Abstract

A compact optical fiber distance sensor that is capable of measuring arbitrary small distance is produced by fabricating a microsized polymer core at the end of a single mode fiber. The polymer core introduces an additional reflective interface to a conventional Fabry–Perot cavity. As such, sufficient fringes are presented in the whitelight reflectance spectrum of the distance sensor so that arbitrary small distances can be demodulated using the Fourier transformation technique. The performance of the distance sensor is verified experimentally.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Ferreira, A. B. Lobo Ribeiro, J. L. Santos, and F. Farahi, “Simultaneous measurement of displacement and temperature using a low finesse cavity and a fiber Bragg grating,” IEEE Photonics Technol. Lett. 8, 1519-1521 (1996).
    [CrossRef]
  2. P. Swart, “Long-period grating Michelson refractometric sensor,” Meas. Sci. Technol. 15, 1576-1580 (2004).
    [CrossRef]
  3. K. Totsu, Y. Haga, and M. Esashi, “Ultra-miniature fiber-optic pressure sensor using white light interferometry,” J. Micromech. Microeng. 15, 71-75 (2005).
    [CrossRef]
  4. S. Jiang, B. Zeng, Y. Liang, and B. Li, “Optical fiber sensor for tensile and compressive strain measurements by white-light Fabry-Perot interferometry,” Opt. Eng. 46, 034403(2007).
    [CrossRef]
  5. Y. Rao, M. Denga, D. Duana, and T. Zhua, “In-line fiber Fabry-Perot refractive-index tip sensor based on endlessly photonic crystal fiber,” Sens. Actuators A, Phys. A 148, 33-38(2008).
    [CrossRef]
  6. Q. Shi, Z. Wang, L. Jin, Y. Li, H. Zhang, F. Lu, G. Kai, and X. Dong, “A hollow-core photonic crystal fiber cavity based multiplexed Fabry-Perot interferometric strain sensor system,” IEEE Photonics Technol. Lett. 20, 1329-1331 (2008).
    [CrossRef]
  7. J. Yi, “Fourier transform white-light interferometry for the measurement of fiber-optic extrinsic Fabry-Perot interferometric sensors,” IEEE Photonics Technol. Lett. 20, 539(2008).
    [CrossRef]
  8. V. Arya, K. A. Murphy, A. Wang, and R. O. Claus, “Microbend losses in single-mode optical fibers: theoretical and experimental investigation,” J. Lightwave Technol. 13, 1998-2002(1995).
    [CrossRef]
  9. M. Han, Y. Zhang, F. Shen, G. R. Pickrell, and A. Wang, “Signal-processing algorithm for white-light optical fiber extrinsic Fabry-Perot interferometric sensors,” Opt. Lett. 29, 1736-1738 (2004).
    [CrossRef] [PubMed]
  10. R. Dunn, “Near-field scanning optical microscopy,” Chem. Rev. 99, 2891-2927 (1999).
    [CrossRef]
  11. A. Majumer and H. Huang, “Development of an in-fiber white-light interferometric distance sensor for absolute measurement of arbitrary small distances,” Appl. Opt. 47, 2821-2828 (2008).
    [CrossRef]
  12. S. Lacroix, R. Bourbonnais, F. Gonthier, and J. Bures, “Tapered monomode optical fibers: understanding large power transfer,” Appl. Opt. 25, 4421-4425 (1986).
    [CrossRef] [PubMed]
  13. S. J. Frisken, “Light-induced optical waveguide uptapers,” Opt. Lett. 18, 1035-1037 (1993).
    [CrossRef] [PubMed]
  14. A. W. Snyder, “Coupling of modes on a tapered dielectric cylinder,” IEEE Trans. Microwave Theor. Tech. 18, 383-392(1970).
    [CrossRef]
  15. D. T. Cassidy, D. C. Johnson, and K. O. Hill, “Wavelength-dependent transmission of monomode optical fiber tapers,” Appl. Opt. 24, 945-950 (1985).
    [CrossRef] [PubMed]

2008

Y. Rao, M. Denga, D. Duana, and T. Zhua, “In-line fiber Fabry-Perot refractive-index tip sensor based on endlessly photonic crystal fiber,” Sens. Actuators A, Phys. A 148, 33-38(2008).
[CrossRef]

Q. Shi, Z. Wang, L. Jin, Y. Li, H. Zhang, F. Lu, G. Kai, and X. Dong, “A hollow-core photonic crystal fiber cavity based multiplexed Fabry-Perot interferometric strain sensor system,” IEEE Photonics Technol. Lett. 20, 1329-1331 (2008).
[CrossRef]

J. Yi, “Fourier transform white-light interferometry for the measurement of fiber-optic extrinsic Fabry-Perot interferometric sensors,” IEEE Photonics Technol. Lett. 20, 539(2008).
[CrossRef]

A. Majumer and H. Huang, “Development of an in-fiber white-light interferometric distance sensor for absolute measurement of arbitrary small distances,” Appl. Opt. 47, 2821-2828 (2008).
[CrossRef]

2007

S. Jiang, B. Zeng, Y. Liang, and B. Li, “Optical fiber sensor for tensile and compressive strain measurements by white-light Fabry-Perot interferometry,” Opt. Eng. 46, 034403(2007).
[CrossRef]

2005

K. Totsu, Y. Haga, and M. Esashi, “Ultra-miniature fiber-optic pressure sensor using white light interferometry,” J. Micromech. Microeng. 15, 71-75 (2005).
[CrossRef]

2004

1999

R. Dunn, “Near-field scanning optical microscopy,” Chem. Rev. 99, 2891-2927 (1999).
[CrossRef]

1996

L. Ferreira, A. B. Lobo Ribeiro, J. L. Santos, and F. Farahi, “Simultaneous measurement of displacement and temperature using a low finesse cavity and a fiber Bragg grating,” IEEE Photonics Technol. Lett. 8, 1519-1521 (1996).
[CrossRef]

1995

V. Arya, K. A. Murphy, A. Wang, and R. O. Claus, “Microbend losses in single-mode optical fibers: theoretical and experimental investigation,” J. Lightwave Technol. 13, 1998-2002(1995).
[CrossRef]

1993

1986

1985

1970

A. W. Snyder, “Coupling of modes on a tapered dielectric cylinder,” IEEE Trans. Microwave Theor. Tech. 18, 383-392(1970).
[CrossRef]

Arya, V.

V. Arya, K. A. Murphy, A. Wang, and R. O. Claus, “Microbend losses in single-mode optical fibers: theoretical and experimental investigation,” J. Lightwave Technol. 13, 1998-2002(1995).
[CrossRef]

Bourbonnais, R.

Bures, J.

Cassidy, D. T.

Claus, R. O.

V. Arya, K. A. Murphy, A. Wang, and R. O. Claus, “Microbend losses in single-mode optical fibers: theoretical and experimental investigation,” J. Lightwave Technol. 13, 1998-2002(1995).
[CrossRef]

Denga, M.

Y. Rao, M. Denga, D. Duana, and T. Zhua, “In-line fiber Fabry-Perot refractive-index tip sensor based on endlessly photonic crystal fiber,” Sens. Actuators A, Phys. A 148, 33-38(2008).
[CrossRef]

Dong, X.

Q. Shi, Z. Wang, L. Jin, Y. Li, H. Zhang, F. Lu, G. Kai, and X. Dong, “A hollow-core photonic crystal fiber cavity based multiplexed Fabry-Perot interferometric strain sensor system,” IEEE Photonics Technol. Lett. 20, 1329-1331 (2008).
[CrossRef]

Duana, D.

Y. Rao, M. Denga, D. Duana, and T. Zhua, “In-line fiber Fabry-Perot refractive-index tip sensor based on endlessly photonic crystal fiber,” Sens. Actuators A, Phys. A 148, 33-38(2008).
[CrossRef]

Dunn, R.

R. Dunn, “Near-field scanning optical microscopy,” Chem. Rev. 99, 2891-2927 (1999).
[CrossRef]

Esashi, M.

K. Totsu, Y. Haga, and M. Esashi, “Ultra-miniature fiber-optic pressure sensor using white light interferometry,” J. Micromech. Microeng. 15, 71-75 (2005).
[CrossRef]

Farahi, F.

L. Ferreira, A. B. Lobo Ribeiro, J. L. Santos, and F. Farahi, “Simultaneous measurement of displacement and temperature using a low finesse cavity and a fiber Bragg grating,” IEEE Photonics Technol. Lett. 8, 1519-1521 (1996).
[CrossRef]

Ferreira, L.

L. Ferreira, A. B. Lobo Ribeiro, J. L. Santos, and F. Farahi, “Simultaneous measurement of displacement and temperature using a low finesse cavity and a fiber Bragg grating,” IEEE Photonics Technol. Lett. 8, 1519-1521 (1996).
[CrossRef]

Frisken, S. J.

Gonthier, F.

Haga, Y.

K. Totsu, Y. Haga, and M. Esashi, “Ultra-miniature fiber-optic pressure sensor using white light interferometry,” J. Micromech. Microeng. 15, 71-75 (2005).
[CrossRef]

Han, M.

Hill, K. O.

Huang, H.

Jiang, S.

S. Jiang, B. Zeng, Y. Liang, and B. Li, “Optical fiber sensor for tensile and compressive strain measurements by white-light Fabry-Perot interferometry,” Opt. Eng. 46, 034403(2007).
[CrossRef]

Jin, L.

Q. Shi, Z. Wang, L. Jin, Y. Li, H. Zhang, F. Lu, G. Kai, and X. Dong, “A hollow-core photonic crystal fiber cavity based multiplexed Fabry-Perot interferometric strain sensor system,” IEEE Photonics Technol. Lett. 20, 1329-1331 (2008).
[CrossRef]

Johnson, D. C.

Kai, G.

Q. Shi, Z. Wang, L. Jin, Y. Li, H. Zhang, F. Lu, G. Kai, and X. Dong, “A hollow-core photonic crystal fiber cavity based multiplexed Fabry-Perot interferometric strain sensor system,” IEEE Photonics Technol. Lett. 20, 1329-1331 (2008).
[CrossRef]

Lacroix, S.

Li, B.

S. Jiang, B. Zeng, Y. Liang, and B. Li, “Optical fiber sensor for tensile and compressive strain measurements by white-light Fabry-Perot interferometry,” Opt. Eng. 46, 034403(2007).
[CrossRef]

Li, Y.

Q. Shi, Z. Wang, L. Jin, Y. Li, H. Zhang, F. Lu, G. Kai, and X. Dong, “A hollow-core photonic crystal fiber cavity based multiplexed Fabry-Perot interferometric strain sensor system,” IEEE Photonics Technol. Lett. 20, 1329-1331 (2008).
[CrossRef]

Liang, Y.

S. Jiang, B. Zeng, Y. Liang, and B. Li, “Optical fiber sensor for tensile and compressive strain measurements by white-light Fabry-Perot interferometry,” Opt. Eng. 46, 034403(2007).
[CrossRef]

Lobo Ribeiro, A. B.

L. Ferreira, A. B. Lobo Ribeiro, J. L. Santos, and F. Farahi, “Simultaneous measurement of displacement and temperature using a low finesse cavity and a fiber Bragg grating,” IEEE Photonics Technol. Lett. 8, 1519-1521 (1996).
[CrossRef]

Lu, F.

Q. Shi, Z. Wang, L. Jin, Y. Li, H. Zhang, F. Lu, G. Kai, and X. Dong, “A hollow-core photonic crystal fiber cavity based multiplexed Fabry-Perot interferometric strain sensor system,” IEEE Photonics Technol. Lett. 20, 1329-1331 (2008).
[CrossRef]

Majumer, A.

Murphy, K. A.

V. Arya, K. A. Murphy, A. Wang, and R. O. Claus, “Microbend losses in single-mode optical fibers: theoretical and experimental investigation,” J. Lightwave Technol. 13, 1998-2002(1995).
[CrossRef]

Pickrell, G. R.

Rao, Y.

Y. Rao, M. Denga, D. Duana, and T. Zhua, “In-line fiber Fabry-Perot refractive-index tip sensor based on endlessly photonic crystal fiber,” Sens. Actuators A, Phys. A 148, 33-38(2008).
[CrossRef]

Santos, J. L.

L. Ferreira, A. B. Lobo Ribeiro, J. L. Santos, and F. Farahi, “Simultaneous measurement of displacement and temperature using a low finesse cavity and a fiber Bragg grating,” IEEE Photonics Technol. Lett. 8, 1519-1521 (1996).
[CrossRef]

Shen, F.

Shi, Q.

Q. Shi, Z. Wang, L. Jin, Y. Li, H. Zhang, F. Lu, G. Kai, and X. Dong, “A hollow-core photonic crystal fiber cavity based multiplexed Fabry-Perot interferometric strain sensor system,” IEEE Photonics Technol. Lett. 20, 1329-1331 (2008).
[CrossRef]

Snyder, A. W.

A. W. Snyder, “Coupling of modes on a tapered dielectric cylinder,” IEEE Trans. Microwave Theor. Tech. 18, 383-392(1970).
[CrossRef]

Swart, P.

P. Swart, “Long-period grating Michelson refractometric sensor,” Meas. Sci. Technol. 15, 1576-1580 (2004).
[CrossRef]

Totsu, K.

K. Totsu, Y. Haga, and M. Esashi, “Ultra-miniature fiber-optic pressure sensor using white light interferometry,” J. Micromech. Microeng. 15, 71-75 (2005).
[CrossRef]

Wang, A.

M. Han, Y. Zhang, F. Shen, G. R. Pickrell, and A. Wang, “Signal-processing algorithm for white-light optical fiber extrinsic Fabry-Perot interferometric sensors,” Opt. Lett. 29, 1736-1738 (2004).
[CrossRef] [PubMed]

V. Arya, K. A. Murphy, A. Wang, and R. O. Claus, “Microbend losses in single-mode optical fibers: theoretical and experimental investigation,” J. Lightwave Technol. 13, 1998-2002(1995).
[CrossRef]

Wang, Z.

Q. Shi, Z. Wang, L. Jin, Y. Li, H. Zhang, F. Lu, G. Kai, and X. Dong, “A hollow-core photonic crystal fiber cavity based multiplexed Fabry-Perot interferometric strain sensor system,” IEEE Photonics Technol. Lett. 20, 1329-1331 (2008).
[CrossRef]

Yi, J.

J. Yi, “Fourier transform white-light interferometry for the measurement of fiber-optic extrinsic Fabry-Perot interferometric sensors,” IEEE Photonics Technol. Lett. 20, 539(2008).
[CrossRef]

Zeng, B.

S. Jiang, B. Zeng, Y. Liang, and B. Li, “Optical fiber sensor for tensile and compressive strain measurements by white-light Fabry-Perot interferometry,” Opt. Eng. 46, 034403(2007).
[CrossRef]

Zhang, H.

Q. Shi, Z. Wang, L. Jin, Y. Li, H. Zhang, F. Lu, G. Kai, and X. Dong, “A hollow-core photonic crystal fiber cavity based multiplexed Fabry-Perot interferometric strain sensor system,” IEEE Photonics Technol. Lett. 20, 1329-1331 (2008).
[CrossRef]

Zhang, Y.

Zhua, T.

Y. Rao, M. Denga, D. Duana, and T. Zhua, “In-line fiber Fabry-Perot refractive-index tip sensor based on endlessly photonic crystal fiber,” Sens. Actuators A, Phys. A 148, 33-38(2008).
[CrossRef]

Appl. Opt.

Chem. Rev.

R. Dunn, “Near-field scanning optical microscopy,” Chem. Rev. 99, 2891-2927 (1999).
[CrossRef]

IEEE Photonics Technol. Lett.

L. Ferreira, A. B. Lobo Ribeiro, J. L. Santos, and F. Farahi, “Simultaneous measurement of displacement and temperature using a low finesse cavity and a fiber Bragg grating,” IEEE Photonics Technol. Lett. 8, 1519-1521 (1996).
[CrossRef]

Q. Shi, Z. Wang, L. Jin, Y. Li, H. Zhang, F. Lu, G. Kai, and X. Dong, “A hollow-core photonic crystal fiber cavity based multiplexed Fabry-Perot interferometric strain sensor system,” IEEE Photonics Technol. Lett. 20, 1329-1331 (2008).
[CrossRef]

J. Yi, “Fourier transform white-light interferometry for the measurement of fiber-optic extrinsic Fabry-Perot interferometric sensors,” IEEE Photonics Technol. Lett. 20, 539(2008).
[CrossRef]

IEEE Trans. Microwave Theor. Tech.

A. W. Snyder, “Coupling of modes on a tapered dielectric cylinder,” IEEE Trans. Microwave Theor. Tech. 18, 383-392(1970).
[CrossRef]

J. Lightwave Technol.

V. Arya, K. A. Murphy, A. Wang, and R. O. Claus, “Microbend losses in single-mode optical fibers: theoretical and experimental investigation,” J. Lightwave Technol. 13, 1998-2002(1995).
[CrossRef]

J. Micromech. Microeng.

K. Totsu, Y. Haga, and M. Esashi, “Ultra-miniature fiber-optic pressure sensor using white light interferometry,” J. Micromech. Microeng. 15, 71-75 (2005).
[CrossRef]

Meas. Sci. Technol.

P. Swart, “Long-period grating Michelson refractometric sensor,” Meas. Sci. Technol. 15, 1576-1580 (2004).
[CrossRef]

Opt. Eng.

S. Jiang, B. Zeng, Y. Liang, and B. Li, “Optical fiber sensor for tensile and compressive strain measurements by white-light Fabry-Perot interferometry,” Opt. Eng. 46, 034403(2007).
[CrossRef]

Opt. Lett.

Sens. Actuators A, Phys.

Y. Rao, M. Denga, D. Duana, and T. Zhua, “In-line fiber Fabry-Perot refractive-index tip sensor based on endlessly photonic crystal fiber,” Sens. Actuators A, Phys. A 148, 33-38(2008).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Optical fiber-based distance sensor with a polymer tip.

Fig. 2
Fig. 2

Experimental setup for fiber alignment.

Fig. 3
Fig. 3

Fabricating a polymer tip on the endface of an optical fiber: (a) Two SMFs submerged in uncured epoxy with the desired distance between them; (b) Polymer formed between the two fibers using UV light delivered by the illumination fiber; (c) The polymer core is separated from the second fiber by pulling it away from the illumination fiber; (d) Image of a polymer tip 46 μm in length and 8 μm in diameter

Fig. 4
Fig. 4

Measurement system for WLI distance sensor.

Fig. 5
Fig. 5

Reflectance spectrum of the distance sensor and its FFT when the mirror is not presented.

Fig. 6
Fig. 6

FFT of the reflectance spectrum showing frequency peaks contributed by the three interferences.

Fig. 7
Fig. 7

Distances estimated from the frequency peaks of interference I 23 and interference I 13 when distance d is large.

Fig. 8
Fig. 8

FFT of the reflectance spectrum at distances less than 23 μm .

Fig. 9
Fig. 9

Linear relationship between distance d estimated from I 23 and the distances moved by the target.

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

I 12 = I 1 + I 2 + 2 I 1 I 2 cos ( ϕ 12 ) .
I 12 ( λ ) = j [ I 1 + I 12 , j + 2 I 1 I 12 , j cos ( ϕ 12 , j ) ] ,
I 23 ( λ ) = I 2 + I 3 + 2 I 2 I 3 cos ( ϕ 23 ) = I 2 + I 3 + 2 I 2 I 3 cos ( 4 π n m d λ ) ,
I 13 ( λ ) = j [ I 1 + I 3 , j + 2 I 1 I 3 , j cos ( ϕ 13 , j ) ] .
ϕ 13 , j = ϕ 12 , j + 4 π n m d λ .
ϕ 12 , 1 = 2 β 1 L ,
β 1 = 2 π n 1 λ [ 1 ( U 1 e ( 1 / V ) λ 2 π ρ n 1 ) 2 ] 1 / 2 ,
J 0 ( U j ) = 0.
ϕ 12 , j = 2 ( β 1 + Δ β 1 j ) L ,
Δ β 1 j = ( U j 2 2.404 2 ) λ 4 π ρ 2 n 1 exp ( 2 / V ) .
f 12 = ϕ 12 2 π χ = 2 n 1 L [ 1 ( U 1 e ( 1 / V ) λ 2 π ρ n 1 ) 2 ] 1 / 2 2 n 1 L ,
f 23 = ϕ 23 2 π χ = 2 n m d .
f 13 = f 12 + f 23 2 n 1 L + 2 n m d .
d = f 13 f 12 2 n m ,

Metrics