Abstract

We demonstrate a high-speed inline holographic Stokesmeter that consists of two liquid crystal retarders and a spectrally selective holographic grating. Explicit choices of angles of orientation for the components in the inline architecture are identified to yield higher measurement accuracy than the classical architecture. We show polarimetric images of an artificial scene produced by such a Stokesmeter, demonstrating the ability to identify an object not recognized by intensity-only imaging systems.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. J. Denes, M. Gottlieb, B. Kaminsky, and D. Huber, “Spectro-polarimetric imaging for object recognition,” Proc. SPIE 3240, 8-18 (1998).
    [CrossRef]
  2. T. Nee and S. F. Nee, “Infrared polarization signatures for targets,” Proc. SPIE 2469, 231-241 (1995).
    [CrossRef]
  3. P. J. Curran, “Polarized visible light as an aid to vegetation classification,” Remote Sens. Environ. 12, 491-499 (1982).
    [CrossRef]
  4. L. D. Travis, “Remote sensing of aerosols with the earth-observing scanning polarimeter,” Proc. SPIE 1747, 154-164(1992).
    [CrossRef]
  5. M. J. Duggin, “Imaging polarimetry in scene element discrimination,” Proc. SPIE 3754, 108-117 (1999).
    [CrossRef]
  6. S.-Y. Lu and R. A. Chipman, “Interpretation of Mueller matrices based on polar decomposition,” J. Opt. Soc. Am. A 13, 1106-1113 (1996).
    [CrossRef]
  7. J. S. Baba, J.-R. Chung, A. H. DeLaughter, B. D. Cameron, and G. L. Cote, “Development and calibration of an automated Mueller matrix polarization imaging system,” J. Biomed. Opt. 7, 341-349 (2002).
    [CrossRef] [PubMed]
  8. D. Goldstein, Polarized Light, 2nd ed. (CRC Press, 2003).
    [CrossRef]
  9. J. M. Bueno, “Polarimetry using liquid-crystal variable retarders: theory and calibration,” J. Opt. A Pure Appl. Opt. 2, 216-222 (2000).
    [CrossRef]
  10. A. De Martino, E. Garcia-Caurel, B. Laude, and B. Drévillon, “Optimized Mueller polarimeter with liquid crystals,” Opt. Lett. 28, 616-618 (2003).
    [CrossRef] [PubMed]
  11. B. Laude-Boulesteix, A. De Martino, B. Drévillon, and L. Schwartz, “Mueller polarimetric imaging system with liquid crystals,” Appl. Opt. 43, 2824-2832 (2004).
    [CrossRef] [PubMed]
  12. F. Goudail, P. Terrier, Y. Takakura, L. Bigué, F. Galland, and V. DeVlaminck, “Target detection with a liquid-crystal-based passive Stokes polarimeter,” Appl. Opt. 43, 274-282 (2004).
    [CrossRef] [PubMed]
  13. M. S. Shahriar, J. T. Shen, R. Tripathi, M. Kleinschmit, T.-W. Nee, and S.-M. F. Nee, “Ultrafast holographic Stokesmeter for polarization imaging in real time,” Opt. Lett. 29, 298-300(2004).
    [CrossRef] [PubMed]
  14. J.-K. Lee, J. T. Shen, and M. S. Shahriar, “Demonstration of a spectrally scanned holographic Stokesmeter,” Opt. Commun. 277, 63-66 (2007).
    [CrossRef]
  15. T.-W. Nee, S.-M. F. Nee, M. W. Kleinschmit, and M. S. Shahriar, “Polarization of holographic grating diffraction. II. Experiment,” J. Opt. Soc. Am. A 21, 532-539 (2004).
    [CrossRef]
  16. A. Ambirajan and D. C. Look, Jr., “Optimum angles for a polarimeter: part I,” Opt. Eng. 34, 1651-1655 (1995).
    [CrossRef]
  17. E. Collett, Polarized Light: Fundamentals and Applications (Marcel Dekker, 1993).
  18. A. Ambirajan and D. C. Look, Jr., “Optimum angles for a polarimeter: part II,” Opt. Eng. 34, 1656-1659(1995).
    [CrossRef]

2007 (1)

J.-K. Lee, J. T. Shen, and M. S. Shahriar, “Demonstration of a spectrally scanned holographic Stokesmeter,” Opt. Commun. 277, 63-66 (2007).
[CrossRef]

2004 (4)

2003 (1)

2002 (1)

J. S. Baba, J.-R. Chung, A. H. DeLaughter, B. D. Cameron, and G. L. Cote, “Development and calibration of an automated Mueller matrix polarization imaging system,” J. Biomed. Opt. 7, 341-349 (2002).
[CrossRef] [PubMed]

2000 (1)

J. M. Bueno, “Polarimetry using liquid-crystal variable retarders: theory and calibration,” J. Opt. A Pure Appl. Opt. 2, 216-222 (2000).
[CrossRef]

1999 (1)

M. J. Duggin, “Imaging polarimetry in scene element discrimination,” Proc. SPIE 3754, 108-117 (1999).
[CrossRef]

1998 (1)

L. J. Denes, M. Gottlieb, B. Kaminsky, and D. Huber, “Spectro-polarimetric imaging for object recognition,” Proc. SPIE 3240, 8-18 (1998).
[CrossRef]

1996 (1)

1995 (3)

T. Nee and S. F. Nee, “Infrared polarization signatures for targets,” Proc. SPIE 2469, 231-241 (1995).
[CrossRef]

A. Ambirajan and D. C. Look, Jr., “Optimum angles for a polarimeter: part I,” Opt. Eng. 34, 1651-1655 (1995).
[CrossRef]

A. Ambirajan and D. C. Look, Jr., “Optimum angles for a polarimeter: part II,” Opt. Eng. 34, 1656-1659(1995).
[CrossRef]

1992 (1)

L. D. Travis, “Remote sensing of aerosols with the earth-observing scanning polarimeter,” Proc. SPIE 1747, 154-164(1992).
[CrossRef]

1982 (1)

P. J. Curran, “Polarized visible light as an aid to vegetation classification,” Remote Sens. Environ. 12, 491-499 (1982).
[CrossRef]

Ambirajan, A.

A. Ambirajan and D. C. Look, Jr., “Optimum angles for a polarimeter: part I,” Opt. Eng. 34, 1651-1655 (1995).
[CrossRef]

A. Ambirajan and D. C. Look, Jr., “Optimum angles for a polarimeter: part II,” Opt. Eng. 34, 1656-1659(1995).
[CrossRef]

Baba, J. S.

J. S. Baba, J.-R. Chung, A. H. DeLaughter, B. D. Cameron, and G. L. Cote, “Development and calibration of an automated Mueller matrix polarization imaging system,” J. Biomed. Opt. 7, 341-349 (2002).
[CrossRef] [PubMed]

Bigué, L.

Bueno, J. M.

J. M. Bueno, “Polarimetry using liquid-crystal variable retarders: theory and calibration,” J. Opt. A Pure Appl. Opt. 2, 216-222 (2000).
[CrossRef]

Cameron, B. D.

J. S. Baba, J.-R. Chung, A. H. DeLaughter, B. D. Cameron, and G. L. Cote, “Development and calibration of an automated Mueller matrix polarization imaging system,” J. Biomed. Opt. 7, 341-349 (2002).
[CrossRef] [PubMed]

Chipman, R. A.

Chung, J.-R.

J. S. Baba, J.-R. Chung, A. H. DeLaughter, B. D. Cameron, and G. L. Cote, “Development and calibration of an automated Mueller matrix polarization imaging system,” J. Biomed. Opt. 7, 341-349 (2002).
[CrossRef] [PubMed]

Collett, E.

E. Collett, Polarized Light: Fundamentals and Applications (Marcel Dekker, 1993).

Cote, G. L.

J. S. Baba, J.-R. Chung, A. H. DeLaughter, B. D. Cameron, and G. L. Cote, “Development and calibration of an automated Mueller matrix polarization imaging system,” J. Biomed. Opt. 7, 341-349 (2002).
[CrossRef] [PubMed]

Curran, P. J.

P. J. Curran, “Polarized visible light as an aid to vegetation classification,” Remote Sens. Environ. 12, 491-499 (1982).
[CrossRef]

De Martino, A.

DeLaughter, A. H.

J. S. Baba, J.-R. Chung, A. H. DeLaughter, B. D. Cameron, and G. L. Cote, “Development and calibration of an automated Mueller matrix polarization imaging system,” J. Biomed. Opt. 7, 341-349 (2002).
[CrossRef] [PubMed]

Denes, L. J.

L. J. Denes, M. Gottlieb, B. Kaminsky, and D. Huber, “Spectro-polarimetric imaging for object recognition,” Proc. SPIE 3240, 8-18 (1998).
[CrossRef]

DeVlaminck, V.

Drévillon, B.

Duggin, M. J.

M. J. Duggin, “Imaging polarimetry in scene element discrimination,” Proc. SPIE 3754, 108-117 (1999).
[CrossRef]

Galland, F.

Garcia-Caurel, E.

Goldstein, D.

D. Goldstein, Polarized Light, 2nd ed. (CRC Press, 2003).
[CrossRef]

Gottlieb, M.

L. J. Denes, M. Gottlieb, B. Kaminsky, and D. Huber, “Spectro-polarimetric imaging for object recognition,” Proc. SPIE 3240, 8-18 (1998).
[CrossRef]

Goudail, F.

Huber, D.

L. J. Denes, M. Gottlieb, B. Kaminsky, and D. Huber, “Spectro-polarimetric imaging for object recognition,” Proc. SPIE 3240, 8-18 (1998).
[CrossRef]

Kaminsky, B.

L. J. Denes, M. Gottlieb, B. Kaminsky, and D. Huber, “Spectro-polarimetric imaging for object recognition,” Proc. SPIE 3240, 8-18 (1998).
[CrossRef]

Kleinschmit, M.

Kleinschmit, M. W.

Laude, B.

Laude-Boulesteix, B.

Lee, J.-K.

J.-K. Lee, J. T. Shen, and M. S. Shahriar, “Demonstration of a spectrally scanned holographic Stokesmeter,” Opt. Commun. 277, 63-66 (2007).
[CrossRef]

Look, D. C.

A. Ambirajan and D. C. Look, Jr., “Optimum angles for a polarimeter: part II,” Opt. Eng. 34, 1656-1659(1995).
[CrossRef]

A. Ambirajan and D. C. Look, Jr., “Optimum angles for a polarimeter: part I,” Opt. Eng. 34, 1651-1655 (1995).
[CrossRef]

Lu, S.-Y.

Nee, S. F.

T. Nee and S. F. Nee, “Infrared polarization signatures for targets,” Proc. SPIE 2469, 231-241 (1995).
[CrossRef]

Nee, S.-M. F.

Nee, T.

T. Nee and S. F. Nee, “Infrared polarization signatures for targets,” Proc. SPIE 2469, 231-241 (1995).
[CrossRef]

Nee, T.-W.

Schwartz, L.

Shahriar, M. S.

Shen, J. T.

Takakura, Y.

Terrier, P.

Travis, L. D.

L. D. Travis, “Remote sensing of aerosols with the earth-observing scanning polarimeter,” Proc. SPIE 1747, 154-164(1992).
[CrossRef]

Tripathi, R.

Appl. Opt. (2)

J. Biomed. Opt. (1)

J. S. Baba, J.-R. Chung, A. H. DeLaughter, B. D. Cameron, and G. L. Cote, “Development and calibration of an automated Mueller matrix polarization imaging system,” J. Biomed. Opt. 7, 341-349 (2002).
[CrossRef] [PubMed]

J. Opt. A Pure Appl. Opt. (1)

J. M. Bueno, “Polarimetry using liquid-crystal variable retarders: theory and calibration,” J. Opt. A Pure Appl. Opt. 2, 216-222 (2000).
[CrossRef]

J. Opt. Soc. Am. A (2)

Opt. Commun. (1)

J.-K. Lee, J. T. Shen, and M. S. Shahriar, “Demonstration of a spectrally scanned holographic Stokesmeter,” Opt. Commun. 277, 63-66 (2007).
[CrossRef]

Opt. Eng. (2)

A. Ambirajan and D. C. Look, Jr., “Optimum angles for a polarimeter: part I,” Opt. Eng. 34, 1651-1655 (1995).
[CrossRef]

A. Ambirajan and D. C. Look, Jr., “Optimum angles for a polarimeter: part II,” Opt. Eng. 34, 1656-1659(1995).
[CrossRef]

Opt. Lett. (2)

Proc. SPIE (4)

L. J. Denes, M. Gottlieb, B. Kaminsky, and D. Huber, “Spectro-polarimetric imaging for object recognition,” Proc. SPIE 3240, 8-18 (1998).
[CrossRef]

T. Nee and S. F. Nee, “Infrared polarization signatures for targets,” Proc. SPIE 2469, 231-241 (1995).
[CrossRef]

L. D. Travis, “Remote sensing of aerosols with the earth-observing scanning polarimeter,” Proc. SPIE 1747, 154-164(1992).
[CrossRef]

M. J. Duggin, “Imaging polarimetry in scene element discrimination,” Proc. SPIE 3754, 108-117 (1999).
[CrossRef]

Remote Sens. Environ. (1)

P. J. Curran, “Polarized visible light as an aid to vegetation classification,” Remote Sens. Environ. 12, 491-499 (1982).
[CrossRef]

Other (2)

D. Goldstein, Polarized Light, 2nd ed. (CRC Press, 2003).
[CrossRef]

E. Collett, Polarized Light: Fundamentals and Applications (Marcel Dekker, 1993).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Classical Stokesmeter with a removable QWP and a rotating LP.

Fig. 2
Fig. 2

Inline automatic Stokesmeter with a rotating QWP and a rotating LP.

Fig. 3
Fig. 3

High-speed inline Stokesmeter with two LCRs and a LP.

Fig. 4
Fig. 4

Schematic diagram of the inline, spectrally selective holographic Stokesmeter.

Fig. 5
Fig. 5

Comparison of the Stokes parameters measured by the inline Stokesmeter and the classic Stokesmeter: (a) linear 45 ° polarized light, (b) linear horizontally polarized light, (c) right circularly polarized light.

Fig. 6
Fig. 6

Polarization imaging for a set of objects with various polarization properties. The objects are illuminated by left circularly polarized light.

Tables (1)

Tables Icon

Table 1 Four Sets of Combinations of QWP and LP Angles that Yield High | A IL | Values

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

S ( τ ) ( I Q U V ) ( E x E x * + E y E y * E x E x * E y E y * E x E y * + E y E x * i E x E y * i E y E x * ) ,
I = A S ,
A = 1 2 [ 1 1 0 0 1 1 0 0 1 0 1 0 1 0 0 1 ] .
S = M S ,
[ I Q U V ] = 1 2 [ 1 cos 2 β i cos 2 ( α i β i ) sin 2 β i cos 2 ( α i β i ) sin 2 ( α i β i ) cos 2 α i cos 2 α i cos 2 β i cos 2 ( α i β i ) cos 2 α i sin 2 β i cos 2 ( α i β i ) cos 2 α i sin 2 ( α i β i ) sin 2 α i sin 2 α i cos 2 β i cos 2 ( α i β i ) sin 2 α i sin 2 β i cos 2 ( α i β i ) sin 2 α sin 2 ( α i β i ) 0 0 0 0 ] [ I Q U V ] .
I ( α i , β i ) = 1 2 [ I + Q cos 2 β i cos 2 ( α i β i ) + U sin 2 β i cos 2 ( α i β i ) + V sin 2 ( α i β i ) ] .
A IL = 1 2 [ 1 cos 2 β 1 cos 2 ( α 1 β 1 ) sin 2 β 1 cos 2 ( α 1 β 1 ) sin 2 ( α 1 β 1 ) 1 cos 2 β 2 cos 2 ( α 2 β 2 ) sin 2 β 2 cos 2 ( α 2 β 2 ) sin 2 ( α 2 β 2 ) 1 cos 2 β 3 cos 2 ( α 3 β 3 ) sin 2 β 3 cos 2 ( α 3 β 3 ) sin 2 ( α 3 β 3 ) 1 cos 2 β 4 cos 2 ( α 4 β 4 ) sin 2 β 4 cos 2 ( α 4 β 4 ) sin 2 ( α 4 β 4 ) ] .
M = M LP ( π 4 ) M LCR 2 ( ϕ 2 , π 8 ) M LCR 1 ( ϕ 1 ) = 1 2 [ 1 1 2 ( 1 cos ϕ 2 ) 1 2 cos ϕ ( 1 + cos ϕ 2 ) 2 2 sin ϕ 1 sin ϕ 2 1 2 sin ϕ ( 1 + cos ϕ 2 ) + 2 2 cos ϕ 1 sin ϕ 2 0 0 0 0 1 1 2 ( 1 cos ϕ 2 ) 1 2 cos ϕ ( 1 + cos ϕ 2 ) 2 2 sin ϕ 1 sin ϕ 2 1 2 sin ϕ ( 1 + cos ϕ 2 ) + 2 2 cos ϕ 1 sin ϕ 2 0 0 0 0 ] ,
A = 1 2 [ 1 0 1 0 1 0 0 1 1 0 1 0 1 1 0 0 ] .
ε = ( 1 | S m e a s S theo I theo | ) × 100 % ,

Metrics