuning capability of 100nm. A below threshold model for coupled-cavity devices using a transfer matrix approach that takes into account the tilt of the facets forming the gap between the coupled sections was developed and is presented. Nonlinear fits of the below-threshold spectra to the model were used to extract device parameters. These fits and parameters were then used to understand the operation of the devices and the direction to take to improve the performance of the devices. It is observed that for facet angles 7°, a two-section coupled-cavity device works like an injection-locked laser, while for angles 4°, the sections work as a truly-coupled system.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. A. Phelan, G. Wei-Hua, L. Qiaoyin, D. Byrne, B. Roycroft, P. Lambkin, B. Corbett, F. Smyth, L. P. Barry, B. Kelly, J. O'Gorman, and J. F. Donegan, “A novel two-section tunable discrete mode Fabry-Perot laser exhibiting nanosecond wavelength switching,” IEEE J. Quantum Electron. 44, 331-337(2008).
    [CrossRef]
  2. M. Muller, A. Bauer, T. Lehnherdt, and A. Forchel, “Widely tunable photonic crystal coupled cavity lasers on GaSb,” IEEE Photonics Technol. Lett. 20, 1100-1102 (2008).
    [CrossRef]
  3. M. Muller, H. Scherer, T. Lehnhardt, K. Rossner, M. Hummer, R. Werner, and A. Forchel, “Widely tunable coupled cavity lasers at 1.9 μm on GaSb,” IEEE Photonics Technol. Lett. 19, 592-594 (2007).
    [CrossRef]
  4. S. Wang, “Principles of distributed feedback and distributed Bragg reflector lasers,” IEEE J. Quantum Electron. 10, 413-427 (1974).
    [CrossRef]
  5. D. T. Cassidy and M. J. Hamp, “Diffractive optical element used in an external feedback configuration to tune the wavelength of uncoated Fabry-Perot diode lasers,” J. Mod. Opt. 46, 1071-1078 (1999).
  6. W. T. Tsang, R. A. Olsson, R. A. Logan, and J. A. Ditzenberger, “Single longitudinal mode performance characteristics of cleaved-coupled-cavity lasers,” Appl. Phys. Lett. 43, 1003-1005 (1983).
    [CrossRef]
  7. K. J. Ebeling, L. A. Coldren, B. I. Miller, and J. A. Rentsheller, “Single mode operation of coupled-cavity GaInAsP/InP semiconductor lasers,” Appl. Phys. Lett. 42, 6-8 (1983).
    [CrossRef]
  8. W. T. Tsang, R. A. Olsson, and R. A. Logan, “1.5 μm wavelength GaInAsP C3 lasers: single frequency operation and wideband frequency tuning,” Electron. Lett. 19, 488-490(1983).
    [CrossRef]
  9. V. K. Kononeko, L. S. Manak, and S. V. Nalivko, “Design and characteristics of widely tunable quantum-well lasers,” Spectrochimica Acta A. 55, 2091-2096 (1999).
    [CrossRef]
  10. S. C. Woodworth, D. T. Cassidy, and M. J. Hamp, “Experimental analysis of a broadly tunable InGaAsP laser with compositionally varied quantum wells,” IEEE J. Quantum Electron. 39, 426-430 (2003).
    [CrossRef]
  11. L. A. Coldren and T. L. Koch, “Analysis and design of coupled-cavity lasers--part I: threshold gain analysis and design guidelines,” IEEE J. Quantum Electron. 20, 659-670(1984).
    [CrossRef]
  12. H. K. Choi, “Analysis of two-section coupled-cavity semiconductor lasers,” IEEE J. Quantum Electron. 20, 385-393(1984).
    [CrossRef]
  13. W. T. Tsang, “The cleaved-couple-cavity (C3) laser,” in Semiconductor and Semimetals, W. T. Tsang, ed. (Academic, 1985), Vol. 22, Chap. 5.
  14. R. Lang, “Injection locking properties of a semiconductor laser,” IEEE J. Quantum Electron. 18, 976-983 (1982).
    [CrossRef]
  15. T. Fukushima and T. Sakamoto, “Optical signal inverter using injection locking of coupled semiconductor lasers,” Jpn. J. Appl. Phys 36, L280 (1997).
    [CrossRef]
  16. L. A. Coldren, K. Furya, B. I. Miller, and J. A. Rentsheller, “Etched mirror and groovecoupled GaInAsP/InP laser devices for integrated optics,” IEEE J. Quantum Electron. 18, 1679-1688 (1982).
    [CrossRef]
  17. L. A. Coldren, B. I. Miller, K. Iga, and J. A. Rentsheller, “Monolithic two section GaInAsP/InP active-optical-resonator devices formed by reactive ion etching,” Appl. Phys. Lett. 38 (5), 315-317 (1981).
    [CrossRef]
  18. S. Bouchoule, S. Azouigui, S. Guilet, G. Patriarche, L. Largeau, A. Martinez, L. Gratiet, Lemaitre, and F. Lelarge, “Anisotropic and smooth inductively coupled plasma etching of III-V laser waveguides using HBr-O2 chemistry,” J. Electrochem. Soc. 155, H778 (2008).
    [CrossRef]
  19. S. Rubanov and P. R. Munroe, “Damage in III-V compounds during focused ion beam milling,” Microsc. Microanal. 11, 446-455 (2005).
    [CrossRef]
  20. Q. Ren, B. Zhang, J. Xu, Z. Zhang, Y. Jin, and D. Yu Qian, “Etched facet and semiconductor/air DBR facet of a AlGaInP laser diode prepared by focused ion beam milling,” Solid State Commun. 130, 433-436 (2004).
    [CrossRef]
  21. F. A. Khan, L. Zhou, A. T. Ping, and I. Adeside, “Inductively coupled reactive ion etching of AlxGa1−xN for application in laser facet formation,” J. Vac. Sci. Tech. B 172750-2754(1999).
    [CrossRef]
  22. J. Wang and D. T. Cassidy, “Broadly tunable, short external cavity diode laser for optical coherence tomography,” IET Optoelectron. 2, 46-54 (2008).
    [CrossRef]
  23. M. J. Hamp and D. T. Cassidy, “Critical design parameters for engineering broadly tunable asymmetric multiple quantum-well lasers,” IEEE J. Quantum Electron. 36, 978-983 (2000).
    [CrossRef]
  24. C. Marinelli, M. Borodovsky, L. J. Sergeant, M. Gioannini, J. M. Rorison, R. V. Penty, I. H. White, P. J. Heard, M. Benyoucef, M. Kuball, G. Hasnain, T. Takeuchi, and R. P. Schneider, “Design and performance analysis of deep-etch air/nitride distributed Bragg reflector gratings for AlInGaN laser diodes,” Appl. Phys. Lett. 79, 4076-4078 (2001).
    [CrossRef]
  25. L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits, Wiley Series in Microwave and Photonic Engineering, K.Chang ed. (Wiley, 1995), Chap. 3.
  26. G. B. Morrison and D. T. Cassidy, “A probability-amplitude transfer matrix model for distributed feedback laser structures,” IEEE J. Quantum Electron. 36, 633-640(2000).
    [CrossRef]
  27. D. T. Cassidy, “Analytic description of a homogeneously broadened injection laser,” IEEE J. Quantum Electron. 20, 913-918 (1984).
    [CrossRef]
  28. W. B. Joyce and B. C. Deloach, “Alignment of Gaussian beams,” Appl. Opt. 23, 4187-4196 (1984).
    [CrossRef] [PubMed]
  29. P. R. Bevington and D. K. Robinson, “Data Reduction and Error Analysis for Physical Sciences,” 2nd ed. (McGraw-Hill, 1969), pp. 161-164.

2008 (4)

R. A. Phelan, G. Wei-Hua, L. Qiaoyin, D. Byrne, B. Roycroft, P. Lambkin, B. Corbett, F. Smyth, L. P. Barry, B. Kelly, J. O'Gorman, and J. F. Donegan, “A novel two-section tunable discrete mode Fabry-Perot laser exhibiting nanosecond wavelength switching,” IEEE J. Quantum Electron. 44, 331-337(2008).
[CrossRef]

M. Muller, A. Bauer, T. Lehnherdt, and A. Forchel, “Widely tunable photonic crystal coupled cavity lasers on GaSb,” IEEE Photonics Technol. Lett. 20, 1100-1102 (2008).
[CrossRef]

S. Bouchoule, S. Azouigui, S. Guilet, G. Patriarche, L. Largeau, A. Martinez, L. Gratiet, Lemaitre, and F. Lelarge, “Anisotropic and smooth inductively coupled plasma etching of III-V laser waveguides using HBr-O2 chemistry,” J. Electrochem. Soc. 155, H778 (2008).
[CrossRef]

J. Wang and D. T. Cassidy, “Broadly tunable, short external cavity diode laser for optical coherence tomography,” IET Optoelectron. 2, 46-54 (2008).
[CrossRef]

2007 (1)

M. Muller, H. Scherer, T. Lehnhardt, K. Rossner, M. Hummer, R. Werner, and A. Forchel, “Widely tunable coupled cavity lasers at 1.9 μm on GaSb,” IEEE Photonics Technol. Lett. 19, 592-594 (2007).
[CrossRef]

2005 (1)

S. Rubanov and P. R. Munroe, “Damage in III-V compounds during focused ion beam milling,” Microsc. Microanal. 11, 446-455 (2005).
[CrossRef]

2004 (1)

Q. Ren, B. Zhang, J. Xu, Z. Zhang, Y. Jin, and D. Yu Qian, “Etched facet and semiconductor/air DBR facet of a AlGaInP laser diode prepared by focused ion beam milling,” Solid State Commun. 130, 433-436 (2004).
[CrossRef]

2003 (1)

S. C. Woodworth, D. T. Cassidy, and M. J. Hamp, “Experimental analysis of a broadly tunable InGaAsP laser with compositionally varied quantum wells,” IEEE J. Quantum Electron. 39, 426-430 (2003).
[CrossRef]

2001 (1)

C. Marinelli, M. Borodovsky, L. J. Sergeant, M. Gioannini, J. M. Rorison, R. V. Penty, I. H. White, P. J. Heard, M. Benyoucef, M. Kuball, G. Hasnain, T. Takeuchi, and R. P. Schneider, “Design and performance analysis of deep-etch air/nitride distributed Bragg reflector gratings for AlInGaN laser diodes,” Appl. Phys. Lett. 79, 4076-4078 (2001).
[CrossRef]

2000 (2)

G. B. Morrison and D. T. Cassidy, “A probability-amplitude transfer matrix model for distributed feedback laser structures,” IEEE J. Quantum Electron. 36, 633-640(2000).
[CrossRef]

M. J. Hamp and D. T. Cassidy, “Critical design parameters for engineering broadly tunable asymmetric multiple quantum-well lasers,” IEEE J. Quantum Electron. 36, 978-983 (2000).
[CrossRef]

1999 (3)

V. K. Kononeko, L. S. Manak, and S. V. Nalivko, “Design and characteristics of widely tunable quantum-well lasers,” Spectrochimica Acta A. 55, 2091-2096 (1999).
[CrossRef]

F. A. Khan, L. Zhou, A. T. Ping, and I. Adeside, “Inductively coupled reactive ion etching of AlxGa1−xN for application in laser facet formation,” J. Vac. Sci. Tech. B 172750-2754(1999).
[CrossRef]

D. T. Cassidy and M. J. Hamp, “Diffractive optical element used in an external feedback configuration to tune the wavelength of uncoated Fabry-Perot diode lasers,” J. Mod. Opt. 46, 1071-1078 (1999).

1997 (1)

T. Fukushima and T. Sakamoto, “Optical signal inverter using injection locking of coupled semiconductor lasers,” Jpn. J. Appl. Phys 36, L280 (1997).
[CrossRef]

1984 (4)

D. T. Cassidy, “Analytic description of a homogeneously broadened injection laser,” IEEE J. Quantum Electron. 20, 913-918 (1984).
[CrossRef]

W. B. Joyce and B. C. Deloach, “Alignment of Gaussian beams,” Appl. Opt. 23, 4187-4196 (1984).
[CrossRef] [PubMed]

L. A. Coldren and T. L. Koch, “Analysis and design of coupled-cavity lasers--part I: threshold gain analysis and design guidelines,” IEEE J. Quantum Electron. 20, 659-670(1984).
[CrossRef]

H. K. Choi, “Analysis of two-section coupled-cavity semiconductor lasers,” IEEE J. Quantum Electron. 20, 385-393(1984).
[CrossRef]

1983 (3)

W. T. Tsang, R. A. Olsson, R. A. Logan, and J. A. Ditzenberger, “Single longitudinal mode performance characteristics of cleaved-coupled-cavity lasers,” Appl. Phys. Lett. 43, 1003-1005 (1983).
[CrossRef]

K. J. Ebeling, L. A. Coldren, B. I. Miller, and J. A. Rentsheller, “Single mode operation of coupled-cavity GaInAsP/InP semiconductor lasers,” Appl. Phys. Lett. 42, 6-8 (1983).
[CrossRef]

W. T. Tsang, R. A. Olsson, and R. A. Logan, “1.5 μm wavelength GaInAsP C3 lasers: single frequency operation and wideband frequency tuning,” Electron. Lett. 19, 488-490(1983).
[CrossRef]

1982 (2)

R. Lang, “Injection locking properties of a semiconductor laser,” IEEE J. Quantum Electron. 18, 976-983 (1982).
[CrossRef]

L. A. Coldren, K. Furya, B. I. Miller, and J. A. Rentsheller, “Etched mirror and groovecoupled GaInAsP/InP laser devices for integrated optics,” IEEE J. Quantum Electron. 18, 1679-1688 (1982).
[CrossRef]

1981 (1)

L. A. Coldren, B. I. Miller, K. Iga, and J. A. Rentsheller, “Monolithic two section GaInAsP/InP active-optical-resonator devices formed by reactive ion etching,” Appl. Phys. Lett. 38 (5), 315-317 (1981).
[CrossRef]

1974 (1)

S. Wang, “Principles of distributed feedback and distributed Bragg reflector lasers,” IEEE J. Quantum Electron. 10, 413-427 (1974).
[CrossRef]

Adeside, I.

F. A. Khan, L. Zhou, A. T. Ping, and I. Adeside, “Inductively coupled reactive ion etching of AlxGa1−xN for application in laser facet formation,” J. Vac. Sci. Tech. B 172750-2754(1999).
[CrossRef]

Azouigui, S.

S. Bouchoule, S. Azouigui, S. Guilet, G. Patriarche, L. Largeau, A. Martinez, L. Gratiet, Lemaitre, and F. Lelarge, “Anisotropic and smooth inductively coupled plasma etching of III-V laser waveguides using HBr-O2 chemistry,” J. Electrochem. Soc. 155, H778 (2008).
[CrossRef]

Barry, L. P.

R. A. Phelan, G. Wei-Hua, L. Qiaoyin, D. Byrne, B. Roycroft, P. Lambkin, B. Corbett, F. Smyth, L. P. Barry, B. Kelly, J. O'Gorman, and J. F. Donegan, “A novel two-section tunable discrete mode Fabry-Perot laser exhibiting nanosecond wavelength switching,” IEEE J. Quantum Electron. 44, 331-337(2008).
[CrossRef]

Bauer, A.

M. Muller, A. Bauer, T. Lehnherdt, and A. Forchel, “Widely tunable photonic crystal coupled cavity lasers on GaSb,” IEEE Photonics Technol. Lett. 20, 1100-1102 (2008).
[CrossRef]

Benyoucef, M.

C. Marinelli, M. Borodovsky, L. J. Sergeant, M. Gioannini, J. M. Rorison, R. V. Penty, I. H. White, P. J. Heard, M. Benyoucef, M. Kuball, G. Hasnain, T. Takeuchi, and R. P. Schneider, “Design and performance analysis of deep-etch air/nitride distributed Bragg reflector gratings for AlInGaN laser diodes,” Appl. Phys. Lett. 79, 4076-4078 (2001).
[CrossRef]

Bevington, P. R.

P. R. Bevington and D. K. Robinson, “Data Reduction and Error Analysis for Physical Sciences,” 2nd ed. (McGraw-Hill, 1969), pp. 161-164.

Borodovsky, M.

C. Marinelli, M. Borodovsky, L. J. Sergeant, M. Gioannini, J. M. Rorison, R. V. Penty, I. H. White, P. J. Heard, M. Benyoucef, M. Kuball, G. Hasnain, T. Takeuchi, and R. P. Schneider, “Design and performance analysis of deep-etch air/nitride distributed Bragg reflector gratings for AlInGaN laser diodes,” Appl. Phys. Lett. 79, 4076-4078 (2001).
[CrossRef]

Bouchoule, S.

S. Bouchoule, S. Azouigui, S. Guilet, G. Patriarche, L. Largeau, A. Martinez, L. Gratiet, Lemaitre, and F. Lelarge, “Anisotropic and smooth inductively coupled plasma etching of III-V laser waveguides using HBr-O2 chemistry,” J. Electrochem. Soc. 155, H778 (2008).
[CrossRef]

Byrne, D.

R. A. Phelan, G. Wei-Hua, L. Qiaoyin, D. Byrne, B. Roycroft, P. Lambkin, B. Corbett, F. Smyth, L. P. Barry, B. Kelly, J. O'Gorman, and J. F. Donegan, “A novel two-section tunable discrete mode Fabry-Perot laser exhibiting nanosecond wavelength switching,” IEEE J. Quantum Electron. 44, 331-337(2008).
[CrossRef]

Cassidy, D. T.

J. Wang and D. T. Cassidy, “Broadly tunable, short external cavity diode laser for optical coherence tomography,” IET Optoelectron. 2, 46-54 (2008).
[CrossRef]

S. C. Woodworth, D. T. Cassidy, and M. J. Hamp, “Experimental analysis of a broadly tunable InGaAsP laser with compositionally varied quantum wells,” IEEE J. Quantum Electron. 39, 426-430 (2003).
[CrossRef]

M. J. Hamp and D. T. Cassidy, “Critical design parameters for engineering broadly tunable asymmetric multiple quantum-well lasers,” IEEE J. Quantum Electron. 36, 978-983 (2000).
[CrossRef]

G. B. Morrison and D. T. Cassidy, “A probability-amplitude transfer matrix model for distributed feedback laser structures,” IEEE J. Quantum Electron. 36, 633-640(2000).
[CrossRef]

D. T. Cassidy and M. J. Hamp, “Diffractive optical element used in an external feedback configuration to tune the wavelength of uncoated Fabry-Perot diode lasers,” J. Mod. Opt. 46, 1071-1078 (1999).

D. T. Cassidy, “Analytic description of a homogeneously broadened injection laser,” IEEE J. Quantum Electron. 20, 913-918 (1984).
[CrossRef]

Choi, H. K.

H. K. Choi, “Analysis of two-section coupled-cavity semiconductor lasers,” IEEE J. Quantum Electron. 20, 385-393(1984).
[CrossRef]

Coldren, L. A.

L. A. Coldren and T. L. Koch, “Analysis and design of coupled-cavity lasers--part I: threshold gain analysis and design guidelines,” IEEE J. Quantum Electron. 20, 659-670(1984).
[CrossRef]

K. J. Ebeling, L. A. Coldren, B. I. Miller, and J. A. Rentsheller, “Single mode operation of coupled-cavity GaInAsP/InP semiconductor lasers,” Appl. Phys. Lett. 42, 6-8 (1983).
[CrossRef]

L. A. Coldren, K. Furya, B. I. Miller, and J. A. Rentsheller, “Etched mirror and groovecoupled GaInAsP/InP laser devices for integrated optics,” IEEE J. Quantum Electron. 18, 1679-1688 (1982).
[CrossRef]

L. A. Coldren, B. I. Miller, K. Iga, and J. A. Rentsheller, “Monolithic two section GaInAsP/InP active-optical-resonator devices formed by reactive ion etching,” Appl. Phys. Lett. 38 (5), 315-317 (1981).
[CrossRef]

L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits, Wiley Series in Microwave and Photonic Engineering, K.Chang ed. (Wiley, 1995), Chap. 3.

Corbett, B.

R. A. Phelan, G. Wei-Hua, L. Qiaoyin, D. Byrne, B. Roycroft, P. Lambkin, B. Corbett, F. Smyth, L. P. Barry, B. Kelly, J. O'Gorman, and J. F. Donegan, “A novel two-section tunable discrete mode Fabry-Perot laser exhibiting nanosecond wavelength switching,” IEEE J. Quantum Electron. 44, 331-337(2008).
[CrossRef]

Corzine, S. W.

L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits, Wiley Series in Microwave and Photonic Engineering, K.Chang ed. (Wiley, 1995), Chap. 3.

Deloach, B. C.

Ditzenberger, J. A.

W. T. Tsang, R. A. Olsson, R. A. Logan, and J. A. Ditzenberger, “Single longitudinal mode performance characteristics of cleaved-coupled-cavity lasers,” Appl. Phys. Lett. 43, 1003-1005 (1983).
[CrossRef]

Donegan, J. F.

R. A. Phelan, G. Wei-Hua, L. Qiaoyin, D. Byrne, B. Roycroft, P. Lambkin, B. Corbett, F. Smyth, L. P. Barry, B. Kelly, J. O'Gorman, and J. F. Donegan, “A novel two-section tunable discrete mode Fabry-Perot laser exhibiting nanosecond wavelength switching,” IEEE J. Quantum Electron. 44, 331-337(2008).
[CrossRef]

Ebeling, K. J.

K. J. Ebeling, L. A. Coldren, B. I. Miller, and J. A. Rentsheller, “Single mode operation of coupled-cavity GaInAsP/InP semiconductor lasers,” Appl. Phys. Lett. 42, 6-8 (1983).
[CrossRef]

Forchel, A.

M. Muller, A. Bauer, T. Lehnherdt, and A. Forchel, “Widely tunable photonic crystal coupled cavity lasers on GaSb,” IEEE Photonics Technol. Lett. 20, 1100-1102 (2008).
[CrossRef]

M. Muller, H. Scherer, T. Lehnhardt, K. Rossner, M. Hummer, R. Werner, and A. Forchel, “Widely tunable coupled cavity lasers at 1.9 μm on GaSb,” IEEE Photonics Technol. Lett. 19, 592-594 (2007).
[CrossRef]

Fukushima, T.

T. Fukushima and T. Sakamoto, “Optical signal inverter using injection locking of coupled semiconductor lasers,” Jpn. J. Appl. Phys 36, L280 (1997).
[CrossRef]

Furya, K.

L. A. Coldren, K. Furya, B. I. Miller, and J. A. Rentsheller, “Etched mirror and groovecoupled GaInAsP/InP laser devices for integrated optics,” IEEE J. Quantum Electron. 18, 1679-1688 (1982).
[CrossRef]

Gioannini, M.

C. Marinelli, M. Borodovsky, L. J. Sergeant, M. Gioannini, J. M. Rorison, R. V. Penty, I. H. White, P. J. Heard, M. Benyoucef, M. Kuball, G. Hasnain, T. Takeuchi, and R. P. Schneider, “Design and performance analysis of deep-etch air/nitride distributed Bragg reflector gratings for AlInGaN laser diodes,” Appl. Phys. Lett. 79, 4076-4078 (2001).
[CrossRef]

Gratiet, L.

S. Bouchoule, S. Azouigui, S. Guilet, G. Patriarche, L. Largeau, A. Martinez, L. Gratiet, Lemaitre, and F. Lelarge, “Anisotropic and smooth inductively coupled plasma etching of III-V laser waveguides using HBr-O2 chemistry,” J. Electrochem. Soc. 155, H778 (2008).
[CrossRef]

Guilet, S.

S. Bouchoule, S. Azouigui, S. Guilet, G. Patriarche, L. Largeau, A. Martinez, L. Gratiet, Lemaitre, and F. Lelarge, “Anisotropic and smooth inductively coupled plasma etching of III-V laser waveguides using HBr-O2 chemistry,” J. Electrochem. Soc. 155, H778 (2008).
[CrossRef]

Hamp, M. J.

S. C. Woodworth, D. T. Cassidy, and M. J. Hamp, “Experimental analysis of a broadly tunable InGaAsP laser with compositionally varied quantum wells,” IEEE J. Quantum Electron. 39, 426-430 (2003).
[CrossRef]

M. J. Hamp and D. T. Cassidy, “Critical design parameters for engineering broadly tunable asymmetric multiple quantum-well lasers,” IEEE J. Quantum Electron. 36, 978-983 (2000).
[CrossRef]

D. T. Cassidy and M. J. Hamp, “Diffractive optical element used in an external feedback configuration to tune the wavelength of uncoated Fabry-Perot diode lasers,” J. Mod. Opt. 46, 1071-1078 (1999).

Hasnain, G.

C. Marinelli, M. Borodovsky, L. J. Sergeant, M. Gioannini, J. M. Rorison, R. V. Penty, I. H. White, P. J. Heard, M. Benyoucef, M. Kuball, G. Hasnain, T. Takeuchi, and R. P. Schneider, “Design and performance analysis of deep-etch air/nitride distributed Bragg reflector gratings for AlInGaN laser diodes,” Appl. Phys. Lett. 79, 4076-4078 (2001).
[CrossRef]

Heard, P. J.

C. Marinelli, M. Borodovsky, L. J. Sergeant, M. Gioannini, J. M. Rorison, R. V. Penty, I. H. White, P. J. Heard, M. Benyoucef, M. Kuball, G. Hasnain, T. Takeuchi, and R. P. Schneider, “Design and performance analysis of deep-etch air/nitride distributed Bragg reflector gratings for AlInGaN laser diodes,” Appl. Phys. Lett. 79, 4076-4078 (2001).
[CrossRef]

Hummer, M.

M. Muller, H. Scherer, T. Lehnhardt, K. Rossner, M. Hummer, R. Werner, and A. Forchel, “Widely tunable coupled cavity lasers at 1.9 μm on GaSb,” IEEE Photonics Technol. Lett. 19, 592-594 (2007).
[CrossRef]

Iga, K.

L. A. Coldren, B. I. Miller, K. Iga, and J. A. Rentsheller, “Monolithic two section GaInAsP/InP active-optical-resonator devices formed by reactive ion etching,” Appl. Phys. Lett. 38 (5), 315-317 (1981).
[CrossRef]

Jin, Y.

Q. Ren, B. Zhang, J. Xu, Z. Zhang, Y. Jin, and D. Yu Qian, “Etched facet and semiconductor/air DBR facet of a AlGaInP laser diode prepared by focused ion beam milling,” Solid State Commun. 130, 433-436 (2004).
[CrossRef]

Joyce, W. B.

Kelly, B.

R. A. Phelan, G. Wei-Hua, L. Qiaoyin, D. Byrne, B. Roycroft, P. Lambkin, B. Corbett, F. Smyth, L. P. Barry, B. Kelly, J. O'Gorman, and J. F. Donegan, “A novel two-section tunable discrete mode Fabry-Perot laser exhibiting nanosecond wavelength switching,” IEEE J. Quantum Electron. 44, 331-337(2008).
[CrossRef]

Khan, F. A.

F. A. Khan, L. Zhou, A. T. Ping, and I. Adeside, “Inductively coupled reactive ion etching of AlxGa1−xN for application in laser facet formation,” J. Vac. Sci. Tech. B 172750-2754(1999).
[CrossRef]

Koch, T. L.

L. A. Coldren and T. L. Koch, “Analysis and design of coupled-cavity lasers--part I: threshold gain analysis and design guidelines,” IEEE J. Quantum Electron. 20, 659-670(1984).
[CrossRef]

Kononeko, V. K.

V. K. Kononeko, L. S. Manak, and S. V. Nalivko, “Design and characteristics of widely tunable quantum-well lasers,” Spectrochimica Acta A. 55, 2091-2096 (1999).
[CrossRef]

Kuball, M.

C. Marinelli, M. Borodovsky, L. J. Sergeant, M. Gioannini, J. M. Rorison, R. V. Penty, I. H. White, P. J. Heard, M. Benyoucef, M. Kuball, G. Hasnain, T. Takeuchi, and R. P. Schneider, “Design and performance analysis of deep-etch air/nitride distributed Bragg reflector gratings for AlInGaN laser diodes,” Appl. Phys. Lett. 79, 4076-4078 (2001).
[CrossRef]

Lambkin, P.

R. A. Phelan, G. Wei-Hua, L. Qiaoyin, D. Byrne, B. Roycroft, P. Lambkin, B. Corbett, F. Smyth, L. P. Barry, B. Kelly, J. O'Gorman, and J. F. Donegan, “A novel two-section tunable discrete mode Fabry-Perot laser exhibiting nanosecond wavelength switching,” IEEE J. Quantum Electron. 44, 331-337(2008).
[CrossRef]

Lang, R.

R. Lang, “Injection locking properties of a semiconductor laser,” IEEE J. Quantum Electron. 18, 976-983 (1982).
[CrossRef]

Largeau, L.

S. Bouchoule, S. Azouigui, S. Guilet, G. Patriarche, L. Largeau, A. Martinez, L. Gratiet, Lemaitre, and F. Lelarge, “Anisotropic and smooth inductively coupled plasma etching of III-V laser waveguides using HBr-O2 chemistry,” J. Electrochem. Soc. 155, H778 (2008).
[CrossRef]

Lehnhardt, T.

M. Muller, H. Scherer, T. Lehnhardt, K. Rossner, M. Hummer, R. Werner, and A. Forchel, “Widely tunable coupled cavity lasers at 1.9 μm on GaSb,” IEEE Photonics Technol. Lett. 19, 592-594 (2007).
[CrossRef]

Lehnherdt, T.

M. Muller, A. Bauer, T. Lehnherdt, and A. Forchel, “Widely tunable photonic crystal coupled cavity lasers on GaSb,” IEEE Photonics Technol. Lett. 20, 1100-1102 (2008).
[CrossRef]

Lelarge, F.

S. Bouchoule, S. Azouigui, S. Guilet, G. Patriarche, L. Largeau, A. Martinez, L. Gratiet, Lemaitre, and F. Lelarge, “Anisotropic and smooth inductively coupled plasma etching of III-V laser waveguides using HBr-O2 chemistry,” J. Electrochem. Soc. 155, H778 (2008).
[CrossRef]

Lemaitre,

S. Bouchoule, S. Azouigui, S. Guilet, G. Patriarche, L. Largeau, A. Martinez, L. Gratiet, Lemaitre, and F. Lelarge, “Anisotropic and smooth inductively coupled plasma etching of III-V laser waveguides using HBr-O2 chemistry,” J. Electrochem. Soc. 155, H778 (2008).
[CrossRef]

Logan, R. A.

W. T. Tsang, R. A. Olsson, and R. A. Logan, “1.5 μm wavelength GaInAsP C3 lasers: single frequency operation and wideband frequency tuning,” Electron. Lett. 19, 488-490(1983).
[CrossRef]

W. T. Tsang, R. A. Olsson, R. A. Logan, and J. A. Ditzenberger, “Single longitudinal mode performance characteristics of cleaved-coupled-cavity lasers,” Appl. Phys. Lett. 43, 1003-1005 (1983).
[CrossRef]

Manak, L. S.

V. K. Kononeko, L. S. Manak, and S. V. Nalivko, “Design and characteristics of widely tunable quantum-well lasers,” Spectrochimica Acta A. 55, 2091-2096 (1999).
[CrossRef]

Marinelli, C.

C. Marinelli, M. Borodovsky, L. J. Sergeant, M. Gioannini, J. M. Rorison, R. V. Penty, I. H. White, P. J. Heard, M. Benyoucef, M. Kuball, G. Hasnain, T. Takeuchi, and R. P. Schneider, “Design and performance analysis of deep-etch air/nitride distributed Bragg reflector gratings for AlInGaN laser diodes,” Appl. Phys. Lett. 79, 4076-4078 (2001).
[CrossRef]

Martinez, A.

S. Bouchoule, S. Azouigui, S. Guilet, G. Patriarche, L. Largeau, A. Martinez, L. Gratiet, Lemaitre, and F. Lelarge, “Anisotropic and smooth inductively coupled plasma etching of III-V laser waveguides using HBr-O2 chemistry,” J. Electrochem. Soc. 155, H778 (2008).
[CrossRef]

Miller, B. I.

K. J. Ebeling, L. A. Coldren, B. I. Miller, and J. A. Rentsheller, “Single mode operation of coupled-cavity GaInAsP/InP semiconductor lasers,” Appl. Phys. Lett. 42, 6-8 (1983).
[CrossRef]

L. A. Coldren, K. Furya, B. I. Miller, and J. A. Rentsheller, “Etched mirror and groovecoupled GaInAsP/InP laser devices for integrated optics,” IEEE J. Quantum Electron. 18, 1679-1688 (1982).
[CrossRef]

L. A. Coldren, B. I. Miller, K. Iga, and J. A. Rentsheller, “Monolithic two section GaInAsP/InP active-optical-resonator devices formed by reactive ion etching,” Appl. Phys. Lett. 38 (5), 315-317 (1981).
[CrossRef]

Morrison, G. B.

G. B. Morrison and D. T. Cassidy, “A probability-amplitude transfer matrix model for distributed feedback laser structures,” IEEE J. Quantum Electron. 36, 633-640(2000).
[CrossRef]

Muller, M.

M. Muller, A. Bauer, T. Lehnherdt, and A. Forchel, “Widely tunable photonic crystal coupled cavity lasers on GaSb,” IEEE Photonics Technol. Lett. 20, 1100-1102 (2008).
[CrossRef]

M. Muller, H. Scherer, T. Lehnhardt, K. Rossner, M. Hummer, R. Werner, and A. Forchel, “Widely tunable coupled cavity lasers at 1.9 μm on GaSb,” IEEE Photonics Technol. Lett. 19, 592-594 (2007).
[CrossRef]

Munroe, P. R.

S. Rubanov and P. R. Munroe, “Damage in III-V compounds during focused ion beam milling,” Microsc. Microanal. 11, 446-455 (2005).
[CrossRef]

Nalivko, S. V.

V. K. Kononeko, L. S. Manak, and S. V. Nalivko, “Design and characteristics of widely tunable quantum-well lasers,” Spectrochimica Acta A. 55, 2091-2096 (1999).
[CrossRef]

O'Gorman, J.

R. A. Phelan, G. Wei-Hua, L. Qiaoyin, D. Byrne, B. Roycroft, P. Lambkin, B. Corbett, F. Smyth, L. P. Barry, B. Kelly, J. O'Gorman, and J. F. Donegan, “A novel two-section tunable discrete mode Fabry-Perot laser exhibiting nanosecond wavelength switching,” IEEE J. Quantum Electron. 44, 331-337(2008).
[CrossRef]

Olsson, R. A.

W. T. Tsang, R. A. Olsson, R. A. Logan, and J. A. Ditzenberger, “Single longitudinal mode performance characteristics of cleaved-coupled-cavity lasers,” Appl. Phys. Lett. 43, 1003-1005 (1983).
[CrossRef]

W. T. Tsang, R. A. Olsson, and R. A. Logan, “1.5 μm wavelength GaInAsP C3 lasers: single frequency operation and wideband frequency tuning,” Electron. Lett. 19, 488-490(1983).
[CrossRef]

Patriarche, G.

S. Bouchoule, S. Azouigui, S. Guilet, G. Patriarche, L. Largeau, A. Martinez, L. Gratiet, Lemaitre, and F. Lelarge, “Anisotropic and smooth inductively coupled plasma etching of III-V laser waveguides using HBr-O2 chemistry,” J. Electrochem. Soc. 155, H778 (2008).
[CrossRef]

Penty, R. V.

C. Marinelli, M. Borodovsky, L. J. Sergeant, M. Gioannini, J. M. Rorison, R. V. Penty, I. H. White, P. J. Heard, M. Benyoucef, M. Kuball, G. Hasnain, T. Takeuchi, and R. P. Schneider, “Design and performance analysis of deep-etch air/nitride distributed Bragg reflector gratings for AlInGaN laser diodes,” Appl. Phys. Lett. 79, 4076-4078 (2001).
[CrossRef]

Phelan, R. A.

R. A. Phelan, G. Wei-Hua, L. Qiaoyin, D. Byrne, B. Roycroft, P. Lambkin, B. Corbett, F. Smyth, L. P. Barry, B. Kelly, J. O'Gorman, and J. F. Donegan, “A novel two-section tunable discrete mode Fabry-Perot laser exhibiting nanosecond wavelength switching,” IEEE J. Quantum Electron. 44, 331-337(2008).
[CrossRef]

Ping, A. T.

F. A. Khan, L. Zhou, A. T. Ping, and I. Adeside, “Inductively coupled reactive ion etching of AlxGa1−xN for application in laser facet formation,” J. Vac. Sci. Tech. B 172750-2754(1999).
[CrossRef]

Qian, D. Yu

Q. Ren, B. Zhang, J. Xu, Z. Zhang, Y. Jin, and D. Yu Qian, “Etched facet and semiconductor/air DBR facet of a AlGaInP laser diode prepared by focused ion beam milling,” Solid State Commun. 130, 433-436 (2004).
[CrossRef]

Qiaoyin, L.

R. A. Phelan, G. Wei-Hua, L. Qiaoyin, D. Byrne, B. Roycroft, P. Lambkin, B. Corbett, F. Smyth, L. P. Barry, B. Kelly, J. O'Gorman, and J. F. Donegan, “A novel two-section tunable discrete mode Fabry-Perot laser exhibiting nanosecond wavelength switching,” IEEE J. Quantum Electron. 44, 331-337(2008).
[CrossRef]

Ren, Q.

Q. Ren, B. Zhang, J. Xu, Z. Zhang, Y. Jin, and D. Yu Qian, “Etched facet and semiconductor/air DBR facet of a AlGaInP laser diode prepared by focused ion beam milling,” Solid State Commun. 130, 433-436 (2004).
[CrossRef]

Rentsheller, J. A.

K. J. Ebeling, L. A. Coldren, B. I. Miller, and J. A. Rentsheller, “Single mode operation of coupled-cavity GaInAsP/InP semiconductor lasers,” Appl. Phys. Lett. 42, 6-8 (1983).
[CrossRef]

L. A. Coldren, K. Furya, B. I. Miller, and J. A. Rentsheller, “Etched mirror and groovecoupled GaInAsP/InP laser devices for integrated optics,” IEEE J. Quantum Electron. 18, 1679-1688 (1982).
[CrossRef]

L. A. Coldren, B. I. Miller, K. Iga, and J. A. Rentsheller, “Monolithic two section GaInAsP/InP active-optical-resonator devices formed by reactive ion etching,” Appl. Phys. Lett. 38 (5), 315-317 (1981).
[CrossRef]

Robinson, D. K.

P. R. Bevington and D. K. Robinson, “Data Reduction and Error Analysis for Physical Sciences,” 2nd ed. (McGraw-Hill, 1969), pp. 161-164.

Rorison, J. M.

C. Marinelli, M. Borodovsky, L. J. Sergeant, M. Gioannini, J. M. Rorison, R. V. Penty, I. H. White, P. J. Heard, M. Benyoucef, M. Kuball, G. Hasnain, T. Takeuchi, and R. P. Schneider, “Design and performance analysis of deep-etch air/nitride distributed Bragg reflector gratings for AlInGaN laser diodes,” Appl. Phys. Lett. 79, 4076-4078 (2001).
[CrossRef]

Rossner, K.

M. Muller, H. Scherer, T. Lehnhardt, K. Rossner, M. Hummer, R. Werner, and A. Forchel, “Widely tunable coupled cavity lasers at 1.9 μm on GaSb,” IEEE Photonics Technol. Lett. 19, 592-594 (2007).
[CrossRef]

Roycroft, B.

R. A. Phelan, G. Wei-Hua, L. Qiaoyin, D. Byrne, B. Roycroft, P. Lambkin, B. Corbett, F. Smyth, L. P. Barry, B. Kelly, J. O'Gorman, and J. F. Donegan, “A novel two-section tunable discrete mode Fabry-Perot laser exhibiting nanosecond wavelength switching,” IEEE J. Quantum Electron. 44, 331-337(2008).
[CrossRef]

Rubanov, S.

S. Rubanov and P. R. Munroe, “Damage in III-V compounds during focused ion beam milling,” Microsc. Microanal. 11, 446-455 (2005).
[CrossRef]

Sakamoto, T.

T. Fukushima and T. Sakamoto, “Optical signal inverter using injection locking of coupled semiconductor lasers,” Jpn. J. Appl. Phys 36, L280 (1997).
[CrossRef]

Scherer, H.

M. Muller, H. Scherer, T. Lehnhardt, K. Rossner, M. Hummer, R. Werner, and A. Forchel, “Widely tunable coupled cavity lasers at 1.9 μm on GaSb,” IEEE Photonics Technol. Lett. 19, 592-594 (2007).
[CrossRef]

Schneider, R. P.

C. Marinelli, M. Borodovsky, L. J. Sergeant, M. Gioannini, J. M. Rorison, R. V. Penty, I. H. White, P. J. Heard, M. Benyoucef, M. Kuball, G. Hasnain, T. Takeuchi, and R. P. Schneider, “Design and performance analysis of deep-etch air/nitride distributed Bragg reflector gratings for AlInGaN laser diodes,” Appl. Phys. Lett. 79, 4076-4078 (2001).
[CrossRef]

Sergeant, L. J.

C. Marinelli, M. Borodovsky, L. J. Sergeant, M. Gioannini, J. M. Rorison, R. V. Penty, I. H. White, P. J. Heard, M. Benyoucef, M. Kuball, G. Hasnain, T. Takeuchi, and R. P. Schneider, “Design and performance analysis of deep-etch air/nitride distributed Bragg reflector gratings for AlInGaN laser diodes,” Appl. Phys. Lett. 79, 4076-4078 (2001).
[CrossRef]

Smyth, F.

R. A. Phelan, G. Wei-Hua, L. Qiaoyin, D. Byrne, B. Roycroft, P. Lambkin, B. Corbett, F. Smyth, L. P. Barry, B. Kelly, J. O'Gorman, and J. F. Donegan, “A novel two-section tunable discrete mode Fabry-Perot laser exhibiting nanosecond wavelength switching,” IEEE J. Quantum Electron. 44, 331-337(2008).
[CrossRef]

Takeuchi, T.

C. Marinelli, M. Borodovsky, L. J. Sergeant, M. Gioannini, J. M. Rorison, R. V. Penty, I. H. White, P. J. Heard, M. Benyoucef, M. Kuball, G. Hasnain, T. Takeuchi, and R. P. Schneider, “Design and performance analysis of deep-etch air/nitride distributed Bragg reflector gratings for AlInGaN laser diodes,” Appl. Phys. Lett. 79, 4076-4078 (2001).
[CrossRef]

Tsang, W. T.

W. T. Tsang, R. A. Olsson, R. A. Logan, and J. A. Ditzenberger, “Single longitudinal mode performance characteristics of cleaved-coupled-cavity lasers,” Appl. Phys. Lett. 43, 1003-1005 (1983).
[CrossRef]

W. T. Tsang, R. A. Olsson, and R. A. Logan, “1.5 μm wavelength GaInAsP C3 lasers: single frequency operation and wideband frequency tuning,” Electron. Lett. 19, 488-490(1983).
[CrossRef]

W. T. Tsang, “The cleaved-couple-cavity (C3) laser,” in Semiconductor and Semimetals, W. T. Tsang, ed. (Academic, 1985), Vol. 22, Chap. 5.

Wang, J.

J. Wang and D. T. Cassidy, “Broadly tunable, short external cavity diode laser for optical coherence tomography,” IET Optoelectron. 2, 46-54 (2008).
[CrossRef]

Wang, S.

S. Wang, “Principles of distributed feedback and distributed Bragg reflector lasers,” IEEE J. Quantum Electron. 10, 413-427 (1974).
[CrossRef]

Wei-Hua, G.

R. A. Phelan, G. Wei-Hua, L. Qiaoyin, D. Byrne, B. Roycroft, P. Lambkin, B. Corbett, F. Smyth, L. P. Barry, B. Kelly, J. O'Gorman, and J. F. Donegan, “A novel two-section tunable discrete mode Fabry-Perot laser exhibiting nanosecond wavelength switching,” IEEE J. Quantum Electron. 44, 331-337(2008).
[CrossRef]

Werner, R.

M. Muller, H. Scherer, T. Lehnhardt, K. Rossner, M. Hummer, R. Werner, and A. Forchel, “Widely tunable coupled cavity lasers at 1.9 μm on GaSb,” IEEE Photonics Technol. Lett. 19, 592-594 (2007).
[CrossRef]

White, I. H.

C. Marinelli, M. Borodovsky, L. J. Sergeant, M. Gioannini, J. M. Rorison, R. V. Penty, I. H. White, P. J. Heard, M. Benyoucef, M. Kuball, G. Hasnain, T. Takeuchi, and R. P. Schneider, “Design and performance analysis of deep-etch air/nitride distributed Bragg reflector gratings for AlInGaN laser diodes,” Appl. Phys. Lett. 79, 4076-4078 (2001).
[CrossRef]

Woodworth, S. C.

S. C. Woodworth, D. T. Cassidy, and M. J. Hamp, “Experimental analysis of a broadly tunable InGaAsP laser with compositionally varied quantum wells,” IEEE J. Quantum Electron. 39, 426-430 (2003).
[CrossRef]

Xu, J.

Q. Ren, B. Zhang, J. Xu, Z. Zhang, Y. Jin, and D. Yu Qian, “Etched facet and semiconductor/air DBR facet of a AlGaInP laser diode prepared by focused ion beam milling,” Solid State Commun. 130, 433-436 (2004).
[CrossRef]

Zhang, B.

Q. Ren, B. Zhang, J. Xu, Z. Zhang, Y. Jin, and D. Yu Qian, “Etched facet and semiconductor/air DBR facet of a AlGaInP laser diode prepared by focused ion beam milling,” Solid State Commun. 130, 433-436 (2004).
[CrossRef]

Zhang, Z.

Q. Ren, B. Zhang, J. Xu, Z. Zhang, Y. Jin, and D. Yu Qian, “Etched facet and semiconductor/air DBR facet of a AlGaInP laser diode prepared by focused ion beam milling,” Solid State Commun. 130, 433-436 (2004).
[CrossRef]

Zhou, L.

F. A. Khan, L. Zhou, A. T. Ping, and I. Adeside, “Inductively coupled reactive ion etching of AlxGa1−xN for application in laser facet formation,” J. Vac. Sci. Tech. B 172750-2754(1999).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (4)

C. Marinelli, M. Borodovsky, L. J. Sergeant, M. Gioannini, J. M. Rorison, R. V. Penty, I. H. White, P. J. Heard, M. Benyoucef, M. Kuball, G. Hasnain, T. Takeuchi, and R. P. Schneider, “Design and performance analysis of deep-etch air/nitride distributed Bragg reflector gratings for AlInGaN laser diodes,” Appl. Phys. Lett. 79, 4076-4078 (2001).
[CrossRef]

W. T. Tsang, R. A. Olsson, R. A. Logan, and J. A. Ditzenberger, “Single longitudinal mode performance characteristics of cleaved-coupled-cavity lasers,” Appl. Phys. Lett. 43, 1003-1005 (1983).
[CrossRef]

K. J. Ebeling, L. A. Coldren, B. I. Miller, and J. A. Rentsheller, “Single mode operation of coupled-cavity GaInAsP/InP semiconductor lasers,” Appl. Phys. Lett. 42, 6-8 (1983).
[CrossRef]

L. A. Coldren, B. I. Miller, K. Iga, and J. A. Rentsheller, “Monolithic two section GaInAsP/InP active-optical-resonator devices formed by reactive ion etching,” Appl. Phys. Lett. 38 (5), 315-317 (1981).
[CrossRef]

Electron. Lett. (1)

W. T. Tsang, R. A. Olsson, and R. A. Logan, “1.5 μm wavelength GaInAsP C3 lasers: single frequency operation and wideband frequency tuning,” Electron. Lett. 19, 488-490(1983).
[CrossRef]

IEEE J. Quantum Electron. (10)

R. A. Phelan, G. Wei-Hua, L. Qiaoyin, D. Byrne, B. Roycroft, P. Lambkin, B. Corbett, F. Smyth, L. P. Barry, B. Kelly, J. O'Gorman, and J. F. Donegan, “A novel two-section tunable discrete mode Fabry-Perot laser exhibiting nanosecond wavelength switching,” IEEE J. Quantum Electron. 44, 331-337(2008).
[CrossRef]

S. Wang, “Principles of distributed feedback and distributed Bragg reflector lasers,” IEEE J. Quantum Electron. 10, 413-427 (1974).
[CrossRef]

S. C. Woodworth, D. T. Cassidy, and M. J. Hamp, “Experimental analysis of a broadly tunable InGaAsP laser with compositionally varied quantum wells,” IEEE J. Quantum Electron. 39, 426-430 (2003).
[CrossRef]

L. A. Coldren and T. L. Koch, “Analysis and design of coupled-cavity lasers--part I: threshold gain analysis and design guidelines,” IEEE J. Quantum Electron. 20, 659-670(1984).
[CrossRef]

H. K. Choi, “Analysis of two-section coupled-cavity semiconductor lasers,” IEEE J. Quantum Electron. 20, 385-393(1984).
[CrossRef]

M. J. Hamp and D. T. Cassidy, “Critical design parameters for engineering broadly tunable asymmetric multiple quantum-well lasers,” IEEE J. Quantum Electron. 36, 978-983 (2000).
[CrossRef]

R. Lang, “Injection locking properties of a semiconductor laser,” IEEE J. Quantum Electron. 18, 976-983 (1982).
[CrossRef]

L. A. Coldren, K. Furya, B. I. Miller, and J. A. Rentsheller, “Etched mirror and groovecoupled GaInAsP/InP laser devices for integrated optics,” IEEE J. Quantum Electron. 18, 1679-1688 (1982).
[CrossRef]

G. B. Morrison and D. T. Cassidy, “A probability-amplitude transfer matrix model for distributed feedback laser structures,” IEEE J. Quantum Electron. 36, 633-640(2000).
[CrossRef]

D. T. Cassidy, “Analytic description of a homogeneously broadened injection laser,” IEEE J. Quantum Electron. 20, 913-918 (1984).
[CrossRef]

IEEE Photonics Technol. Lett. (2)

M. Muller, A. Bauer, T. Lehnherdt, and A. Forchel, “Widely tunable photonic crystal coupled cavity lasers on GaSb,” IEEE Photonics Technol. Lett. 20, 1100-1102 (2008).
[CrossRef]

M. Muller, H. Scherer, T. Lehnhardt, K. Rossner, M. Hummer, R. Werner, and A. Forchel, “Widely tunable coupled cavity lasers at 1.9 μm on GaSb,” IEEE Photonics Technol. Lett. 19, 592-594 (2007).
[CrossRef]

IET Optoelectron. (1)

J. Wang and D. T. Cassidy, “Broadly tunable, short external cavity diode laser for optical coherence tomography,” IET Optoelectron. 2, 46-54 (2008).
[CrossRef]

J. Electrochem. Soc. (1)

S. Bouchoule, S. Azouigui, S. Guilet, G. Patriarche, L. Largeau, A. Martinez, L. Gratiet, Lemaitre, and F. Lelarge, “Anisotropic and smooth inductively coupled plasma etching of III-V laser waveguides using HBr-O2 chemistry,” J. Electrochem. Soc. 155, H778 (2008).
[CrossRef]

J. Mod. Opt. (1)

D. T. Cassidy and M. J. Hamp, “Diffractive optical element used in an external feedback configuration to tune the wavelength of uncoated Fabry-Perot diode lasers,” J. Mod. Opt. 46, 1071-1078 (1999).

J. Vac. Sci. Tech. B (1)

F. A. Khan, L. Zhou, A. T. Ping, and I. Adeside, “Inductively coupled reactive ion etching of AlxGa1−xN for application in laser facet formation,” J. Vac. Sci. Tech. B 172750-2754(1999).
[CrossRef]

Jpn. J. Appl. Phys (1)

T. Fukushima and T. Sakamoto, “Optical signal inverter using injection locking of coupled semiconductor lasers,” Jpn. J. Appl. Phys 36, L280 (1997).
[CrossRef]

Microsc. Microanal. (1)

S. Rubanov and P. R. Munroe, “Damage in III-V compounds during focused ion beam milling,” Microsc. Microanal. 11, 446-455 (2005).
[CrossRef]

Solid State Commun. (1)

Q. Ren, B. Zhang, J. Xu, Z. Zhang, Y. Jin, and D. Yu Qian, “Etched facet and semiconductor/air DBR facet of a AlGaInP laser diode prepared by focused ion beam milling,” Solid State Commun. 130, 433-436 (2004).
[CrossRef]

Spectrochimica Acta A. (1)

V. K. Kononeko, L. S. Manak, and S. V. Nalivko, “Design and characteristics of widely tunable quantum-well lasers,” Spectrochimica Acta A. 55, 2091-2096 (1999).
[CrossRef]

Other (3)

W. T. Tsang, “The cleaved-couple-cavity (C3) laser,” in Semiconductor and Semimetals, W. T. Tsang, ed. (Academic, 1985), Vol. 22, Chap. 5.

L. A. Coldren and S. W. Corzine, Diode Lasers and Photonic Integrated Circuits, Wiley Series in Microwave and Photonic Engineering, K.Chang ed. (Wiley, 1995), Chap. 3.

P. R. Bevington and D. K. Robinson, “Data Reduction and Error Analysis for Physical Sciences,” 2nd ed. (McGraw-Hill, 1969), pp. 161-164.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) Top and (b) cross-sectional view of FIB milled air gap.

Fig. 2
Fig. 2

Schematic representation of a two-section coupled-cavity laser.

Fig. 3
Fig. 3

Predicted transmission, reflection, and loss coefficients as a function of the length of an air gap and for facet angle of 4 ° and 7 ° .

Fig. 4
Fig. 4

Total single-mode spectrum for a FIB milled device with various I 1 / I 2 ratios.

Fig. 5
Fig. 5

Total single-mode spectrum for a C 3 device with various I 1 / I 2 ratios.

Fig. 6
Fig. 6

Below-threshold spectral fit for FIB milled device 5 nm .

Fig. 7
Fig. 7

Below-threshold spectral fit for C 3 device 6 nm .

Fig. 8
Fig. 8

Appendix figure.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

A 1 = [ 1 / t 01 r 01 / t 01 0 r 01 / t 01 1 / t 01 0 0 0 1 ] ; A 2 = [ e ( j K 1 L 1 ) 0 δ 1 , m 0 e ( j K 1 L 1 ) δ 1 , m 0 0 1 ] ; A 3 = [ A 11 3 A 12 3 0 A 21 3 A 22 3 0 0 0 1 ] ; A 4 = [ e ( j K 0 d ) 0 0 0 e ( j K 0 d ) 0 0 0 1 ] ; A 5 = [ A 11 5 A 12 5 0 A 21 5 A 22 5 0 0 0 1 ] ; A 6 = [ e ( j K 2 L 2 ) 0 δ 2 , m 0 e ( j K 2 L 2 ) δ 2 , m 0 0 1 ] ; A 7 = [ 1 / t 34 r 34 / t 34 0 r 34 / t 34 1 / t 34 0 0 0 1 ] ,
ω x , y = ω o x , o y [ 1 + ( 2 d / k ω o x , o y 2 ) 2 ] 1 / 2 ,
A final = [ a 11 a 12 a 13 a 21 a 22 a 23 0 0 1 ] .
[ E 01 + E 01 1 ] = [ 1 / r 01 r 01 / t 01 0 r 01 / t 01 1 / t 01 0 0 0 1 ] [ E 10 + E 10 1 ] .
[ E 01 + E 01 1 ] = [ a 11 a 12 a 13 a 21 a 22 a 23 0 0 1 ] [ E 43 + E 43 1 ] .
E 43 + = a 13 / a 11 , E 01 = a 21 E 43 + + a 23 .
T = τ x τ y exp [ ( θ x / θ e , x ) 2 ( θ y / θ e , y ) 2 ] ,
τ i = 2 [ ( ω o i / ω i + ω i / ω o i ) 2 + ( λ / π ω i ω o i ) 2 s 2 ] 1 / 2 , i = x , y .
Δ λ = λ o 2 2 ( N g 1 L 1 + N g 2 L 2 + L g ) .
r p q θ i 1 = n p cos ( θ i 1 ) n q cos ( θ t ' ) n p cos ( θ i 1 ) + n q cos ( θ t ' ) ; t p q θ i 1 = 2 n p cos ( θ i 1 ) n p cos ( θ i 1 ) + n q cos ( θ t ' ) ; θ 4 = 2 × θ i 1 ; θ 5 = θ t ' + θ i ; A 11 3 = 1 / ( t 12 × τ o ( θ t θ x , y ) ) ; A 12 3 = r 21 τ o ( θ i 1 θ x , y ) A 11 3 ; A 21 3 = r 12 τ o ( 2 θ x , y ) A 11 3 ; A 22 3 = t 21 τ o ( θ 5 ) r 12 r 21 τ o ( 2 θ x , y ) τ o ( θ i 1 θ x , y ) T 311 ; A 21 5 = r 32 τ o ( θ i 1 θ x , y ) A 11 5 ; A 11 5 = 1 / ( t 23 τ o ( θ 5 ) ) ; τ o = τ x τ y × exp [ ( θ x / θ e , x ) 2 ( θ y / θ e , y ) 2 ] ; θ e , x = 2 π τ x [ ( ω o x / λ ) 2 + ( ω x / λ ) 2 ] 1 / 2 A 22 5 = t 32 τ o ( θ t θ x , y ) r 32 r 23 τ o ( 2 θ x , y ) τ o ( θ i 1 θ x , y ) A 11 5 ; A 12 5 = r 32 τ o ( 2 θ x , y ) A 11 5 .

Metrics