Abstract

We develop an electric field sensor array based on optical fiber interrogation with electro-optic crystals to measure high energy electromagnetic pulses. D-shaped optical fiber provides the platform for resonant coupling with multiple electro-optic crystals, allowing an array of sensing points on a single strand of optical fiber. Because of its small size, flexibility, and dielectric composition, this sensor array is suitable for performing electric-field analysis at multiple points within an electronic device. Using lithium niobate and potassium titanyl phosphate crystals, the sensor array is sensitive to fields as low as 100V/m.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. V. Keuren and J. Knighten, “Implications of the high-power microwave weapon threat in electronic system design,” in 1991 IEEE International Symposium on Electromagnetic Compatibility (IEEE, 1991), pp. 370-371.
    [CrossRef]
  2. C. R. Miller, “Electromagnetic pulse threats in 2010,” http://stinet.dtic.mil/cgi-bin/GetTRDoc?AD=ADA463475=U2=GetTRDoc.pdf (2005).
  3. G. Gaborit, J. Coutaz, and L. Duvillaret, “Vectorial electric field measurement using isotropic electro-optic crystals,” Appl. Phys. Lett. 90, 241118 (2007).
    [CrossRef]
  4. W. Kuo, Y. Huang, and S. Huang, “Three-dimensional electric-field vector measurement with an electro-optic sensing technique,” Opt. Lett. 24, 1546-1548 (1999).
    [CrossRef]
  5. K. Yang, G. David, J. Yook, I. Papapolymerou, L. P. B. Katehi, and J. F. Whitaker, “Electrooptic mapping and finite-element modeling of the near-field pattern of a microstrip patch antenna,” IEEE Trans. Microwave Theory Tech. 48, 288-294(2000).
    [CrossRef]
  6. J. A. Deibel and J. F. Whitaker, “A fiber-mounted polymer electro-optic-sampling field sensor,” in 2003 IEEE LEOS Annual Meeting Conference Proceedings (IEEE, 2003), pp.786-787.
  7. W. C. Wang, W. Lin, H. Marshall, R. Skolnick, and D. Schaafsma, “All-dielectric miniature wideband rf receive antenna,” Opt. Eng. 43, 673-677 (2004).
    [CrossRef]
  8. A. Sasaki and R. Nagatsuma, “Reflection-type cw-millimeter-wave imaging with a high-sensitivity waveguide-mounted electro-optic sensor,” Jpn. J. Appl. Phys. Part 2 41, 83-86(2002).
    [CrossRef]
  9. L. P. B. Katehi, K. Yang, and J. F. Whitaker, “Electric field mapping system using an optical-fiber-based electrooptic probe,” IEEE Microwave Wireless Comp. Lett. 11, 164-166(2001).
    [CrossRef]
  10. H. Sun, A. Pyajt, J. Luo, Z. Shi, S. Hau, A. K. Y. Jen, L. R. Dalton, and A. Chen, “All-dielectric electrooptic sensor based on a polymer microresonator coupled side-polished optical fiber,” IEEE Sens. J. 7, 515-524 (2007).
    [CrossRef]
  11. W. Johnstone, K. McCallion, D. Moodie, G. Thursby, G. Fawcett, and M. S. Gill, “In line fiber optic electric field sensing technique without interruption of the fiber,” IEEE Proc. Sci. Meas. Technol. 142, 109-113 (1995).
    [CrossRef]
  12. R. Gibson, R. Selfridge, S. Schultz, W. Wang, and R. Forber, “Electro-optic sensor from high Q resonance between optical D-fiber and slab waveguide,” Appl. Opt. 47, 2234-2240(2008).
    [CrossRef] [PubMed]
  13. K. Kim, H. Kwon, J. Song, S. Lee, W. Jung, and S. Kang, “Polarizing properties of optical coupler composed of single mode side-polished fiber and multimode metal-clad planar waveguide,” Opt. Commun. 180, 37-42 (2000).
    [CrossRef]
  14. R. Gibson, R. Selfridge, S. Schultz, “Improved sensing performance of D-fiber/planar waveguide couplers,” Opt. Express 15, 2139-2144 (2007).
    [CrossRef] [PubMed]
  15. M. A. Jensen and R. H. Selfridge, “Analysis of etching-induced birefringence changes in elliptic core fibers,” Appl. Opt. 31, 2011-2016 (1992).
    [CrossRef] [PubMed]
  16. J. M. Kvavle, S. M. Schultz, and R. H. Selfridge, “Low loss elliptical core D-fiber to PANDA fiber fusion splicing,” Opt. Express 16, 13552-13559 (2008).
    [CrossRef] [PubMed]

2008 (2)

2007 (3)

R. Gibson, R. Selfridge, S. Schultz, “Improved sensing performance of D-fiber/planar waveguide couplers,” Opt. Express 15, 2139-2144 (2007).
[CrossRef] [PubMed]

H. Sun, A. Pyajt, J. Luo, Z. Shi, S. Hau, A. K. Y. Jen, L. R. Dalton, and A. Chen, “All-dielectric electrooptic sensor based on a polymer microresonator coupled side-polished optical fiber,” IEEE Sens. J. 7, 515-524 (2007).
[CrossRef]

G. Gaborit, J. Coutaz, and L. Duvillaret, “Vectorial electric field measurement using isotropic electro-optic crystals,” Appl. Phys. Lett. 90, 241118 (2007).
[CrossRef]

2004 (1)

W. C. Wang, W. Lin, H. Marshall, R. Skolnick, and D. Schaafsma, “All-dielectric miniature wideband rf receive antenna,” Opt. Eng. 43, 673-677 (2004).
[CrossRef]

2002 (1)

A. Sasaki and R. Nagatsuma, “Reflection-type cw-millimeter-wave imaging with a high-sensitivity waveguide-mounted electro-optic sensor,” Jpn. J. Appl. Phys. Part 2 41, 83-86(2002).
[CrossRef]

2001 (1)

L. P. B. Katehi, K. Yang, and J. F. Whitaker, “Electric field mapping system using an optical-fiber-based electrooptic probe,” IEEE Microwave Wireless Comp. Lett. 11, 164-166(2001).
[CrossRef]

2000 (2)

K. Kim, H. Kwon, J. Song, S. Lee, W. Jung, and S. Kang, “Polarizing properties of optical coupler composed of single mode side-polished fiber and multimode metal-clad planar waveguide,” Opt. Commun. 180, 37-42 (2000).
[CrossRef]

K. Yang, G. David, J. Yook, I. Papapolymerou, L. P. B. Katehi, and J. F. Whitaker, “Electrooptic mapping and finite-element modeling of the near-field pattern of a microstrip patch antenna,” IEEE Trans. Microwave Theory Tech. 48, 288-294(2000).
[CrossRef]

1999 (1)

1995 (1)

W. Johnstone, K. McCallion, D. Moodie, G. Thursby, G. Fawcett, and M. S. Gill, “In line fiber optic electric field sensing technique without interruption of the fiber,” IEEE Proc. Sci. Meas. Technol. 142, 109-113 (1995).
[CrossRef]

1992 (1)

Chen, A.

H. Sun, A. Pyajt, J. Luo, Z. Shi, S. Hau, A. K. Y. Jen, L. R. Dalton, and A. Chen, “All-dielectric electrooptic sensor based on a polymer microresonator coupled side-polished optical fiber,” IEEE Sens. J. 7, 515-524 (2007).
[CrossRef]

Coutaz, J.

G. Gaborit, J. Coutaz, and L. Duvillaret, “Vectorial electric field measurement using isotropic electro-optic crystals,” Appl. Phys. Lett. 90, 241118 (2007).
[CrossRef]

Dalton, L. R.

H. Sun, A. Pyajt, J. Luo, Z. Shi, S. Hau, A. K. Y. Jen, L. R. Dalton, and A. Chen, “All-dielectric electrooptic sensor based on a polymer microresonator coupled side-polished optical fiber,” IEEE Sens. J. 7, 515-524 (2007).
[CrossRef]

David, G.

K. Yang, G. David, J. Yook, I. Papapolymerou, L. P. B. Katehi, and J. F. Whitaker, “Electrooptic mapping and finite-element modeling of the near-field pattern of a microstrip patch antenna,” IEEE Trans. Microwave Theory Tech. 48, 288-294(2000).
[CrossRef]

Deibel, J. A.

J. A. Deibel and J. F. Whitaker, “A fiber-mounted polymer electro-optic-sampling field sensor,” in 2003 IEEE LEOS Annual Meeting Conference Proceedings (IEEE, 2003), pp.786-787.

Duvillaret, L.

G. Gaborit, J. Coutaz, and L. Duvillaret, “Vectorial electric field measurement using isotropic electro-optic crystals,” Appl. Phys. Lett. 90, 241118 (2007).
[CrossRef]

Fawcett, G.

W. Johnstone, K. McCallion, D. Moodie, G. Thursby, G. Fawcett, and M. S. Gill, “In line fiber optic electric field sensing technique without interruption of the fiber,” IEEE Proc. Sci. Meas. Technol. 142, 109-113 (1995).
[CrossRef]

Forber, R.

Gaborit, G.

G. Gaborit, J. Coutaz, and L. Duvillaret, “Vectorial electric field measurement using isotropic electro-optic crystals,” Appl. Phys. Lett. 90, 241118 (2007).
[CrossRef]

Gibson, R.

Gill, M. S.

W. Johnstone, K. McCallion, D. Moodie, G. Thursby, G. Fawcett, and M. S. Gill, “In line fiber optic electric field sensing technique without interruption of the fiber,” IEEE Proc. Sci. Meas. Technol. 142, 109-113 (1995).
[CrossRef]

Hau, S.

H. Sun, A. Pyajt, J. Luo, Z. Shi, S. Hau, A. K. Y. Jen, L. R. Dalton, and A. Chen, “All-dielectric electrooptic sensor based on a polymer microresonator coupled side-polished optical fiber,” IEEE Sens. J. 7, 515-524 (2007).
[CrossRef]

Huang, S.

Huang, Y.

Jen, A. K. Y.

H. Sun, A. Pyajt, J. Luo, Z. Shi, S. Hau, A. K. Y. Jen, L. R. Dalton, and A. Chen, “All-dielectric electrooptic sensor based on a polymer microresonator coupled side-polished optical fiber,” IEEE Sens. J. 7, 515-524 (2007).
[CrossRef]

Jensen, M. A.

Johnstone, W.

W. Johnstone, K. McCallion, D. Moodie, G. Thursby, G. Fawcett, and M. S. Gill, “In line fiber optic electric field sensing technique without interruption of the fiber,” IEEE Proc. Sci. Meas. Technol. 142, 109-113 (1995).
[CrossRef]

Jung, W.

K. Kim, H. Kwon, J. Song, S. Lee, W. Jung, and S. Kang, “Polarizing properties of optical coupler composed of single mode side-polished fiber and multimode metal-clad planar waveguide,” Opt. Commun. 180, 37-42 (2000).
[CrossRef]

Kang, S.

K. Kim, H. Kwon, J. Song, S. Lee, W. Jung, and S. Kang, “Polarizing properties of optical coupler composed of single mode side-polished fiber and multimode metal-clad planar waveguide,” Opt. Commun. 180, 37-42 (2000).
[CrossRef]

Katehi, L. P. B.

L. P. B. Katehi, K. Yang, and J. F. Whitaker, “Electric field mapping system using an optical-fiber-based electrooptic probe,” IEEE Microwave Wireless Comp. Lett. 11, 164-166(2001).
[CrossRef]

K. Yang, G. David, J. Yook, I. Papapolymerou, L. P. B. Katehi, and J. F. Whitaker, “Electrooptic mapping and finite-element modeling of the near-field pattern of a microstrip patch antenna,” IEEE Trans. Microwave Theory Tech. 48, 288-294(2000).
[CrossRef]

Keuren, E. V.

E. V. Keuren and J. Knighten, “Implications of the high-power microwave weapon threat in electronic system design,” in 1991 IEEE International Symposium on Electromagnetic Compatibility (IEEE, 1991), pp. 370-371.
[CrossRef]

Kim, K.

K. Kim, H. Kwon, J. Song, S. Lee, W. Jung, and S. Kang, “Polarizing properties of optical coupler composed of single mode side-polished fiber and multimode metal-clad planar waveguide,” Opt. Commun. 180, 37-42 (2000).
[CrossRef]

Knighten, J.

E. V. Keuren and J. Knighten, “Implications of the high-power microwave weapon threat in electronic system design,” in 1991 IEEE International Symposium on Electromagnetic Compatibility (IEEE, 1991), pp. 370-371.
[CrossRef]

Kuo, W.

Kvavle, J. M.

Kwon, H.

K. Kim, H. Kwon, J. Song, S. Lee, W. Jung, and S. Kang, “Polarizing properties of optical coupler composed of single mode side-polished fiber and multimode metal-clad planar waveguide,” Opt. Commun. 180, 37-42 (2000).
[CrossRef]

Lee, S.

K. Kim, H. Kwon, J. Song, S. Lee, W. Jung, and S. Kang, “Polarizing properties of optical coupler composed of single mode side-polished fiber and multimode metal-clad planar waveguide,” Opt. Commun. 180, 37-42 (2000).
[CrossRef]

Lin, W.

W. C. Wang, W. Lin, H. Marshall, R. Skolnick, and D. Schaafsma, “All-dielectric miniature wideband rf receive antenna,” Opt. Eng. 43, 673-677 (2004).
[CrossRef]

Luo, J.

H. Sun, A. Pyajt, J. Luo, Z. Shi, S. Hau, A. K. Y. Jen, L. R. Dalton, and A. Chen, “All-dielectric electrooptic sensor based on a polymer microresonator coupled side-polished optical fiber,” IEEE Sens. J. 7, 515-524 (2007).
[CrossRef]

Marshall, H.

W. C. Wang, W. Lin, H. Marshall, R. Skolnick, and D. Schaafsma, “All-dielectric miniature wideband rf receive antenna,” Opt. Eng. 43, 673-677 (2004).
[CrossRef]

McCallion, K.

W. Johnstone, K. McCallion, D. Moodie, G. Thursby, G. Fawcett, and M. S. Gill, “In line fiber optic electric field sensing technique without interruption of the fiber,” IEEE Proc. Sci. Meas. Technol. 142, 109-113 (1995).
[CrossRef]

Miller, C. R.

C. R. Miller, “Electromagnetic pulse threats in 2010,” http://stinet.dtic.mil/cgi-bin/GetTRDoc?AD=ADA463475=U2=GetTRDoc.pdf (2005).

Moodie, D.

W. Johnstone, K. McCallion, D. Moodie, G. Thursby, G. Fawcett, and M. S. Gill, “In line fiber optic electric field sensing technique without interruption of the fiber,” IEEE Proc. Sci. Meas. Technol. 142, 109-113 (1995).
[CrossRef]

Nagatsuma, R.

A. Sasaki and R. Nagatsuma, “Reflection-type cw-millimeter-wave imaging with a high-sensitivity waveguide-mounted electro-optic sensor,” Jpn. J. Appl. Phys. Part 2 41, 83-86(2002).
[CrossRef]

Papapolymerou, I.

K. Yang, G. David, J. Yook, I. Papapolymerou, L. P. B. Katehi, and J. F. Whitaker, “Electrooptic mapping and finite-element modeling of the near-field pattern of a microstrip patch antenna,” IEEE Trans. Microwave Theory Tech. 48, 288-294(2000).
[CrossRef]

Pyajt, A.

H. Sun, A. Pyajt, J. Luo, Z. Shi, S. Hau, A. K. Y. Jen, L. R. Dalton, and A. Chen, “All-dielectric electrooptic sensor based on a polymer microresonator coupled side-polished optical fiber,” IEEE Sens. J. 7, 515-524 (2007).
[CrossRef]

Sasaki, A.

A. Sasaki and R. Nagatsuma, “Reflection-type cw-millimeter-wave imaging with a high-sensitivity waveguide-mounted electro-optic sensor,” Jpn. J. Appl. Phys. Part 2 41, 83-86(2002).
[CrossRef]

Schaafsma, D.

W. C. Wang, W. Lin, H. Marshall, R. Skolnick, and D. Schaafsma, “All-dielectric miniature wideband rf receive antenna,” Opt. Eng. 43, 673-677 (2004).
[CrossRef]

Schultz, S.

Schultz, S. M.

Selfridge, R.

Selfridge, R. H.

Shi, Z.

H. Sun, A. Pyajt, J. Luo, Z. Shi, S. Hau, A. K. Y. Jen, L. R. Dalton, and A. Chen, “All-dielectric electrooptic sensor based on a polymer microresonator coupled side-polished optical fiber,” IEEE Sens. J. 7, 515-524 (2007).
[CrossRef]

Skolnick, R.

W. C. Wang, W. Lin, H. Marshall, R. Skolnick, and D. Schaafsma, “All-dielectric miniature wideband rf receive antenna,” Opt. Eng. 43, 673-677 (2004).
[CrossRef]

Song, J.

K. Kim, H. Kwon, J. Song, S. Lee, W. Jung, and S. Kang, “Polarizing properties of optical coupler composed of single mode side-polished fiber and multimode metal-clad planar waveguide,” Opt. Commun. 180, 37-42 (2000).
[CrossRef]

Sun, H.

H. Sun, A. Pyajt, J. Luo, Z. Shi, S. Hau, A. K. Y. Jen, L. R. Dalton, and A. Chen, “All-dielectric electrooptic sensor based on a polymer microresonator coupled side-polished optical fiber,” IEEE Sens. J. 7, 515-524 (2007).
[CrossRef]

Thursby, G.

W. Johnstone, K. McCallion, D. Moodie, G. Thursby, G. Fawcett, and M. S. Gill, “In line fiber optic electric field sensing technique without interruption of the fiber,” IEEE Proc. Sci. Meas. Technol. 142, 109-113 (1995).
[CrossRef]

Wang, W.

Wang, W. C.

W. C. Wang, W. Lin, H. Marshall, R. Skolnick, and D. Schaafsma, “All-dielectric miniature wideband rf receive antenna,” Opt. Eng. 43, 673-677 (2004).
[CrossRef]

Whitaker, J. F.

L. P. B. Katehi, K. Yang, and J. F. Whitaker, “Electric field mapping system using an optical-fiber-based electrooptic probe,” IEEE Microwave Wireless Comp. Lett. 11, 164-166(2001).
[CrossRef]

K. Yang, G. David, J. Yook, I. Papapolymerou, L. P. B. Katehi, and J. F. Whitaker, “Electrooptic mapping and finite-element modeling of the near-field pattern of a microstrip patch antenna,” IEEE Trans. Microwave Theory Tech. 48, 288-294(2000).
[CrossRef]

J. A. Deibel and J. F. Whitaker, “A fiber-mounted polymer electro-optic-sampling field sensor,” in 2003 IEEE LEOS Annual Meeting Conference Proceedings (IEEE, 2003), pp.786-787.

Yang, K.

L. P. B. Katehi, K. Yang, and J. F. Whitaker, “Electric field mapping system using an optical-fiber-based electrooptic probe,” IEEE Microwave Wireless Comp. Lett. 11, 164-166(2001).
[CrossRef]

K. Yang, G. David, J. Yook, I. Papapolymerou, L. P. B. Katehi, and J. F. Whitaker, “Electrooptic mapping and finite-element modeling of the near-field pattern of a microstrip patch antenna,” IEEE Trans. Microwave Theory Tech. 48, 288-294(2000).
[CrossRef]

Yook, J.

K. Yang, G. David, J. Yook, I. Papapolymerou, L. P. B. Katehi, and J. F. Whitaker, “Electrooptic mapping and finite-element modeling of the near-field pattern of a microstrip patch antenna,” IEEE Trans. Microwave Theory Tech. 48, 288-294(2000).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

G. Gaborit, J. Coutaz, and L. Duvillaret, “Vectorial electric field measurement using isotropic electro-optic crystals,” Appl. Phys. Lett. 90, 241118 (2007).
[CrossRef]

IEEE Microwave Wireless Comp. Lett. (1)

L. P. B. Katehi, K. Yang, and J. F. Whitaker, “Electric field mapping system using an optical-fiber-based electrooptic probe,” IEEE Microwave Wireless Comp. Lett. 11, 164-166(2001).
[CrossRef]

IEEE Proc. Sci. Meas. Technol. (1)

W. Johnstone, K. McCallion, D. Moodie, G. Thursby, G. Fawcett, and M. S. Gill, “In line fiber optic electric field sensing technique without interruption of the fiber,” IEEE Proc. Sci. Meas. Technol. 142, 109-113 (1995).
[CrossRef]

IEEE Sens. J. (1)

H. Sun, A. Pyajt, J. Luo, Z. Shi, S. Hau, A. K. Y. Jen, L. R. Dalton, and A. Chen, “All-dielectric electrooptic sensor based on a polymer microresonator coupled side-polished optical fiber,” IEEE Sens. J. 7, 515-524 (2007).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (1)

K. Yang, G. David, J. Yook, I. Papapolymerou, L. P. B. Katehi, and J. F. Whitaker, “Electrooptic mapping and finite-element modeling of the near-field pattern of a microstrip patch antenna,” IEEE Trans. Microwave Theory Tech. 48, 288-294(2000).
[CrossRef]

Jpn. J. Appl. Phys. Part 2 (1)

A. Sasaki and R. Nagatsuma, “Reflection-type cw-millimeter-wave imaging with a high-sensitivity waveguide-mounted electro-optic sensor,” Jpn. J. Appl. Phys. Part 2 41, 83-86(2002).
[CrossRef]

Opt. Commun. (1)

K. Kim, H. Kwon, J. Song, S. Lee, W. Jung, and S. Kang, “Polarizing properties of optical coupler composed of single mode side-polished fiber and multimode metal-clad planar waveguide,” Opt. Commun. 180, 37-42 (2000).
[CrossRef]

Opt. Eng. (1)

W. C. Wang, W. Lin, H. Marshall, R. Skolnick, and D. Schaafsma, “All-dielectric miniature wideband rf receive antenna,” Opt. Eng. 43, 673-677 (2004).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Other (3)

E. V. Keuren and J. Knighten, “Implications of the high-power microwave weapon threat in electronic system design,” in 1991 IEEE International Symposium on Electromagnetic Compatibility (IEEE, 1991), pp. 370-371.
[CrossRef]

C. R. Miller, “Electromagnetic pulse threats in 2010,” http://stinet.dtic.mil/cgi-bin/GetTRDoc?AD=ADA463475=U2=GetTRDoc.pdf (2005).

J. A. Deibel and J. F. Whitaker, “A fiber-mounted polymer electro-optic-sampling field sensor,” in 2003 IEEE LEOS Annual Meeting Conference Proceedings (IEEE, 2003), pp.786-787.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (12)

Fig. 1
Fig. 1

Cross section of a SCOS device showing an optical D-shaped fiber with mode index n ef coupled to an overlay waveguide separated by distance, d, with thickness, t, and bulk index, n 0 .

Fig. 2
Fig. 2

Simulation of the transmission spectrum of a fiber coupled with an EO waveguide showing the resonant modes. Two separate SCOS devices with different resonance behavior are shown in (a) and (b), while the transmission when both devices are multiplexed is shown in (c). The dashed portion in (c) indicates the portion of the transmission spectrum where there is significant overlap between the resonances of the two devices.

Fig. 3
Fig. 3

At midresonance, a resonant mode exhibits a Δ P change in transmission power with a Δ λ shift in wavelength, related by the slope of the coupled mode, S c .

Fig. 4
Fig. 4

SCOS sensor is portrayed next to a 1/4 watt resistor.

Fig. 5
Fig. 5

125 μm D-fiber with a 2 μm × 4 μm elliptical core located 13 μm from the flat surface. A looped etch in hydrofluoric acid removes the cladding at a controlled rate, exposing the core of the fiber while leaving its structure intact.

Fig. 6
Fig. 6

Diagram of the D-fiber during the fabrication process including (a) unetched fiber, (b) unetched fiber with mode field displayed, (c) etched D-fiber with evanescent field exposed, and (d) etched fiber coupled to a slab waveguide.

Fig. 7
Fig. 7

Scanning electron microscope image of the D-fiber core region after etching in hydrofluoric acid. The depressed cladding of the D-fiber etches faster than the surrounding cladding, causing a shallow dip in the cladding at the core region. The fiber core resides 0.7 μm from the surface after 12.3 μm are removed by HF etching. The distance, d, between the core and the placement of the slab waveguide is labeled.

Fig. 8
Fig. 8

(top) Transmission spectrum of a SCOS with 200 μm thick LiNb O 3 crystal slab resulting in a FSR of 3.5 nm . (middle) Transmission spectrum of a SCOS with 100 μm thick KTP crystal slab resulting in a FSR of 10.5 nm . (bottom) Transmission spectrum of the sensor array showing a superposition of the individual resonant behavior with both EO crystals. Regions with overlap are indicated by the dashed sections in the transmission spectrum.

Fig. 9
Fig. 9

Transmission spectrum of KTP and LiNb O 3 SCOS arrays. The midresonance wavelengths for the two elements are chosen outside of the resonance overlap region, as indicated by the dotted portion of the transmission spectrum with λ KTP = 1555.7 nm and λ LiNb O 3 = 1557.0 nm . At the respective midresonance wavelengths the slopes are, respectively, S c = 0.69 μW m / MV and S c = 1.6 μW m / MV for the KTP and LiNb O 3 SCOS.

Fig. 10
Fig. 10

System level diagram for using the electric field sensor array to monitor an electric field with (a) multiple lasers and receivers for simultaneous monitoring and (b) a single laser and receiver for probing one element at a time.

Fig. 11
Fig. 11

FFT signals for the electric-field sensor array as a function of electric field strength on each device. The linearity and sensitivity is shown for the KTP sensor with the data points (circles) mapped against a linear regression (solid line) with R 2 = 0.9988 . The linearity and sensitivity is shown for the LiNb O 3 sensor with the data points (dots) mapped against a linear regression (dashed line) with R 2 = 0.9988 .

Fig. 12
Fig. 12

FFT signal of electric field sensor array as a function of transmitted optical power. The data points (circles) are mapped against a linear fit (solid line) showing that performance is linear ( R 2 = 0.9995 ) with optical power and that device sensitivity increases with higher optical power.

Tables (2)

Tables Icon

Table 1 Relevant Data for Electro-Optic Sampling Analysis of Electro-Optic Slab Waveguide Materials

Tables Icon

Table 2 Sensitivity Parameters for the Electric Field Sensor Array

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

λ m = 2 t m n 0 2 n ef 2 ,
Δ P = ( Δ P Δ λ ) ( Δ λ m Δ n 0 ) ( Δ n 0 ) .
λ m n 0 = λ 0 n 0 n 0 2 n ef 2 ,
Δ λ m Δ n 0 = λ m n 0 .
Δ n 0 = 1 2 n 0 3 r 33 E ,
P t = P q + S c ( 1 2 n 0 3 r 33 Δ λ m Δ n 0 ) E .
V fft = c S c { n 0 3 r 33 2 ( n 0 / λ m ) } E fft ,

Metrics