Abstract

We use projection screens filled with colloidal dispersions to reduce laser speckle in laser projection systems. Laser light is multiply scattered at the globules of the colloidal dispersion’s internal phase, which do Brownian movement. The integration time of the human eye causes a perception of a reduced laser speckle contrast because of temporal averaging. As a counteracting effect, blurring of projected images occurs in the colloidal dispersion, which degrades image quality. We measure and compare speckle reduction and blurring of three different colloidal dispersions filled into transmission screens of different thicknesses. We realized a high speckle contrast reduction at simultaneously low blurring with a thin screen filled with a highly scattering colloidal dispersion with forward-peaked scattering. We realize speckle contrast values below 3% at acceptable blurring.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. W. Goodman, Speckle Phenomena in Optics: Theory and Applications (Roberts, 2006).
  2. L. Wang, T. Tschudi, T. Halldórsson, and P. R. Pétursson, “Speckle reduction in laser projection systems by diffractive optical elements,” Appl. Opt. 37, 1770-1775 (1998).
    [CrossRef]
  3. S. C. Shin, S. S. Yoo, S. Y. Lee, C.-Y. Park, S.-Y. Park, J. W. Kwon, and S.-G. Lee, “Removal of hot spot speckle on laser projection screen using both the running screen and the rotating diffuser,” Displays 27, 91-96 (2006).
    [CrossRef]
  4. C. E. Hauber and R. E. Kittredge, U.S. patent 3,473,862 (21 October 1969).
  5. I. Leifer, C. J. D. Spencer, and W. T. Welford, “Grainless screens for projection microscopy,” J. Opt. Soc. Am. 51, 1422-1423(1961).
    [CrossRef]
  6. E. G. Rawson, A. B. Nafarrate, R. E. Norton, and J. W. Goodman, “Speckle-free rear-projection screen using two close screens in slow relative motion,” J. Opt. Soc. Am. 66, 1290-1294 (1976).
    [CrossRef]
  7. F. S. MacAdam, Taylor, Taylor & Hobson, Ltd., British patent 592,815 (1947).
  8. R. Brown, “A brief account of microscopical observations made in the months of June, July and August, 1827, on the particles contained in the pollen of plants; and on the general existence of active molecules in organic and inorganic bodies,” Philos. Mag. 4, 161-173 (1828).
  9. V. Yurlov, A. Lapchuk, S. Yun, J. G. Song, and H. Yang, “Speckle suppression in scanning laser display,” Appl. Opt. 47, 179-187 (2008).
    [CrossRef] [PubMed]
  10. J. Trotter, Das Auge (DOZ-Verlag, 1985).
  11. H. Kolb, E. Fernandez, R. Nelson, and B. W. Jones, “Webvision--the organization of the retina and visual system,” http://webvision.med.utah.edu.
  12. J. R. Frisvad, N. J. Christensen, and H. W. Jensen, “Computing the scattering properties of participating media using Lorenz-Mie theory,” ACM Trans. Graph. 26, 60 (2007).
    [CrossRef]
  13. V. V. Tuchin, Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis, 2nd ed. (Society of Photo-Optical Instrumentation Engineers, 2007).
  14. J. R. Frisvad, Light, Matter, and Geometry: The Cornerstones of Appearance Modelling (VDM Verlag, 2008).
  15. J. R. Frisvad, Department of Informatics and Mathematical Modeling, Technical University of Denmark, Richard Petersens Plads, 2800 Lyngby, Denmark (personal communication, 2009).
  16. L. Wang, S. L. Jacques, and L. Zheng, “MCML--Monte Carlo modelling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47, 131-146 (1995).
    [CrossRef] [PubMed]
  17. L. Wang, S. L. Jacques, and L. Zheng, “CONV--convolution for responses to a finite diameter photon beam incident on multi-layered tissues,” Comput. Methods Programs Biomed. 54, 141-150 (1997).
    [CrossRef]
  18. R. Bandyopadhyay, A. S. Gittings, S. S. Suh, P. K. Dixon, and D. J. Durian, “Speckle-visibility spectroscopy: a tool to study time-varying dynamics,” Rev. Sci. Instrum. 76, 093110 (2005).
    [CrossRef]
  19. D. J. Pine, D. A. Weitz, P. M. Chaikin, and E. Herbolzheimer, “Diffusing-wave spectroscopy,” Phys. Rev. Lett. 60, 1134-1137(1988).
    [CrossRef] [PubMed]
  20. K. K. Bizheva, A. M. Siegel, and D. A. Boas, “Path-length-resolved dynamic light scattering in highly scattering random media: the transition to diffusing wave spectroscopy,” Phys. Rev. E 58, 7664-7667 (1998).
    [CrossRef]
  21. R. Carminati, R. Elaloufi, and J.-J. Greffet, “Beyond the diffusing-wave spectroscopy model for the temporal fluctuations of scattered light,” Phys. Rev. Lett. 92, 213903 (2004).
    [CrossRef] [PubMed]
  22. S. Ulyanov, “Diffusing wave spectroscopy with a small number of scattering events: an implication to microflow diagnostics,” Phys. Rev. E 72, 052902 (2005).
    [CrossRef]
  23. A. Einstein, “Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen,” Ann. Phys. 322, 549-560 (1905).
    [CrossRef]
  24. M. Heckmeier and G. Maret, “Visualization of flow in multiple-scattering liquids,” Europhys. Lett. 34, 257-262 (1996).
    [CrossRef]
  25. P.-A. Lemieux, M. U. Vera, and D. J. Durian, “Diffusing-light spectroscopies beyond the diffusion limit: the role of ballistic transport and anisotropic scattering,” Phys. Rev. E 57, 4498-4515 (1998).
    [CrossRef]
  26. D. A. Zimnyakov and Y. P. Sinichkin, “A study of polarization decay as applied to improved imaging in scattering media,” J. Opt. A Pure Appl. Opt. 2, 200-208 (2000).
    [CrossRef]
  27. M. Xu and R. R. Alfano, “Random walk of polarized light in turbid media,” Phys. Rev. Lett. 95, 213901 (2005).
    [CrossRef] [PubMed]
  28. L. F. Rojas-Ochoa, D. Lacoste, R. Lenke, P. Schurtenberger, and F. Scheffold, “Depolarization of backscattered linearly polarized light,” J. Opt. Soc. Am. A 21, 1799-1804 (2004).
    [CrossRef]
  29. F. Riechert, F. Glöckler, and U. Lemmer, “Method to determine the speckle characteristics of front projection screens,” Appl. Opt. 48, 1316-1321 (2009).
    [CrossRef] [PubMed]
  30. F. Riechert, G. Craggs, Y. Meuret, B. Van Giel, H. Thienpont, U. Lemmer, and G. Verschaffelt, “Low speckle laser projection with a broad-area vertical-cavity surface-emitting laser in the nonmodal emission regime,” Appl. Opt. 48, 792-798(2009).
    [CrossRef] [PubMed]

2009

2008

2007

J. R. Frisvad, N. J. Christensen, and H. W. Jensen, “Computing the scattering properties of participating media using Lorenz-Mie theory,” ACM Trans. Graph. 26, 60 (2007).
[CrossRef]

2006

S. C. Shin, S. S. Yoo, S. Y. Lee, C.-Y. Park, S.-Y. Park, J. W. Kwon, and S.-G. Lee, “Removal of hot spot speckle on laser projection screen using both the running screen and the rotating diffuser,” Displays 27, 91-96 (2006).
[CrossRef]

2005

R. Bandyopadhyay, A. S. Gittings, S. S. Suh, P. K. Dixon, and D. J. Durian, “Speckle-visibility spectroscopy: a tool to study time-varying dynamics,” Rev. Sci. Instrum. 76, 093110 (2005).
[CrossRef]

S. Ulyanov, “Diffusing wave spectroscopy with a small number of scattering events: an implication to microflow diagnostics,” Phys. Rev. E 72, 052902 (2005).
[CrossRef]

M. Xu and R. R. Alfano, “Random walk of polarized light in turbid media,” Phys. Rev. Lett. 95, 213901 (2005).
[CrossRef] [PubMed]

2004

L. F. Rojas-Ochoa, D. Lacoste, R. Lenke, P. Schurtenberger, and F. Scheffold, “Depolarization of backscattered linearly polarized light,” J. Opt. Soc. Am. A 21, 1799-1804 (2004).
[CrossRef]

R. Carminati, R. Elaloufi, and J.-J. Greffet, “Beyond the diffusing-wave spectroscopy model for the temporal fluctuations of scattered light,” Phys. Rev. Lett. 92, 213903 (2004).
[CrossRef] [PubMed]

2000

D. A. Zimnyakov and Y. P. Sinichkin, “A study of polarization decay as applied to improved imaging in scattering media,” J. Opt. A Pure Appl. Opt. 2, 200-208 (2000).
[CrossRef]

1998

K. K. Bizheva, A. M. Siegel, and D. A. Boas, “Path-length-resolved dynamic light scattering in highly scattering random media: the transition to diffusing wave spectroscopy,” Phys. Rev. E 58, 7664-7667 (1998).
[CrossRef]

P.-A. Lemieux, M. U. Vera, and D. J. Durian, “Diffusing-light spectroscopies beyond the diffusion limit: the role of ballistic transport and anisotropic scattering,” Phys. Rev. E 57, 4498-4515 (1998).
[CrossRef]

L. Wang, T. Tschudi, T. Halldórsson, and P. R. Pétursson, “Speckle reduction in laser projection systems by diffractive optical elements,” Appl. Opt. 37, 1770-1775 (1998).
[CrossRef]

1997

L. Wang, S. L. Jacques, and L. Zheng, “CONV--convolution for responses to a finite diameter photon beam incident on multi-layered tissues,” Comput. Methods Programs Biomed. 54, 141-150 (1997).
[CrossRef]

1996

M. Heckmeier and G. Maret, “Visualization of flow in multiple-scattering liquids,” Europhys. Lett. 34, 257-262 (1996).
[CrossRef]

1995

L. Wang, S. L. Jacques, and L. Zheng, “MCML--Monte Carlo modelling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47, 131-146 (1995).
[CrossRef] [PubMed]

1988

D. J. Pine, D. A. Weitz, P. M. Chaikin, and E. Herbolzheimer, “Diffusing-wave spectroscopy,” Phys. Rev. Lett. 60, 1134-1137(1988).
[CrossRef] [PubMed]

1976

1961

1905

A. Einstein, “Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen,” Ann. Phys. 322, 549-560 (1905).
[CrossRef]

1828

R. Brown, “A brief account of microscopical observations made in the months of June, July and August, 1827, on the particles contained in the pollen of plants; and on the general existence of active molecules in organic and inorganic bodies,” Philos. Mag. 4, 161-173 (1828).

Alfano, R. R.

M. Xu and R. R. Alfano, “Random walk of polarized light in turbid media,” Phys. Rev. Lett. 95, 213901 (2005).
[CrossRef] [PubMed]

Bandyopadhyay, R.

R. Bandyopadhyay, A. S. Gittings, S. S. Suh, P. K. Dixon, and D. J. Durian, “Speckle-visibility spectroscopy: a tool to study time-varying dynamics,” Rev. Sci. Instrum. 76, 093110 (2005).
[CrossRef]

Bizheva, K. K.

K. K. Bizheva, A. M. Siegel, and D. A. Boas, “Path-length-resolved dynamic light scattering in highly scattering random media: the transition to diffusing wave spectroscopy,” Phys. Rev. E 58, 7664-7667 (1998).
[CrossRef]

Boas, D. A.

K. K. Bizheva, A. M. Siegel, and D. A. Boas, “Path-length-resolved dynamic light scattering in highly scattering random media: the transition to diffusing wave spectroscopy,” Phys. Rev. E 58, 7664-7667 (1998).
[CrossRef]

Brown, R.

R. Brown, “A brief account of microscopical observations made in the months of June, July and August, 1827, on the particles contained in the pollen of plants; and on the general existence of active molecules in organic and inorganic bodies,” Philos. Mag. 4, 161-173 (1828).

Carminati, R.

R. Carminati, R. Elaloufi, and J.-J. Greffet, “Beyond the diffusing-wave spectroscopy model for the temporal fluctuations of scattered light,” Phys. Rev. Lett. 92, 213903 (2004).
[CrossRef] [PubMed]

Chaikin, P. M.

D. J. Pine, D. A. Weitz, P. M. Chaikin, and E. Herbolzheimer, “Diffusing-wave spectroscopy,” Phys. Rev. Lett. 60, 1134-1137(1988).
[CrossRef] [PubMed]

Christensen, N. J.

J. R. Frisvad, N. J. Christensen, and H. W. Jensen, “Computing the scattering properties of participating media using Lorenz-Mie theory,” ACM Trans. Graph. 26, 60 (2007).
[CrossRef]

Craggs, G.

Dixon, P. K.

R. Bandyopadhyay, A. S. Gittings, S. S. Suh, P. K. Dixon, and D. J. Durian, “Speckle-visibility spectroscopy: a tool to study time-varying dynamics,” Rev. Sci. Instrum. 76, 093110 (2005).
[CrossRef]

Durian, D. J.

R. Bandyopadhyay, A. S. Gittings, S. S. Suh, P. K. Dixon, and D. J. Durian, “Speckle-visibility spectroscopy: a tool to study time-varying dynamics,” Rev. Sci. Instrum. 76, 093110 (2005).
[CrossRef]

P.-A. Lemieux, M. U. Vera, and D. J. Durian, “Diffusing-light spectroscopies beyond the diffusion limit: the role of ballistic transport and anisotropic scattering,” Phys. Rev. E 57, 4498-4515 (1998).
[CrossRef]

Einstein, A.

A. Einstein, “Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen,” Ann. Phys. 322, 549-560 (1905).
[CrossRef]

Elaloufi, R.

R. Carminati, R. Elaloufi, and J.-J. Greffet, “Beyond the diffusing-wave spectroscopy model for the temporal fluctuations of scattered light,” Phys. Rev. Lett. 92, 213903 (2004).
[CrossRef] [PubMed]

Fernandez, E.

H. Kolb, E. Fernandez, R. Nelson, and B. W. Jones, “Webvision--the organization of the retina and visual system,” http://webvision.med.utah.edu.

Frisvad, J. R.

J. R. Frisvad, N. J. Christensen, and H. W. Jensen, “Computing the scattering properties of participating media using Lorenz-Mie theory,” ACM Trans. Graph. 26, 60 (2007).
[CrossRef]

J. R. Frisvad, Light, Matter, and Geometry: The Cornerstones of Appearance Modelling (VDM Verlag, 2008).

J. R. Frisvad, Department of Informatics and Mathematical Modeling, Technical University of Denmark, Richard Petersens Plads, 2800 Lyngby, Denmark (personal communication, 2009).

Gittings, A. S.

R. Bandyopadhyay, A. S. Gittings, S. S. Suh, P. K. Dixon, and D. J. Durian, “Speckle-visibility spectroscopy: a tool to study time-varying dynamics,” Rev. Sci. Instrum. 76, 093110 (2005).
[CrossRef]

Glöckler, F.

Goodman, J. W.

Greffet, J.-J.

R. Carminati, R. Elaloufi, and J.-J. Greffet, “Beyond the diffusing-wave spectroscopy model for the temporal fluctuations of scattered light,” Phys. Rev. Lett. 92, 213903 (2004).
[CrossRef] [PubMed]

Halldórsson, T.

Hauber, C. E.

C. E. Hauber and R. E. Kittredge, U.S. patent 3,473,862 (21 October 1969).

Heckmeier, M.

M. Heckmeier and G. Maret, “Visualization of flow in multiple-scattering liquids,” Europhys. Lett. 34, 257-262 (1996).
[CrossRef]

Herbolzheimer, E.

D. J. Pine, D. A. Weitz, P. M. Chaikin, and E. Herbolzheimer, “Diffusing-wave spectroscopy,” Phys. Rev. Lett. 60, 1134-1137(1988).
[CrossRef] [PubMed]

Jacques, S. L.

L. Wang, S. L. Jacques, and L. Zheng, “CONV--convolution for responses to a finite diameter photon beam incident on multi-layered tissues,” Comput. Methods Programs Biomed. 54, 141-150 (1997).
[CrossRef]

L. Wang, S. L. Jacques, and L. Zheng, “MCML--Monte Carlo modelling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47, 131-146 (1995).
[CrossRef] [PubMed]

Jensen, H. W.

J. R. Frisvad, N. J. Christensen, and H. W. Jensen, “Computing the scattering properties of participating media using Lorenz-Mie theory,” ACM Trans. Graph. 26, 60 (2007).
[CrossRef]

Jones, B. W.

H. Kolb, E. Fernandez, R. Nelson, and B. W. Jones, “Webvision--the organization of the retina and visual system,” http://webvision.med.utah.edu.

Kittredge, R. E.

C. E. Hauber and R. E. Kittredge, U.S. patent 3,473,862 (21 October 1969).

Kolb, H.

H. Kolb, E. Fernandez, R. Nelson, and B. W. Jones, “Webvision--the organization of the retina and visual system,” http://webvision.med.utah.edu.

Kwon, J. W.

S. C. Shin, S. S. Yoo, S. Y. Lee, C.-Y. Park, S.-Y. Park, J. W. Kwon, and S.-G. Lee, “Removal of hot spot speckle on laser projection screen using both the running screen and the rotating diffuser,” Displays 27, 91-96 (2006).
[CrossRef]

Lacoste, D.

Lapchuk, A.

Lee, S. Y.

S. C. Shin, S. S. Yoo, S. Y. Lee, C.-Y. Park, S.-Y. Park, J. W. Kwon, and S.-G. Lee, “Removal of hot spot speckle on laser projection screen using both the running screen and the rotating diffuser,” Displays 27, 91-96 (2006).
[CrossRef]

Lee, S.-G.

S. C. Shin, S. S. Yoo, S. Y. Lee, C.-Y. Park, S.-Y. Park, J. W. Kwon, and S.-G. Lee, “Removal of hot spot speckle on laser projection screen using both the running screen and the rotating diffuser,” Displays 27, 91-96 (2006).
[CrossRef]

Leifer, I.

Lemieux, P.-A.

P.-A. Lemieux, M. U. Vera, and D. J. Durian, “Diffusing-light spectroscopies beyond the diffusion limit: the role of ballistic transport and anisotropic scattering,” Phys. Rev. E 57, 4498-4515 (1998).
[CrossRef]

Lemmer, U.

Lenke, R.

MacAdam, F. S.

F. S. MacAdam, Taylor, Taylor & Hobson, Ltd., British patent 592,815 (1947).

Maret, G.

M. Heckmeier and G. Maret, “Visualization of flow in multiple-scattering liquids,” Europhys. Lett. 34, 257-262 (1996).
[CrossRef]

Meuret, Y.

Nafarrate, A. B.

Nelson, R.

H. Kolb, E. Fernandez, R. Nelson, and B. W. Jones, “Webvision--the organization of the retina and visual system,” http://webvision.med.utah.edu.

Norton, R. E.

Park, C.-Y.

S. C. Shin, S. S. Yoo, S. Y. Lee, C.-Y. Park, S.-Y. Park, J. W. Kwon, and S.-G. Lee, “Removal of hot spot speckle on laser projection screen using both the running screen and the rotating diffuser,” Displays 27, 91-96 (2006).
[CrossRef]

Park, S.-Y.

S. C. Shin, S. S. Yoo, S. Y. Lee, C.-Y. Park, S.-Y. Park, J. W. Kwon, and S.-G. Lee, “Removal of hot spot speckle on laser projection screen using both the running screen and the rotating diffuser,” Displays 27, 91-96 (2006).
[CrossRef]

Pétursson, P. R.

Pine, D. J.

D. J. Pine, D. A. Weitz, P. M. Chaikin, and E. Herbolzheimer, “Diffusing-wave spectroscopy,” Phys. Rev. Lett. 60, 1134-1137(1988).
[CrossRef] [PubMed]

Rawson, E. G.

Riechert, F.

Rojas-Ochoa, L. F.

Scheffold, F.

Schurtenberger, P.

Shin, S. C.

S. C. Shin, S. S. Yoo, S. Y. Lee, C.-Y. Park, S.-Y. Park, J. W. Kwon, and S.-G. Lee, “Removal of hot spot speckle on laser projection screen using both the running screen and the rotating diffuser,” Displays 27, 91-96 (2006).
[CrossRef]

Siegel, A. M.

K. K. Bizheva, A. M. Siegel, and D. A. Boas, “Path-length-resolved dynamic light scattering in highly scattering random media: the transition to diffusing wave spectroscopy,” Phys. Rev. E 58, 7664-7667 (1998).
[CrossRef]

Sinichkin, Y. P.

D. A. Zimnyakov and Y. P. Sinichkin, “A study of polarization decay as applied to improved imaging in scattering media,” J. Opt. A Pure Appl. Opt. 2, 200-208 (2000).
[CrossRef]

Song, J. G.

Spencer, C. J. D.

Suh, S. S.

R. Bandyopadhyay, A. S. Gittings, S. S. Suh, P. K. Dixon, and D. J. Durian, “Speckle-visibility spectroscopy: a tool to study time-varying dynamics,” Rev. Sci. Instrum. 76, 093110 (2005).
[CrossRef]

Thienpont, H.

Trotter, J.

J. Trotter, Das Auge (DOZ-Verlag, 1985).

Tschudi, T.

Tuchin, V. V.

V. V. Tuchin, Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis, 2nd ed. (Society of Photo-Optical Instrumentation Engineers, 2007).

Ulyanov, S.

S. Ulyanov, “Diffusing wave spectroscopy with a small number of scattering events: an implication to microflow diagnostics,” Phys. Rev. E 72, 052902 (2005).
[CrossRef]

Van Giel, B.

Vera, M. U.

P.-A. Lemieux, M. U. Vera, and D. J. Durian, “Diffusing-light spectroscopies beyond the diffusion limit: the role of ballistic transport and anisotropic scattering,” Phys. Rev. E 57, 4498-4515 (1998).
[CrossRef]

Verschaffelt, G.

Wang, L.

L. Wang, T. Tschudi, T. Halldórsson, and P. R. Pétursson, “Speckle reduction in laser projection systems by diffractive optical elements,” Appl. Opt. 37, 1770-1775 (1998).
[CrossRef]

L. Wang, S. L. Jacques, and L. Zheng, “CONV--convolution for responses to a finite diameter photon beam incident on multi-layered tissues,” Comput. Methods Programs Biomed. 54, 141-150 (1997).
[CrossRef]

L. Wang, S. L. Jacques, and L. Zheng, “MCML--Monte Carlo modelling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47, 131-146 (1995).
[CrossRef] [PubMed]

Weitz, D. A.

D. J. Pine, D. A. Weitz, P. M. Chaikin, and E. Herbolzheimer, “Diffusing-wave spectroscopy,” Phys. Rev. Lett. 60, 1134-1137(1988).
[CrossRef] [PubMed]

Welford, W. T.

Xu, M.

M. Xu and R. R. Alfano, “Random walk of polarized light in turbid media,” Phys. Rev. Lett. 95, 213901 (2005).
[CrossRef] [PubMed]

Yang, H.

Yoo, S. S.

S. C. Shin, S. S. Yoo, S. Y. Lee, C.-Y. Park, S.-Y. Park, J. W. Kwon, and S.-G. Lee, “Removal of hot spot speckle on laser projection screen using both the running screen and the rotating diffuser,” Displays 27, 91-96 (2006).
[CrossRef]

Yun, S.

Yurlov, V.

Zheng, L.

L. Wang, S. L. Jacques, and L. Zheng, “CONV--convolution for responses to a finite diameter photon beam incident on multi-layered tissues,” Comput. Methods Programs Biomed. 54, 141-150 (1997).
[CrossRef]

L. Wang, S. L. Jacques, and L. Zheng, “MCML--Monte Carlo modelling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47, 131-146 (1995).
[CrossRef] [PubMed]

Zimnyakov, D. A.

D. A. Zimnyakov and Y. P. Sinichkin, “A study of polarization decay as applied to improved imaging in scattering media,” J. Opt. A Pure Appl. Opt. 2, 200-208 (2000).
[CrossRef]

ACM Trans. Graph.

J. R. Frisvad, N. J. Christensen, and H. W. Jensen, “Computing the scattering properties of participating media using Lorenz-Mie theory,” ACM Trans. Graph. 26, 60 (2007).
[CrossRef]

Ann. Phys.

A. Einstein, “Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen,” Ann. Phys. 322, 549-560 (1905).
[CrossRef]

Appl. Opt.

Comput. Methods Programs Biomed.

L. Wang, S. L. Jacques, and L. Zheng, “MCML--Monte Carlo modelling of light transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47, 131-146 (1995).
[CrossRef] [PubMed]

L. Wang, S. L. Jacques, and L. Zheng, “CONV--convolution for responses to a finite diameter photon beam incident on multi-layered tissues,” Comput. Methods Programs Biomed. 54, 141-150 (1997).
[CrossRef]

Displays

S. C. Shin, S. S. Yoo, S. Y. Lee, C.-Y. Park, S.-Y. Park, J. W. Kwon, and S.-G. Lee, “Removal of hot spot speckle on laser projection screen using both the running screen and the rotating diffuser,” Displays 27, 91-96 (2006).
[CrossRef]

Europhys. Lett.

M. Heckmeier and G. Maret, “Visualization of flow in multiple-scattering liquids,” Europhys. Lett. 34, 257-262 (1996).
[CrossRef]

J. Opt. A Pure Appl. Opt.

D. A. Zimnyakov and Y. P. Sinichkin, “A study of polarization decay as applied to improved imaging in scattering media,” J. Opt. A Pure Appl. Opt. 2, 200-208 (2000).
[CrossRef]

J. Opt. Soc. Am.

J. Opt. Soc. Am. A

Philos. Mag.

R. Brown, “A brief account of microscopical observations made in the months of June, July and August, 1827, on the particles contained in the pollen of plants; and on the general existence of active molecules in organic and inorganic bodies,” Philos. Mag. 4, 161-173 (1828).

Phys. Rev. E

K. K. Bizheva, A. M. Siegel, and D. A. Boas, “Path-length-resolved dynamic light scattering in highly scattering random media: the transition to diffusing wave spectroscopy,” Phys. Rev. E 58, 7664-7667 (1998).
[CrossRef]

P.-A. Lemieux, M. U. Vera, and D. J. Durian, “Diffusing-light spectroscopies beyond the diffusion limit: the role of ballistic transport and anisotropic scattering,” Phys. Rev. E 57, 4498-4515 (1998).
[CrossRef]

S. Ulyanov, “Diffusing wave spectroscopy with a small number of scattering events: an implication to microflow diagnostics,” Phys. Rev. E 72, 052902 (2005).
[CrossRef]

Phys. Rev. Lett.

D. J. Pine, D. A. Weitz, P. M. Chaikin, and E. Herbolzheimer, “Diffusing-wave spectroscopy,” Phys. Rev. Lett. 60, 1134-1137(1988).
[CrossRef] [PubMed]

M. Xu and R. R. Alfano, “Random walk of polarized light in turbid media,” Phys. Rev. Lett. 95, 213901 (2005).
[CrossRef] [PubMed]

R. Carminati, R. Elaloufi, and J.-J. Greffet, “Beyond the diffusing-wave spectroscopy model for the temporal fluctuations of scattered light,” Phys. Rev. Lett. 92, 213903 (2004).
[CrossRef] [PubMed]

Rev. Sci. Instrum.

R. Bandyopadhyay, A. S. Gittings, S. S. Suh, P. K. Dixon, and D. J. Durian, “Speckle-visibility spectroscopy: a tool to study time-varying dynamics,” Rev. Sci. Instrum. 76, 093110 (2005).
[CrossRef]

Other

V. V. Tuchin, Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis, 2nd ed. (Society of Photo-Optical Instrumentation Engineers, 2007).

J. R. Frisvad, Light, Matter, and Geometry: The Cornerstones of Appearance Modelling (VDM Verlag, 2008).

J. R. Frisvad, Department of Informatics and Mathematical Modeling, Technical University of Denmark, Richard Petersens Plads, 2800 Lyngby, Denmark (personal communication, 2009).

J. W. Goodman, Speckle Phenomena in Optics: Theory and Applications (Roberts, 2006).

J. Trotter, Das Auge (DOZ-Verlag, 1985).

H. Kolb, E. Fernandez, R. Nelson, and B. W. Jones, “Webvision--the organization of the retina and visual system,” http://webvision.med.utah.edu.

F. S. MacAdam, Taylor, Taylor & Hobson, Ltd., British patent 592,815 (1947).

C. E. Hauber and R. E. Kittredge, U.S. patent 3,473,862 (21 October 1969).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Setup to measure the speckle contrast (lens inserted) and the 1 / e 2 radius of the laser beam after passage through the screen (lens removed). The camera images the screen, which is filled with the colloidal dispersions. The thickness of the screen can be varied from approximately 0.1 to 5 mm .

Fig. 2
Fig. 2

Measured speckle contrasts and 1 / e 2 radii of the laser beam after passage through the screen filled with colloidal dispersion 1 (diluted skimmed milk). The speckle contrast measurements were done for 20 and 40 ms camera integration times. The lines are to guide the eye.

Fig. 3
Fig. 3

Measured speckle contrasts and simulated and measured 1 / e 2 radii of the laser beam after passage through the screen filled with colloidal dispersion 2 (diluted whole milk). The camera integration time was 40 ms . The lines are to guide the eye.

Fig. 4
Fig. 4

Measured speckle contrasts and 1 / e 2 radii of the laser beam after passage through the screen filled with colloidal dispersion 3 (whole milk). The lines are to guide the eye.

Tables (1)

Tables Icon

Table 1 Optical Properties of the Investigated Colloidal Dispersions

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

C ( T ) = 2 T 0 T β | g 1 ( τ ) | 2 ( 1 τ / T ) d τ .
g 1 ( τ ) = 0 P ( s ) exp [ 2 ( τ / τ 0 ) ( s / l * ) ] d s ,
g 1 ( τ ) = L γ l * sinh [ γ ( 6 τ / τ 0 ) 1 / 2 ] sinh [ ( L / l * ) ( 6 τ / τ 0 ) 1 / 2 ] ,

Metrics