Abstract

We present a microlens array characterized by the electroclinic effect of chiral smectic A (SmA*) liquid crystals, which show the very fast dynamic switching characteristics required in high-speed optical devices. In order to easily control the intensity at the focal length of the proposed dynamic microlens structure, we adopt a solid-type liquid crystal polymer with optical anisotropy, which can split the beam intensity into two directions, depending on the vectorial portion of the polarization state of the light. The proposed microlens shows a focal intensity tunable by controlling the polarization of light at the SmA* liquid crystal. The lens has a very fast switching time of about 24μs, which is several times faster than conventional microlens arrays with surface-stabilized ferroelectric liquid crystals.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription