Abstract

We report an experimental study of the temporal and spatial dynamics of shock waves, cavitation bubbles, and sound waves generated in water during laser shock processing by single Nd:YAG laser pulses of nanosecond duration. A fast ICCD camera (2ns gate time) was employed to record false schlieren photographs, schlieren photographs, and Mach–Zehnder interferograms of the zone surrounding the laser spot site on the target, an aluminum alloy sample. We recorded hemispherical shock fronts, cylindrical shock fronts, plane shock fronts, cavitation bubbles, and phase disturbance tracks.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Kruusing, Handbook of Liquids-Assisted Laser Processing (Elsevier, 2007), p. 464.
  2. J. L. Ocaña, C. Molpeceres, J. A. Porro, G. Gómez, and M. Morales, “Experimental assessment of the influence of irradiation parameters on surface deformation and residual stresses in laser shock processed metallic alloys,” Appl. Surf. Sci. 238, 501-505 (2004).
    [CrossRef]
  3. G. Gómez-Rosas, C. Rubio-González, J. L. Ocaña, C. Molpeceres, J. A. Porro, W. Chi-Moreno, and M. Morales, “High level compressive residual stresses produced in aluminum alloys by laser shock processing,” Appl. Surf. Sci. 252, 883-887 (2005).
    [CrossRef]
  4. G. W. Yang, “Laser ablation in liquids: Application in the synthesis of nanocrystals,” Prog. Mater. Sci. 52, 648-698(2007).
    [CrossRef]
  5. D. Song, M. H. Hong, B. Lukyanchuk, and T. C. Chong, “Laser-induced cavitation bubbles for cleaning of solid surfaces,” J. Appl. Phys. 95, 2952-2956 (2004).
    [CrossRef]
  6. R. O. Esenaliev, A. A. Oraevsky, V. S. Letokhov, A. A. Karabutov, and T. V. Malinsky, “Studies of acoustical and shock waves in the pulsed laser ablation of biotissue,” Lasers Surg. Med. 13, 470-484 (1993).
    [CrossRef]
  7. P. K. Kennedy, D. X. Hammer, and B. A. Rockwell, “Laser-induced breakdown in aqueous media,” Prog. Quantum Electron. 21, 155-248 (1997).
    [CrossRef]
  8. J. L. Ocaña, M. Morales, C. Molpeceres, J. Torres, J. A. Porro, G. Gómez, and C. Rubio, “Predictive assessment and experimental characterization of the influence of irradiation parameters on surface deformation and residual stresses in laser shock processed metallic alloys,” Proc. SPIE 5448, 642-653 (2004).
  9. A. Vogel and W. Lauterborn, “Acoustic transient generation by laser-produced cavitation bubbles near solid boundaries,” J. Acoust. Soc. Am. 84, 719-731 (1988).
    [CrossRef]
  10. M. S. Plesset and R. B. Chapman, “Collapse of an initially spherical vapour cavity in the neighbourhood of a solid boundary,” J. Fluid Mech. 47, 283-290 (1971).
    [CrossRef]
  11. A. Philipp and W. Lauterborn, “Cavitation erosion by single laser-produced bubbles,” J. Fluid. Mech. 361, 75-116 (1998).
  12. J. P. Chen, X. W. Ni, J. Lu, B. M. Bian, and Y. W. Wang, “Laser-induced plasma shock wave and cavity on metal surface underwater,” Microw. Opt. Technol. Lett. 25, 307-311 (2000).
    [CrossRef]
  13. X. Chen, R.-Q. Xu, J.-P. Chen, Z.-H. Shen, L. Jian, and X.-W. Ni, “Shock-wave propagation and cavitation bubble oscillation by Nd:YAG laser ablation of a metal in water,” Appl. Opt. 43, 3251-3257 (2004).
    [CrossRef]
  14. S. Suzuki, T. Itoh, and D. Suzuki, “Visualization and pressure measurement of underwater shock waves induced by pulsed laser irradiation,” in Symposium on Interdisciplinary Shock Wave Research (Sendai, 2004), http://rainbow.ifs.tohoku.ac.jp/~iswi/ISISW/ISISWsuzuki.pdf.
  15. M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th ed. (expanded) (Cambridge University Press, 2003).
  16. L. Rodríguez and R. Escalona, “Fourier transforms method for measuring thermal lens induced in diluted liquid samples,” Opt. Commun. 277, 57-62 (2007).
    [CrossRef]
  17. G. Paltauf, R. Nuster, M. Haltmeier, and P. Burgholzer, “Photoacoustic tomography using a Mach-Zehnder interferometer as an acoustic line detector,” Appl. Opt. 46, 3352-3358(2007).
    [CrossRef]
  18. Yu. I. Ostrovsky, M. M. Butusov, and G. V. Ostrovskaya, Interferometry by Holography (Springer-Verlag, 1980).
  19. G. V. Dreiden, Yu. I. Ostrovsky, and M. I. Etinberg, “Interference-holographic study of a process of cavitation bubble collapse,” Pis'ma Zh. Tekh. Fiz. 6, 805-811 (1980).
  20. W. Lauterborn and W. Hentschel, “Cavitation bubble dynamics studied by high speed photography and holography: part one,” Ultrasonics 23, 260-267 (1985).
    [CrossRef]
  21. T. Balciunas, A. Melninkaitis, G. Tamosauskas, and V. Sirutkaitis, “Time-resolved off-axis digital holography for characterization of ultrafast phenomena in water,” Opt. Lett. 33, 58-60 (2008).
    [CrossRef]
  22. U. Köpf, “Application of speckling for measuring the deflection of laser light by phase objects,” Opt. Commun. 5, 347-350(1972).
    [CrossRef]
  23. S. Mallick and M. L. Roblin, “Speckle pattern interferometry applied to the study of phase objects,” Opt. Commun. 6, 45-49 (1972).
    [CrossRef]
  24. U. Wernekinck and W. Merzkirch, “Speckle photography of spatially extended refractive-index fields,” Appl. Opt. 26, 31-32 (1987).
    [CrossRef]
  25. J. Lapsien and D. Meiners, “Digital speckle techniques for measuring light deflection profiles of inhomogeneous phase objects,” Appl. Opt. 36, 7180-7187 (1997).
    [CrossRef]
  26. G. S. Settles, Schlieren and Shadowgraph Techniques (Springer-Verlag, 2001).
  27. S. Minardi, A. Gopal, M. Tatarakis, A. Couairon, G. Tamošauskas, R. Piskarskas, A. Dubietis, and P. Di Trapani, “Time-resolved refractive index and absorption mapping of light-plasma filaments in water,” Opt. Lett. 33, 86-88 (2008).
    [CrossRef]
  28. J. Ojeda-Castañeda and L. R. Berriel-Valdos, “Classification scheme and properties of schlieren techniques,” Appl. Opt. 18, 3338-3341 (1979).
    [CrossRef]
  29. T. P. Davies, “Schlieren photography--short bibliography and review,” Opt. Laser Technol. 13, 37-42 (1981).
    [CrossRef]
  30. I. I. Komissarova, G. V. Ostrovskaya, V. N. Philippov, and E. N. Shedova, “Generation of shock waves in water and in air by CO2 laser radiation focused on the free surface of a liquid,” Tech. Phys. 42, 247-249 (1997).
    [CrossRef]
  31. M. Frenz, G. Paltauf, and H. Schmidt-Kloiber, “Laser-generated cavitation in absorbing liquid induced by acoustic diffraction,” Phys. Rev. Lett. 76, 3546-3549 (1996).
    [CrossRef]
  32. W. P. Schiffers, S. J. Shaw, and D. C. Emmony, “Acoustical and optical tracking of the collapse of a laser-generated, cavitation bubble near a solid boundary,” Ultrasonics 36, 559-563 (1998).
    [CrossRef]
  33. A. Vogel, S. Busch, and U. Parlitz, “Shock wave emission and cavitation bubble generation by picosecond and nanosecond optical breakdown in water,” J. Acoust. Soc. Am. 100, 148-166(1996).
    [CrossRef]
  34. D. Palanker, I. Turovets, and A. Lewis, “Dynamics of ArF excimer laser-induced cavitation bubbles in gel surrounded by a liquid medium,” Lasers Surg. Med. 21, 294-300 (1997).
    [CrossRef]
  35. J. Noack and A. Vogel, “Single-shot spatially resolved characterization of laser-induced shock waves in water,” Appl. Opt. 37, 4092-4099 (1998).
    [CrossRef]
  36. J. Noack, D. X. Hammer, G. D. Noojin, and A. Vogel, “Influence of pulse duration on mechanical effects after laser-induced breakdown in water,” J. Appl. Phys. 83, 7488-7495(1998).
    [CrossRef]
  37. A. Vogel, K. Nahen, D. Theisen, R. Birngruber, R. J. Thomas, and B. A. Rockwell, “Influence of optical aberrations on laser-induced plasma formation in water and their consequences for intraocular photodisruption,” Appl. Opt. 38, 3636-3643(1999).
    [CrossRef]
  38. E. A. Brujan, G. S. Keen, A. Vogel, and J. R. Blake, “The final stage of the collapse of a cavitation bubble close to a rigid boundary,” Phys. Fluids 14, 85-92 (2002).
    [CrossRef]
  39. E. A. Brujan and A. Vogel, “Stress wave emission and cavitation bubble dynamics by nanosecond optical breakdown in a tissue phantom,” J. Fluid Mech. 558, 281-308 (2006).
    [CrossRef]
  40. Z.Karny and Z. Kafri, “Refractive-index measurements by moiré deflectometry,” Appl. Opt. 21, 3226-3328 (1982).
    [CrossRef]
  41. Y. Nakano and K. Murata, “Measurements of phase objects using the Talbot effect and moiré techniques,” Appl. Opt. 23, 2296-2299 (1984).
    [CrossRef]
  42. M. Wang, “Fourier transform moiré tomography for high-sensitivity mapping asymmetric 3-D temperature field,” Opt. Laser Technol. 34, 679-685 (2002).
    [CrossRef]
  43. A. Marcano, H. Cabrera, M. Guerra, R. A. Cruz, C. Jacinto, and T. Catunda, “Optimizing and calibrating a mode-mismatched thermal lens experiment for low absorption measurement,” J. Opt. Soc. Am. B 23, 1408-1413 (2006).
    [CrossRef]
  44. R. Petkovšek, J. Možina, and G. Močnik, “Optodynamic characterization of the shock waves after laser-induced breakdown in water,” Opt. Express 13, 4107-4112 (2005).
    [CrossRef]
  45. M. A. Harith, V. Palleschi, A. Salvetti, D. P. Singh, G. V. Dreiden, Yu. I. Ostrovsky, and I. V. Semenova, “Dynamics of laser-driven shock waves in water,” J. Appl. Phys. 66, 5194-5197 (1989).
    [CrossRef]
  46. H. Kleine, H. Grönig, and K. Takayama, “Simultaneous shadow, schlieren and interferometric visualization of compressible flows,” Opt. Lasers Eng. 44, 170-189 (2006).
  47. H. K. Park, D. Kim, and C. P. Grigoropoulos, “Pressure generation and measurement in the rapid vaporization of water on a pulsed-laser-heated surface,” J. Appl. Phys. 80, 4072-4081(1996).
    [CrossRef]
  48. Y. Mori, K. Shimada, M. Nakahara, and K. Nagayama, “New water shock sensor,” Rev. Sci. Instrum. 72, 2123-2127 (2001).
    [CrossRef]
  49. J. Lubbers and R. Graaff, “A simple and accurate formula for the sound velocity in water,” Ultrasound Med. Biol. 24, 1065-1068 (1998).
  50. C. Molpeceres, J. A. Porro, G. Gómez, M. Morales, and J. L. Ocaña, “Instrumentación de proceso de tratamiento de materiales por onda de choque generadas por láser (laser shock processing),” Opt. Pura Apl. 36, 51-57 (2003).
  51. C. Rubio-González, J. L. Ocaña, G. Gómez-Rosas, C. Molpeceres, M. Paredes, A. Banderas, J. Porro, and M. Morales, “Effect of laser shock processing on fatigue crack growth and fracture toughness of 6061-T6 aluminum alloy,” Mater. Sci. Eng. A 386, 291-295 (2004).
  52. U. Sánchez-Santana, C. Rubio-González, G. Gómez-Rosas, J. L. Ocaña, C. Molpeceres, J. Porro, and M. Morales, “Wear and friction of 6061-T6 aluminum alloy treated by laser shock processing,” Wear 260, 847-854 (2006).
    [CrossRef]
  53. ImageJ and its Java source code are freely available at http://rsbweb.nih.gov/ij/index.html
  54. http://www.matweb.com/.
  55. IAPWS 5C, “Release on refractive index of ordinary water substance as a function of wavelength, temperature and pressure” (International Association for the Properties of Water and Steam,September 1997), http://www.iapws.org/relguide/rindex.pdf.

2008 (2)

2007 (3)

G. Paltauf, R. Nuster, M. Haltmeier, and P. Burgholzer, “Photoacoustic tomography using a Mach-Zehnder interferometer as an acoustic line detector,” Appl. Opt. 46, 3352-3358(2007).
[CrossRef]

G. W. Yang, “Laser ablation in liquids: Application in the synthesis of nanocrystals,” Prog. Mater. Sci. 52, 648-698(2007).
[CrossRef]

L. Rodríguez and R. Escalona, “Fourier transforms method for measuring thermal lens induced in diluted liquid samples,” Opt. Commun. 277, 57-62 (2007).
[CrossRef]

2006 (4)

E. A. Brujan and A. Vogel, “Stress wave emission and cavitation bubble dynamics by nanosecond optical breakdown in a tissue phantom,” J. Fluid Mech. 558, 281-308 (2006).
[CrossRef]

H. Kleine, H. Grönig, and K. Takayama, “Simultaneous shadow, schlieren and interferometric visualization of compressible flows,” Opt. Lasers Eng. 44, 170-189 (2006).

U. Sánchez-Santana, C. Rubio-González, G. Gómez-Rosas, J. L. Ocaña, C. Molpeceres, J. Porro, and M. Morales, “Wear and friction of 6061-T6 aluminum alloy treated by laser shock processing,” Wear 260, 847-854 (2006).
[CrossRef]

A. Marcano, H. Cabrera, M. Guerra, R. A. Cruz, C. Jacinto, and T. Catunda, “Optimizing and calibrating a mode-mismatched thermal lens experiment for low absorption measurement,” J. Opt. Soc. Am. B 23, 1408-1413 (2006).
[CrossRef]

2005 (2)

R. Petkovšek, J. Možina, and G. Močnik, “Optodynamic characterization of the shock waves after laser-induced breakdown in water,” Opt. Express 13, 4107-4112 (2005).
[CrossRef]

G. Gómez-Rosas, C. Rubio-González, J. L. Ocaña, C. Molpeceres, J. A. Porro, W. Chi-Moreno, and M. Morales, “High level compressive residual stresses produced in aluminum alloys by laser shock processing,” Appl. Surf. Sci. 252, 883-887 (2005).
[CrossRef]

2004 (5)

J. L. Ocaña, C. Molpeceres, J. A. Porro, G. Gómez, and M. Morales, “Experimental assessment of the influence of irradiation parameters on surface deformation and residual stresses in laser shock processed metallic alloys,” Appl. Surf. Sci. 238, 501-505 (2004).
[CrossRef]

D. Song, M. H. Hong, B. Lukyanchuk, and T. C. Chong, “Laser-induced cavitation bubbles for cleaning of solid surfaces,” J. Appl. Phys. 95, 2952-2956 (2004).
[CrossRef]

J. L. Ocaña, M. Morales, C. Molpeceres, J. Torres, J. A. Porro, G. Gómez, and C. Rubio, “Predictive assessment and experimental characterization of the influence of irradiation parameters on surface deformation and residual stresses in laser shock processed metallic alloys,” Proc. SPIE 5448, 642-653 (2004).

X. Chen, R.-Q. Xu, J.-P. Chen, Z.-H. Shen, L. Jian, and X.-W. Ni, “Shock-wave propagation and cavitation bubble oscillation by Nd:YAG laser ablation of a metal in water,” Appl. Opt. 43, 3251-3257 (2004).
[CrossRef]

C. Rubio-González, J. L. Ocaña, G. Gómez-Rosas, C. Molpeceres, M. Paredes, A. Banderas, J. Porro, and M. Morales, “Effect of laser shock processing on fatigue crack growth and fracture toughness of 6061-T6 aluminum alloy,” Mater. Sci. Eng. A 386, 291-295 (2004).

2003 (1)

C. Molpeceres, J. A. Porro, G. Gómez, M. Morales, and J. L. Ocaña, “Instrumentación de proceso de tratamiento de materiales por onda de choque generadas por láser (laser shock processing),” Opt. Pura Apl. 36, 51-57 (2003).

2002 (2)

M. Wang, “Fourier transform moiré tomography for high-sensitivity mapping asymmetric 3-D temperature field,” Opt. Laser Technol. 34, 679-685 (2002).
[CrossRef]

E. A. Brujan, G. S. Keen, A. Vogel, and J. R. Blake, “The final stage of the collapse of a cavitation bubble close to a rigid boundary,” Phys. Fluids 14, 85-92 (2002).
[CrossRef]

2001 (1)

Y. Mori, K. Shimada, M. Nakahara, and K. Nagayama, “New water shock sensor,” Rev. Sci. Instrum. 72, 2123-2127 (2001).
[CrossRef]

2000 (1)

J. P. Chen, X. W. Ni, J. Lu, B. M. Bian, and Y. W. Wang, “Laser-induced plasma shock wave and cavity on metal surface underwater,” Microw. Opt. Technol. Lett. 25, 307-311 (2000).
[CrossRef]

1999 (1)

1998 (5)

J. Noack and A. Vogel, “Single-shot spatially resolved characterization of laser-induced shock waves in water,” Appl. Opt. 37, 4092-4099 (1998).
[CrossRef]

A. Philipp and W. Lauterborn, “Cavitation erosion by single laser-produced bubbles,” J. Fluid. Mech. 361, 75-116 (1998).

J. Lubbers and R. Graaff, “A simple and accurate formula for the sound velocity in water,” Ultrasound Med. Biol. 24, 1065-1068 (1998).

J. Noack, D. X. Hammer, G. D. Noojin, and A. Vogel, “Influence of pulse duration on mechanical effects after laser-induced breakdown in water,” J. Appl. Phys. 83, 7488-7495(1998).
[CrossRef]

W. P. Schiffers, S. J. Shaw, and D. C. Emmony, “Acoustical and optical tracking of the collapse of a laser-generated, cavitation bubble near a solid boundary,” Ultrasonics 36, 559-563 (1998).
[CrossRef]

1997 (4)

D. Palanker, I. Turovets, and A. Lewis, “Dynamics of ArF excimer laser-induced cavitation bubbles in gel surrounded by a liquid medium,” Lasers Surg. Med. 21, 294-300 (1997).
[CrossRef]

P. K. Kennedy, D. X. Hammer, and B. A. Rockwell, “Laser-induced breakdown in aqueous media,” Prog. Quantum Electron. 21, 155-248 (1997).
[CrossRef]

I. I. Komissarova, G. V. Ostrovskaya, V. N. Philippov, and E. N. Shedova, “Generation of shock waves in water and in air by CO2 laser radiation focused on the free surface of a liquid,” Tech. Phys. 42, 247-249 (1997).
[CrossRef]

J. Lapsien and D. Meiners, “Digital speckle techniques for measuring light deflection profiles of inhomogeneous phase objects,” Appl. Opt. 36, 7180-7187 (1997).
[CrossRef]

1996 (3)

M. Frenz, G. Paltauf, and H. Schmidt-Kloiber, “Laser-generated cavitation in absorbing liquid induced by acoustic diffraction,” Phys. Rev. Lett. 76, 3546-3549 (1996).
[CrossRef]

A. Vogel, S. Busch, and U. Parlitz, “Shock wave emission and cavitation bubble generation by picosecond and nanosecond optical breakdown in water,” J. Acoust. Soc. Am. 100, 148-166(1996).
[CrossRef]

H. K. Park, D. Kim, and C. P. Grigoropoulos, “Pressure generation and measurement in the rapid vaporization of water on a pulsed-laser-heated surface,” J. Appl. Phys. 80, 4072-4081(1996).
[CrossRef]

1993 (1)

R. O. Esenaliev, A. A. Oraevsky, V. S. Letokhov, A. A. Karabutov, and T. V. Malinsky, “Studies of acoustical and shock waves in the pulsed laser ablation of biotissue,” Lasers Surg. Med. 13, 470-484 (1993).
[CrossRef]

1989 (1)

M. A. Harith, V. Palleschi, A. Salvetti, D. P. Singh, G. V. Dreiden, Yu. I. Ostrovsky, and I. V. Semenova, “Dynamics of laser-driven shock waves in water,” J. Appl. Phys. 66, 5194-5197 (1989).
[CrossRef]

1988 (1)

A. Vogel and W. Lauterborn, “Acoustic transient generation by laser-produced cavitation bubbles near solid boundaries,” J. Acoust. Soc. Am. 84, 719-731 (1988).
[CrossRef]

1987 (1)

1985 (1)

W. Lauterborn and W. Hentschel, “Cavitation bubble dynamics studied by high speed photography and holography: part one,” Ultrasonics 23, 260-267 (1985).
[CrossRef]

1984 (1)

1982 (1)

Z.Karny and Z. Kafri, “Refractive-index measurements by moiré deflectometry,” Appl. Opt. 21, 3226-3328 (1982).
[CrossRef]

1981 (1)

T. P. Davies, “Schlieren photography--short bibliography and review,” Opt. Laser Technol. 13, 37-42 (1981).
[CrossRef]

1980 (1)

G. V. Dreiden, Yu. I. Ostrovsky, and M. I. Etinberg, “Interference-holographic study of a process of cavitation bubble collapse,” Pis'ma Zh. Tekh. Fiz. 6, 805-811 (1980).

1979 (1)

1972 (2)

U. Köpf, “Application of speckling for measuring the deflection of laser light by phase objects,” Opt. Commun. 5, 347-350(1972).
[CrossRef]

S. Mallick and M. L. Roblin, “Speckle pattern interferometry applied to the study of phase objects,” Opt. Commun. 6, 45-49 (1972).
[CrossRef]

1971 (1)

M. S. Plesset and R. B. Chapman, “Collapse of an initially spherical vapour cavity in the neighbourhood of a solid boundary,” J. Fluid Mech. 47, 283-290 (1971).
[CrossRef]

Balciunas, T.

Banderas, A.

C. Rubio-González, J. L. Ocaña, G. Gómez-Rosas, C. Molpeceres, M. Paredes, A. Banderas, J. Porro, and M. Morales, “Effect of laser shock processing on fatigue crack growth and fracture toughness of 6061-T6 aluminum alloy,” Mater. Sci. Eng. A 386, 291-295 (2004).

Berriel-Valdos, L. R.

Bian, B. M.

J. P. Chen, X. W. Ni, J. Lu, B. M. Bian, and Y. W. Wang, “Laser-induced plasma shock wave and cavity on metal surface underwater,” Microw. Opt. Technol. Lett. 25, 307-311 (2000).
[CrossRef]

Birngruber, R.

Blake, J. R.

E. A. Brujan, G. S. Keen, A. Vogel, and J. R. Blake, “The final stage of the collapse of a cavitation bubble close to a rigid boundary,” Phys. Fluids 14, 85-92 (2002).
[CrossRef]

Born, M.

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th ed. (expanded) (Cambridge University Press, 2003).

Brujan, E. A.

E. A. Brujan and A. Vogel, “Stress wave emission and cavitation bubble dynamics by nanosecond optical breakdown in a tissue phantom,” J. Fluid Mech. 558, 281-308 (2006).
[CrossRef]

E. A. Brujan, G. S. Keen, A. Vogel, and J. R. Blake, “The final stage of the collapse of a cavitation bubble close to a rigid boundary,” Phys. Fluids 14, 85-92 (2002).
[CrossRef]

Burgholzer, P.

Busch, S.

A. Vogel, S. Busch, and U. Parlitz, “Shock wave emission and cavitation bubble generation by picosecond and nanosecond optical breakdown in water,” J. Acoust. Soc. Am. 100, 148-166(1996).
[CrossRef]

Butusov, M. M.

Yu. I. Ostrovsky, M. M. Butusov, and G. V. Ostrovskaya, Interferometry by Holography (Springer-Verlag, 1980).

Cabrera, H.

Catunda, T.

Chapman, R. B.

M. S. Plesset and R. B. Chapman, “Collapse of an initially spherical vapour cavity in the neighbourhood of a solid boundary,” J. Fluid Mech. 47, 283-290 (1971).
[CrossRef]

Chen, J. P.

J. P. Chen, X. W. Ni, J. Lu, B. M. Bian, and Y. W. Wang, “Laser-induced plasma shock wave and cavity on metal surface underwater,” Microw. Opt. Technol. Lett. 25, 307-311 (2000).
[CrossRef]

Chen, J.-P.

Chen, X.

Chi-Moreno, W.

G. Gómez-Rosas, C. Rubio-González, J. L. Ocaña, C. Molpeceres, J. A. Porro, W. Chi-Moreno, and M. Morales, “High level compressive residual stresses produced in aluminum alloys by laser shock processing,” Appl. Surf. Sci. 252, 883-887 (2005).
[CrossRef]

Chong, T. C.

D. Song, M. H. Hong, B. Lukyanchuk, and T. C. Chong, “Laser-induced cavitation bubbles for cleaning of solid surfaces,” J. Appl. Phys. 95, 2952-2956 (2004).
[CrossRef]

Couairon, A.

Cruz, R. A.

Davies, T. P.

T. P. Davies, “Schlieren photography--short bibliography and review,” Opt. Laser Technol. 13, 37-42 (1981).
[CrossRef]

Di Trapani, P.

Dreiden, G. V.

M. A. Harith, V. Palleschi, A. Salvetti, D. P. Singh, G. V. Dreiden, Yu. I. Ostrovsky, and I. V. Semenova, “Dynamics of laser-driven shock waves in water,” J. Appl. Phys. 66, 5194-5197 (1989).
[CrossRef]

G. V. Dreiden, Yu. I. Ostrovsky, and M. I. Etinberg, “Interference-holographic study of a process of cavitation bubble collapse,” Pis'ma Zh. Tekh. Fiz. 6, 805-811 (1980).

Dubietis, A.

Emmony, D. C.

W. P. Schiffers, S. J. Shaw, and D. C. Emmony, “Acoustical and optical tracking of the collapse of a laser-generated, cavitation bubble near a solid boundary,” Ultrasonics 36, 559-563 (1998).
[CrossRef]

Escalona, R.

L. Rodríguez and R. Escalona, “Fourier transforms method for measuring thermal lens induced in diluted liquid samples,” Opt. Commun. 277, 57-62 (2007).
[CrossRef]

Esenaliev, R. O.

R. O. Esenaliev, A. A. Oraevsky, V. S. Letokhov, A. A. Karabutov, and T. V. Malinsky, “Studies of acoustical and shock waves in the pulsed laser ablation of biotissue,” Lasers Surg. Med. 13, 470-484 (1993).
[CrossRef]

Etinberg, M. I.

G. V. Dreiden, Yu. I. Ostrovsky, and M. I. Etinberg, “Interference-holographic study of a process of cavitation bubble collapse,” Pis'ma Zh. Tekh. Fiz. 6, 805-811 (1980).

Frenz, M.

M. Frenz, G. Paltauf, and H. Schmidt-Kloiber, “Laser-generated cavitation in absorbing liquid induced by acoustic diffraction,” Phys. Rev. Lett. 76, 3546-3549 (1996).
[CrossRef]

Gómez, G.

J. L. Ocaña, C. Molpeceres, J. A. Porro, G. Gómez, and M. Morales, “Experimental assessment of the influence of irradiation parameters on surface deformation and residual stresses in laser shock processed metallic alloys,” Appl. Surf. Sci. 238, 501-505 (2004).
[CrossRef]

J. L. Ocaña, M. Morales, C. Molpeceres, J. Torres, J. A. Porro, G. Gómez, and C. Rubio, “Predictive assessment and experimental characterization of the influence of irradiation parameters on surface deformation and residual stresses in laser shock processed metallic alloys,” Proc. SPIE 5448, 642-653 (2004).

C. Molpeceres, J. A. Porro, G. Gómez, M. Morales, and J. L. Ocaña, “Instrumentación de proceso de tratamiento de materiales por onda de choque generadas por láser (laser shock processing),” Opt. Pura Apl. 36, 51-57 (2003).

Gómez-Rosas, G.

U. Sánchez-Santana, C. Rubio-González, G. Gómez-Rosas, J. L. Ocaña, C. Molpeceres, J. Porro, and M. Morales, “Wear and friction of 6061-T6 aluminum alloy treated by laser shock processing,” Wear 260, 847-854 (2006).
[CrossRef]

G. Gómez-Rosas, C. Rubio-González, J. L. Ocaña, C. Molpeceres, J. A. Porro, W. Chi-Moreno, and M. Morales, “High level compressive residual stresses produced in aluminum alloys by laser shock processing,” Appl. Surf. Sci. 252, 883-887 (2005).
[CrossRef]

C. Rubio-González, J. L. Ocaña, G. Gómez-Rosas, C. Molpeceres, M. Paredes, A. Banderas, J. Porro, and M. Morales, “Effect of laser shock processing on fatigue crack growth and fracture toughness of 6061-T6 aluminum alloy,” Mater. Sci. Eng. A 386, 291-295 (2004).

Gopal, A.

Graaff, R.

J. Lubbers and R. Graaff, “A simple and accurate formula for the sound velocity in water,” Ultrasound Med. Biol. 24, 1065-1068 (1998).

Grigoropoulos, C. P.

H. K. Park, D. Kim, and C. P. Grigoropoulos, “Pressure generation and measurement in the rapid vaporization of water on a pulsed-laser-heated surface,” J. Appl. Phys. 80, 4072-4081(1996).
[CrossRef]

Grönig, H.

H. Kleine, H. Grönig, and K. Takayama, “Simultaneous shadow, schlieren and interferometric visualization of compressible flows,” Opt. Lasers Eng. 44, 170-189 (2006).

Guerra, M.

Haltmeier, M.

Hammer, D. X.

J. Noack, D. X. Hammer, G. D. Noojin, and A. Vogel, “Influence of pulse duration on mechanical effects after laser-induced breakdown in water,” J. Appl. Phys. 83, 7488-7495(1998).
[CrossRef]

P. K. Kennedy, D. X. Hammer, and B. A. Rockwell, “Laser-induced breakdown in aqueous media,” Prog. Quantum Electron. 21, 155-248 (1997).
[CrossRef]

Harith, M. A.

M. A. Harith, V. Palleschi, A. Salvetti, D. P. Singh, G. V. Dreiden, Yu. I. Ostrovsky, and I. V. Semenova, “Dynamics of laser-driven shock waves in water,” J. Appl. Phys. 66, 5194-5197 (1989).
[CrossRef]

Hentschel, W.

W. Lauterborn and W. Hentschel, “Cavitation bubble dynamics studied by high speed photography and holography: part one,” Ultrasonics 23, 260-267 (1985).
[CrossRef]

Hong, M. H.

D. Song, M. H. Hong, B. Lukyanchuk, and T. C. Chong, “Laser-induced cavitation bubbles for cleaning of solid surfaces,” J. Appl. Phys. 95, 2952-2956 (2004).
[CrossRef]

Itoh, T.

S. Suzuki, T. Itoh, and D. Suzuki, “Visualization and pressure measurement of underwater shock waves induced by pulsed laser irradiation,” in Symposium on Interdisciplinary Shock Wave Research (Sendai, 2004), http://rainbow.ifs.tohoku.ac.jp/~iswi/ISISW/ISISWsuzuki.pdf.

Jacinto, C.

Jian, L.

Kafri, Z.

Z.Karny and Z. Kafri, “Refractive-index measurements by moiré deflectometry,” Appl. Opt. 21, 3226-3328 (1982).
[CrossRef]

Karabutov, A. A.

R. O. Esenaliev, A. A. Oraevsky, V. S. Letokhov, A. A. Karabutov, and T. V. Malinsky, “Studies of acoustical and shock waves in the pulsed laser ablation of biotissue,” Lasers Surg. Med. 13, 470-484 (1993).
[CrossRef]

Karny, Z.

Z.Karny and Z. Kafri, “Refractive-index measurements by moiré deflectometry,” Appl. Opt. 21, 3226-3328 (1982).
[CrossRef]

Keen, G. S.

E. A. Brujan, G. S. Keen, A. Vogel, and J. R. Blake, “The final stage of the collapse of a cavitation bubble close to a rigid boundary,” Phys. Fluids 14, 85-92 (2002).
[CrossRef]

Kennedy, P. K.

P. K. Kennedy, D. X. Hammer, and B. A. Rockwell, “Laser-induced breakdown in aqueous media,” Prog. Quantum Electron. 21, 155-248 (1997).
[CrossRef]

Kim, D.

H. K. Park, D. Kim, and C. P. Grigoropoulos, “Pressure generation and measurement in the rapid vaporization of water on a pulsed-laser-heated surface,” J. Appl. Phys. 80, 4072-4081(1996).
[CrossRef]

Kleine, H.

H. Kleine, H. Grönig, and K. Takayama, “Simultaneous shadow, schlieren and interferometric visualization of compressible flows,” Opt. Lasers Eng. 44, 170-189 (2006).

Komissarova, I. I.

I. I. Komissarova, G. V. Ostrovskaya, V. N. Philippov, and E. N. Shedova, “Generation of shock waves in water and in air by CO2 laser radiation focused on the free surface of a liquid,” Tech. Phys. 42, 247-249 (1997).
[CrossRef]

Köpf, U.

U. Köpf, “Application of speckling for measuring the deflection of laser light by phase objects,” Opt. Commun. 5, 347-350(1972).
[CrossRef]

Kruusing, A.

A. Kruusing, Handbook of Liquids-Assisted Laser Processing (Elsevier, 2007), p. 464.

Lapsien, J.

Lauterborn, W.

A. Philipp and W. Lauterborn, “Cavitation erosion by single laser-produced bubbles,” J. Fluid. Mech. 361, 75-116 (1998).

A. Vogel and W. Lauterborn, “Acoustic transient generation by laser-produced cavitation bubbles near solid boundaries,” J. Acoust. Soc. Am. 84, 719-731 (1988).
[CrossRef]

W. Lauterborn and W. Hentschel, “Cavitation bubble dynamics studied by high speed photography and holography: part one,” Ultrasonics 23, 260-267 (1985).
[CrossRef]

Letokhov, V. S.

R. O. Esenaliev, A. A. Oraevsky, V. S. Letokhov, A. A. Karabutov, and T. V. Malinsky, “Studies of acoustical and shock waves in the pulsed laser ablation of biotissue,” Lasers Surg. Med. 13, 470-484 (1993).
[CrossRef]

Lewis, A.

D. Palanker, I. Turovets, and A. Lewis, “Dynamics of ArF excimer laser-induced cavitation bubbles in gel surrounded by a liquid medium,” Lasers Surg. Med. 21, 294-300 (1997).
[CrossRef]

Lu, J.

J. P. Chen, X. W. Ni, J. Lu, B. M. Bian, and Y. W. Wang, “Laser-induced plasma shock wave and cavity on metal surface underwater,” Microw. Opt. Technol. Lett. 25, 307-311 (2000).
[CrossRef]

Lubbers, J.

J. Lubbers and R. Graaff, “A simple and accurate formula for the sound velocity in water,” Ultrasound Med. Biol. 24, 1065-1068 (1998).

Lukyanchuk, B.

D. Song, M. H. Hong, B. Lukyanchuk, and T. C. Chong, “Laser-induced cavitation bubbles for cleaning of solid surfaces,” J. Appl. Phys. 95, 2952-2956 (2004).
[CrossRef]

Malinsky, T. V.

R. O. Esenaliev, A. A. Oraevsky, V. S. Letokhov, A. A. Karabutov, and T. V. Malinsky, “Studies of acoustical and shock waves in the pulsed laser ablation of biotissue,” Lasers Surg. Med. 13, 470-484 (1993).
[CrossRef]

Mallick, S.

S. Mallick and M. L. Roblin, “Speckle pattern interferometry applied to the study of phase objects,” Opt. Commun. 6, 45-49 (1972).
[CrossRef]

Marcano, A.

Meiners, D.

Melninkaitis, A.

Merzkirch, W.

Minardi, S.

Mocnik, G.

Molpeceres, C.

U. Sánchez-Santana, C. Rubio-González, G. Gómez-Rosas, J. L. Ocaña, C. Molpeceres, J. Porro, and M. Morales, “Wear and friction of 6061-T6 aluminum alloy treated by laser shock processing,” Wear 260, 847-854 (2006).
[CrossRef]

G. Gómez-Rosas, C. Rubio-González, J. L. Ocaña, C. Molpeceres, J. A. Porro, W. Chi-Moreno, and M. Morales, “High level compressive residual stresses produced in aluminum alloys by laser shock processing,” Appl. Surf. Sci. 252, 883-887 (2005).
[CrossRef]

J. L. Ocaña, C. Molpeceres, J. A. Porro, G. Gómez, and M. Morales, “Experimental assessment of the influence of irradiation parameters on surface deformation and residual stresses in laser shock processed metallic alloys,” Appl. Surf. Sci. 238, 501-505 (2004).
[CrossRef]

C. Rubio-González, J. L. Ocaña, G. Gómez-Rosas, C. Molpeceres, M. Paredes, A. Banderas, J. Porro, and M. Morales, “Effect of laser shock processing on fatigue crack growth and fracture toughness of 6061-T6 aluminum alloy,” Mater. Sci. Eng. A 386, 291-295 (2004).

J. L. Ocaña, M. Morales, C. Molpeceres, J. Torres, J. A. Porro, G. Gómez, and C. Rubio, “Predictive assessment and experimental characterization of the influence of irradiation parameters on surface deformation and residual stresses in laser shock processed metallic alloys,” Proc. SPIE 5448, 642-653 (2004).

C. Molpeceres, J. A. Porro, G. Gómez, M. Morales, and J. L. Ocaña, “Instrumentación de proceso de tratamiento de materiales por onda de choque generadas por láser (laser shock processing),” Opt. Pura Apl. 36, 51-57 (2003).

Morales, M.

U. Sánchez-Santana, C. Rubio-González, G. Gómez-Rosas, J. L. Ocaña, C. Molpeceres, J. Porro, and M. Morales, “Wear and friction of 6061-T6 aluminum alloy treated by laser shock processing,” Wear 260, 847-854 (2006).
[CrossRef]

G. Gómez-Rosas, C. Rubio-González, J. L. Ocaña, C. Molpeceres, J. A. Porro, W. Chi-Moreno, and M. Morales, “High level compressive residual stresses produced in aluminum alloys by laser shock processing,” Appl. Surf. Sci. 252, 883-887 (2005).
[CrossRef]

J. L. Ocaña, C. Molpeceres, J. A. Porro, G. Gómez, and M. Morales, “Experimental assessment of the influence of irradiation parameters on surface deformation and residual stresses in laser shock processed metallic alloys,” Appl. Surf. Sci. 238, 501-505 (2004).
[CrossRef]

J. L. Ocaña, M. Morales, C. Molpeceres, J. Torres, J. A. Porro, G. Gómez, and C. Rubio, “Predictive assessment and experimental characterization of the influence of irradiation parameters on surface deformation and residual stresses in laser shock processed metallic alloys,” Proc. SPIE 5448, 642-653 (2004).

C. Rubio-González, J. L. Ocaña, G. Gómez-Rosas, C. Molpeceres, M. Paredes, A. Banderas, J. Porro, and M. Morales, “Effect of laser shock processing on fatigue crack growth and fracture toughness of 6061-T6 aluminum alloy,” Mater. Sci. Eng. A 386, 291-295 (2004).

C. Molpeceres, J. A. Porro, G. Gómez, M. Morales, and J. L. Ocaña, “Instrumentación de proceso de tratamiento de materiales por onda de choque generadas por láser (laser shock processing),” Opt. Pura Apl. 36, 51-57 (2003).

Mori, Y.

Y. Mori, K. Shimada, M. Nakahara, and K. Nagayama, “New water shock sensor,” Rev. Sci. Instrum. 72, 2123-2127 (2001).
[CrossRef]

Možina, J.

Murata, K.

Nagayama, K.

Y. Mori, K. Shimada, M. Nakahara, and K. Nagayama, “New water shock sensor,” Rev. Sci. Instrum. 72, 2123-2127 (2001).
[CrossRef]

Nahen, K.

Nakahara, M.

Y. Mori, K. Shimada, M. Nakahara, and K. Nagayama, “New water shock sensor,” Rev. Sci. Instrum. 72, 2123-2127 (2001).
[CrossRef]

Nakano, Y.

Ni, X. W.

J. P. Chen, X. W. Ni, J. Lu, B. M. Bian, and Y. W. Wang, “Laser-induced plasma shock wave and cavity on metal surface underwater,” Microw. Opt. Technol. Lett. 25, 307-311 (2000).
[CrossRef]

Ni, X.-W.

Noack, J.

J. Noack and A. Vogel, “Single-shot spatially resolved characterization of laser-induced shock waves in water,” Appl. Opt. 37, 4092-4099 (1998).
[CrossRef]

J. Noack, D. X. Hammer, G. D. Noojin, and A. Vogel, “Influence of pulse duration on mechanical effects after laser-induced breakdown in water,” J. Appl. Phys. 83, 7488-7495(1998).
[CrossRef]

Noojin, G. D.

J. Noack, D. X. Hammer, G. D. Noojin, and A. Vogel, “Influence of pulse duration on mechanical effects after laser-induced breakdown in water,” J. Appl. Phys. 83, 7488-7495(1998).
[CrossRef]

Nuster, R.

Ocaña, J. L.

U. Sánchez-Santana, C. Rubio-González, G. Gómez-Rosas, J. L. Ocaña, C. Molpeceres, J. Porro, and M. Morales, “Wear and friction of 6061-T6 aluminum alloy treated by laser shock processing,” Wear 260, 847-854 (2006).
[CrossRef]

G. Gómez-Rosas, C. Rubio-González, J. L. Ocaña, C. Molpeceres, J. A. Porro, W. Chi-Moreno, and M. Morales, “High level compressive residual stresses produced in aluminum alloys by laser shock processing,” Appl. Surf. Sci. 252, 883-887 (2005).
[CrossRef]

J. L. Ocaña, C. Molpeceres, J. A. Porro, G. Gómez, and M. Morales, “Experimental assessment of the influence of irradiation parameters on surface deformation and residual stresses in laser shock processed metallic alloys,” Appl. Surf. Sci. 238, 501-505 (2004).
[CrossRef]

J. L. Ocaña, M. Morales, C. Molpeceres, J. Torres, J. A. Porro, G. Gómez, and C. Rubio, “Predictive assessment and experimental characterization of the influence of irradiation parameters on surface deformation and residual stresses in laser shock processed metallic alloys,” Proc. SPIE 5448, 642-653 (2004).

C. Rubio-González, J. L. Ocaña, G. Gómez-Rosas, C. Molpeceres, M. Paredes, A. Banderas, J. Porro, and M. Morales, “Effect of laser shock processing on fatigue crack growth and fracture toughness of 6061-T6 aluminum alloy,” Mater. Sci. Eng. A 386, 291-295 (2004).

C. Molpeceres, J. A. Porro, G. Gómez, M. Morales, and J. L. Ocaña, “Instrumentación de proceso de tratamiento de materiales por onda de choque generadas por láser (laser shock processing),” Opt. Pura Apl. 36, 51-57 (2003).

Ojeda-Castañeda, J.

Oraevsky, A. A.

R. O. Esenaliev, A. A. Oraevsky, V. S. Letokhov, A. A. Karabutov, and T. V. Malinsky, “Studies of acoustical and shock waves in the pulsed laser ablation of biotissue,” Lasers Surg. Med. 13, 470-484 (1993).
[CrossRef]

Ostrovskaya, G. V.

I. I. Komissarova, G. V. Ostrovskaya, V. N. Philippov, and E. N. Shedova, “Generation of shock waves in water and in air by CO2 laser radiation focused on the free surface of a liquid,” Tech. Phys. 42, 247-249 (1997).
[CrossRef]

Yu. I. Ostrovsky, M. M. Butusov, and G. V. Ostrovskaya, Interferometry by Holography (Springer-Verlag, 1980).

Ostrovsky, Yu. I.

M. A. Harith, V. Palleschi, A. Salvetti, D. P. Singh, G. V. Dreiden, Yu. I. Ostrovsky, and I. V. Semenova, “Dynamics of laser-driven shock waves in water,” J. Appl. Phys. 66, 5194-5197 (1989).
[CrossRef]

G. V. Dreiden, Yu. I. Ostrovsky, and M. I. Etinberg, “Interference-holographic study of a process of cavitation bubble collapse,” Pis'ma Zh. Tekh. Fiz. 6, 805-811 (1980).

Yu. I. Ostrovsky, M. M. Butusov, and G. V. Ostrovskaya, Interferometry by Holography (Springer-Verlag, 1980).

Palanker, D.

D. Palanker, I. Turovets, and A. Lewis, “Dynamics of ArF excimer laser-induced cavitation bubbles in gel surrounded by a liquid medium,” Lasers Surg. Med. 21, 294-300 (1997).
[CrossRef]

Palleschi, V.

M. A. Harith, V. Palleschi, A. Salvetti, D. P. Singh, G. V. Dreiden, Yu. I. Ostrovsky, and I. V. Semenova, “Dynamics of laser-driven shock waves in water,” J. Appl. Phys. 66, 5194-5197 (1989).
[CrossRef]

Paltauf, G.

G. Paltauf, R. Nuster, M. Haltmeier, and P. Burgholzer, “Photoacoustic tomography using a Mach-Zehnder interferometer as an acoustic line detector,” Appl. Opt. 46, 3352-3358(2007).
[CrossRef]

M. Frenz, G. Paltauf, and H. Schmidt-Kloiber, “Laser-generated cavitation in absorbing liquid induced by acoustic diffraction,” Phys. Rev. Lett. 76, 3546-3549 (1996).
[CrossRef]

Paredes, M.

C. Rubio-González, J. L. Ocaña, G. Gómez-Rosas, C. Molpeceres, M. Paredes, A. Banderas, J. Porro, and M. Morales, “Effect of laser shock processing on fatigue crack growth and fracture toughness of 6061-T6 aluminum alloy,” Mater. Sci. Eng. A 386, 291-295 (2004).

Park, H. K.

H. K. Park, D. Kim, and C. P. Grigoropoulos, “Pressure generation and measurement in the rapid vaporization of water on a pulsed-laser-heated surface,” J. Appl. Phys. 80, 4072-4081(1996).
[CrossRef]

Parlitz, U.

A. Vogel, S. Busch, and U. Parlitz, “Shock wave emission and cavitation bubble generation by picosecond and nanosecond optical breakdown in water,” J. Acoust. Soc. Am. 100, 148-166(1996).
[CrossRef]

Petkovšek, R.

Philipp, A.

A. Philipp and W. Lauterborn, “Cavitation erosion by single laser-produced bubbles,” J. Fluid. Mech. 361, 75-116 (1998).

Philippov, V. N.

I. I. Komissarova, G. V. Ostrovskaya, V. N. Philippov, and E. N. Shedova, “Generation of shock waves in water and in air by CO2 laser radiation focused on the free surface of a liquid,” Tech. Phys. 42, 247-249 (1997).
[CrossRef]

Piskarskas, R.

Plesset, M. S.

M. S. Plesset and R. B. Chapman, “Collapse of an initially spherical vapour cavity in the neighbourhood of a solid boundary,” J. Fluid Mech. 47, 283-290 (1971).
[CrossRef]

Porro, J.

U. Sánchez-Santana, C. Rubio-González, G. Gómez-Rosas, J. L. Ocaña, C. Molpeceres, J. Porro, and M. Morales, “Wear and friction of 6061-T6 aluminum alloy treated by laser shock processing,” Wear 260, 847-854 (2006).
[CrossRef]

C. Rubio-González, J. L. Ocaña, G. Gómez-Rosas, C. Molpeceres, M. Paredes, A. Banderas, J. Porro, and M. Morales, “Effect of laser shock processing on fatigue crack growth and fracture toughness of 6061-T6 aluminum alloy,” Mater. Sci. Eng. A 386, 291-295 (2004).

Porro, J. A.

G. Gómez-Rosas, C. Rubio-González, J. L. Ocaña, C. Molpeceres, J. A. Porro, W. Chi-Moreno, and M. Morales, “High level compressive residual stresses produced in aluminum alloys by laser shock processing,” Appl. Surf. Sci. 252, 883-887 (2005).
[CrossRef]

J. L. Ocaña, M. Morales, C. Molpeceres, J. Torres, J. A. Porro, G. Gómez, and C. Rubio, “Predictive assessment and experimental characterization of the influence of irradiation parameters on surface deformation and residual stresses in laser shock processed metallic alloys,” Proc. SPIE 5448, 642-653 (2004).

J. L. Ocaña, C. Molpeceres, J. A. Porro, G. Gómez, and M. Morales, “Experimental assessment of the influence of irradiation parameters on surface deformation and residual stresses in laser shock processed metallic alloys,” Appl. Surf. Sci. 238, 501-505 (2004).
[CrossRef]

C. Molpeceres, J. A. Porro, G. Gómez, M. Morales, and J. L. Ocaña, “Instrumentación de proceso de tratamiento de materiales por onda de choque generadas por láser (laser shock processing),” Opt. Pura Apl. 36, 51-57 (2003).

Roblin, M. L.

S. Mallick and M. L. Roblin, “Speckle pattern interferometry applied to the study of phase objects,” Opt. Commun. 6, 45-49 (1972).
[CrossRef]

Rockwell, B. A.

Rodríguez, L.

L. Rodríguez and R. Escalona, “Fourier transforms method for measuring thermal lens induced in diluted liquid samples,” Opt. Commun. 277, 57-62 (2007).
[CrossRef]

Rubio, C.

J. L. Ocaña, M. Morales, C. Molpeceres, J. Torres, J. A. Porro, G. Gómez, and C. Rubio, “Predictive assessment and experimental characterization of the influence of irradiation parameters on surface deformation and residual stresses in laser shock processed metallic alloys,” Proc. SPIE 5448, 642-653 (2004).

Rubio-González, C.

U. Sánchez-Santana, C. Rubio-González, G. Gómez-Rosas, J. L. Ocaña, C. Molpeceres, J. Porro, and M. Morales, “Wear and friction of 6061-T6 aluminum alloy treated by laser shock processing,” Wear 260, 847-854 (2006).
[CrossRef]

G. Gómez-Rosas, C. Rubio-González, J. L. Ocaña, C. Molpeceres, J. A. Porro, W. Chi-Moreno, and M. Morales, “High level compressive residual stresses produced in aluminum alloys by laser shock processing,” Appl. Surf. Sci. 252, 883-887 (2005).
[CrossRef]

C. Rubio-González, J. L. Ocaña, G. Gómez-Rosas, C. Molpeceres, M. Paredes, A. Banderas, J. Porro, and M. Morales, “Effect of laser shock processing on fatigue crack growth and fracture toughness of 6061-T6 aluminum alloy,” Mater. Sci. Eng. A 386, 291-295 (2004).

Salvetti, A.

M. A. Harith, V. Palleschi, A. Salvetti, D. P. Singh, G. V. Dreiden, Yu. I. Ostrovsky, and I. V. Semenova, “Dynamics of laser-driven shock waves in water,” J. Appl. Phys. 66, 5194-5197 (1989).
[CrossRef]

Sánchez-Santana, U.

U. Sánchez-Santana, C. Rubio-González, G. Gómez-Rosas, J. L. Ocaña, C. Molpeceres, J. Porro, and M. Morales, “Wear and friction of 6061-T6 aluminum alloy treated by laser shock processing,” Wear 260, 847-854 (2006).
[CrossRef]

Schiffers, W. P.

W. P. Schiffers, S. J. Shaw, and D. C. Emmony, “Acoustical and optical tracking of the collapse of a laser-generated, cavitation bubble near a solid boundary,” Ultrasonics 36, 559-563 (1998).
[CrossRef]

Schmidt-Kloiber, H.

M. Frenz, G. Paltauf, and H. Schmidt-Kloiber, “Laser-generated cavitation in absorbing liquid induced by acoustic diffraction,” Phys. Rev. Lett. 76, 3546-3549 (1996).
[CrossRef]

Semenova, I. V.

M. A. Harith, V. Palleschi, A. Salvetti, D. P. Singh, G. V. Dreiden, Yu. I. Ostrovsky, and I. V. Semenova, “Dynamics of laser-driven shock waves in water,” J. Appl. Phys. 66, 5194-5197 (1989).
[CrossRef]

Settles, G. S.

G. S. Settles, Schlieren and Shadowgraph Techniques (Springer-Verlag, 2001).

Shaw, S. J.

W. P. Schiffers, S. J. Shaw, and D. C. Emmony, “Acoustical and optical tracking of the collapse of a laser-generated, cavitation bubble near a solid boundary,” Ultrasonics 36, 559-563 (1998).
[CrossRef]

Shedova, E. N.

I. I. Komissarova, G. V. Ostrovskaya, V. N. Philippov, and E. N. Shedova, “Generation of shock waves in water and in air by CO2 laser radiation focused on the free surface of a liquid,” Tech. Phys. 42, 247-249 (1997).
[CrossRef]

Shen, Z.-H.

Shimada, K.

Y. Mori, K. Shimada, M. Nakahara, and K. Nagayama, “New water shock sensor,” Rev. Sci. Instrum. 72, 2123-2127 (2001).
[CrossRef]

Singh, D. P.

M. A. Harith, V. Palleschi, A. Salvetti, D. P. Singh, G. V. Dreiden, Yu. I. Ostrovsky, and I. V. Semenova, “Dynamics of laser-driven shock waves in water,” J. Appl. Phys. 66, 5194-5197 (1989).
[CrossRef]

Sirutkaitis, V.

Song, D.

D. Song, M. H. Hong, B. Lukyanchuk, and T. C. Chong, “Laser-induced cavitation bubbles for cleaning of solid surfaces,” J. Appl. Phys. 95, 2952-2956 (2004).
[CrossRef]

Suzuki, D.

S. Suzuki, T. Itoh, and D. Suzuki, “Visualization and pressure measurement of underwater shock waves induced by pulsed laser irradiation,” in Symposium on Interdisciplinary Shock Wave Research (Sendai, 2004), http://rainbow.ifs.tohoku.ac.jp/~iswi/ISISW/ISISWsuzuki.pdf.

Suzuki, S.

S. Suzuki, T. Itoh, and D. Suzuki, “Visualization and pressure measurement of underwater shock waves induced by pulsed laser irradiation,” in Symposium on Interdisciplinary Shock Wave Research (Sendai, 2004), http://rainbow.ifs.tohoku.ac.jp/~iswi/ISISW/ISISWsuzuki.pdf.

Takayama, K.

H. Kleine, H. Grönig, and K. Takayama, “Simultaneous shadow, schlieren and interferometric visualization of compressible flows,” Opt. Lasers Eng. 44, 170-189 (2006).

Tamosauskas, G.

Tamošauskas, G.

Tatarakis, M.

Theisen, D.

Thomas, R. J.

Torres, J.

J. L. Ocaña, M. Morales, C. Molpeceres, J. Torres, J. A. Porro, G. Gómez, and C. Rubio, “Predictive assessment and experimental characterization of the influence of irradiation parameters on surface deformation and residual stresses in laser shock processed metallic alloys,” Proc. SPIE 5448, 642-653 (2004).

Turovets, I.

D. Palanker, I. Turovets, and A. Lewis, “Dynamics of ArF excimer laser-induced cavitation bubbles in gel surrounded by a liquid medium,” Lasers Surg. Med. 21, 294-300 (1997).
[CrossRef]

Vogel, A.

E. A. Brujan and A. Vogel, “Stress wave emission and cavitation bubble dynamics by nanosecond optical breakdown in a tissue phantom,” J. Fluid Mech. 558, 281-308 (2006).
[CrossRef]

E. A. Brujan, G. S. Keen, A. Vogel, and J. R. Blake, “The final stage of the collapse of a cavitation bubble close to a rigid boundary,” Phys. Fluids 14, 85-92 (2002).
[CrossRef]

A. Vogel, K. Nahen, D. Theisen, R. Birngruber, R. J. Thomas, and B. A. Rockwell, “Influence of optical aberrations on laser-induced plasma formation in water and their consequences for intraocular photodisruption,” Appl. Opt. 38, 3636-3643(1999).
[CrossRef]

J. Noack and A. Vogel, “Single-shot spatially resolved characterization of laser-induced shock waves in water,” Appl. Opt. 37, 4092-4099 (1998).
[CrossRef]

J. Noack, D. X. Hammer, G. D. Noojin, and A. Vogel, “Influence of pulse duration on mechanical effects after laser-induced breakdown in water,” J. Appl. Phys. 83, 7488-7495(1998).
[CrossRef]

A. Vogel, S. Busch, and U. Parlitz, “Shock wave emission and cavitation bubble generation by picosecond and nanosecond optical breakdown in water,” J. Acoust. Soc. Am. 100, 148-166(1996).
[CrossRef]

A. Vogel and W. Lauterborn, “Acoustic transient generation by laser-produced cavitation bubbles near solid boundaries,” J. Acoust. Soc. Am. 84, 719-731 (1988).
[CrossRef]

Wang, M.

M. Wang, “Fourier transform moiré tomography for high-sensitivity mapping asymmetric 3-D temperature field,” Opt. Laser Technol. 34, 679-685 (2002).
[CrossRef]

Wang, Y. W.

J. P. Chen, X. W. Ni, J. Lu, B. M. Bian, and Y. W. Wang, “Laser-induced plasma shock wave and cavity on metal surface underwater,” Microw. Opt. Technol. Lett. 25, 307-311 (2000).
[CrossRef]

Wernekinck, U.

Wolf, E.

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th ed. (expanded) (Cambridge University Press, 2003).

Xu, R.-Q.

Yang, G. W.

G. W. Yang, “Laser ablation in liquids: Application in the synthesis of nanocrystals,” Prog. Mater. Sci. 52, 648-698(2007).
[CrossRef]

Appl. Opt. (9)

Z.Karny and Z. Kafri, “Refractive-index measurements by moiré deflectometry,” Appl. Opt. 21, 3226-3328 (1982).
[CrossRef]

J. Ojeda-Castañeda and L. R. Berriel-Valdos, “Classification scheme and properties of schlieren techniques,” Appl. Opt. 18, 3338-3341 (1979).
[CrossRef]

Y. Nakano and K. Murata, “Measurements of phase objects using the Talbot effect and moiré techniques,” Appl. Opt. 23, 2296-2299 (1984).
[CrossRef]

J. Lapsien and D. Meiners, “Digital speckle techniques for measuring light deflection profiles of inhomogeneous phase objects,” Appl. Opt. 36, 7180-7187 (1997).
[CrossRef]

J. Noack and A. Vogel, “Single-shot spatially resolved characterization of laser-induced shock waves in water,” Appl. Opt. 37, 4092-4099 (1998).
[CrossRef]

A. Vogel, K. Nahen, D. Theisen, R. Birngruber, R. J. Thomas, and B. A. Rockwell, “Influence of optical aberrations on laser-induced plasma formation in water and their consequences for intraocular photodisruption,” Appl. Opt. 38, 3636-3643(1999).
[CrossRef]

X. Chen, R.-Q. Xu, J.-P. Chen, Z.-H. Shen, L. Jian, and X.-W. Ni, “Shock-wave propagation and cavitation bubble oscillation by Nd:YAG laser ablation of a metal in water,” Appl. Opt. 43, 3251-3257 (2004).
[CrossRef]

G. Paltauf, R. Nuster, M. Haltmeier, and P. Burgholzer, “Photoacoustic tomography using a Mach-Zehnder interferometer as an acoustic line detector,” Appl. Opt. 46, 3352-3358(2007).
[CrossRef]

U. Wernekinck and W. Merzkirch, “Speckle photography of spatially extended refractive-index fields,” Appl. Opt. 26, 31-32 (1987).
[CrossRef]

Appl. Surf. Sci. (2)

J. L. Ocaña, C. Molpeceres, J. A. Porro, G. Gómez, and M. Morales, “Experimental assessment of the influence of irradiation parameters on surface deformation and residual stresses in laser shock processed metallic alloys,” Appl. Surf. Sci. 238, 501-505 (2004).
[CrossRef]

G. Gómez-Rosas, C. Rubio-González, J. L. Ocaña, C. Molpeceres, J. A. Porro, W. Chi-Moreno, and M. Morales, “High level compressive residual stresses produced in aluminum alloys by laser shock processing,” Appl. Surf. Sci. 252, 883-887 (2005).
[CrossRef]

J. Acoust. Soc. Am. (2)

A. Vogel and W. Lauterborn, “Acoustic transient generation by laser-produced cavitation bubbles near solid boundaries,” J. Acoust. Soc. Am. 84, 719-731 (1988).
[CrossRef]

A. Vogel, S. Busch, and U. Parlitz, “Shock wave emission and cavitation bubble generation by picosecond and nanosecond optical breakdown in water,” J. Acoust. Soc. Am. 100, 148-166(1996).
[CrossRef]

J. Appl. Phys. (4)

J. Noack, D. X. Hammer, G. D. Noojin, and A. Vogel, “Influence of pulse duration on mechanical effects after laser-induced breakdown in water,” J. Appl. Phys. 83, 7488-7495(1998).
[CrossRef]

M. A. Harith, V. Palleschi, A. Salvetti, D. P. Singh, G. V. Dreiden, Yu. I. Ostrovsky, and I. V. Semenova, “Dynamics of laser-driven shock waves in water,” J. Appl. Phys. 66, 5194-5197 (1989).
[CrossRef]

H. K. Park, D. Kim, and C. P. Grigoropoulos, “Pressure generation and measurement in the rapid vaporization of water on a pulsed-laser-heated surface,” J. Appl. Phys. 80, 4072-4081(1996).
[CrossRef]

D. Song, M. H. Hong, B. Lukyanchuk, and T. C. Chong, “Laser-induced cavitation bubbles for cleaning of solid surfaces,” J. Appl. Phys. 95, 2952-2956 (2004).
[CrossRef]

J. Fluid Mech. (2)

M. S. Plesset and R. B. Chapman, “Collapse of an initially spherical vapour cavity in the neighbourhood of a solid boundary,” J. Fluid Mech. 47, 283-290 (1971).
[CrossRef]

E. A. Brujan and A. Vogel, “Stress wave emission and cavitation bubble dynamics by nanosecond optical breakdown in a tissue phantom,” J. Fluid Mech. 558, 281-308 (2006).
[CrossRef]

J. Fluid. Mech. (1)

A. Philipp and W. Lauterborn, “Cavitation erosion by single laser-produced bubbles,” J. Fluid. Mech. 361, 75-116 (1998).

J. Opt. Soc. Am. B (1)

Lasers Surg. Med. (2)

R. O. Esenaliev, A. A. Oraevsky, V. S. Letokhov, A. A. Karabutov, and T. V. Malinsky, “Studies of acoustical and shock waves in the pulsed laser ablation of biotissue,” Lasers Surg. Med. 13, 470-484 (1993).
[CrossRef]

D. Palanker, I. Turovets, and A. Lewis, “Dynamics of ArF excimer laser-induced cavitation bubbles in gel surrounded by a liquid medium,” Lasers Surg. Med. 21, 294-300 (1997).
[CrossRef]

Mater. Sci. Eng. A (1)

C. Rubio-González, J. L. Ocaña, G. Gómez-Rosas, C. Molpeceres, M. Paredes, A. Banderas, J. Porro, and M. Morales, “Effect of laser shock processing on fatigue crack growth and fracture toughness of 6061-T6 aluminum alloy,” Mater. Sci. Eng. A 386, 291-295 (2004).

Microw. Opt. Technol. Lett. (1)

J. P. Chen, X. W. Ni, J. Lu, B. M. Bian, and Y. W. Wang, “Laser-induced plasma shock wave and cavity on metal surface underwater,” Microw. Opt. Technol. Lett. 25, 307-311 (2000).
[CrossRef]

Opt. Commun. (3)

L. Rodríguez and R. Escalona, “Fourier transforms method for measuring thermal lens induced in diluted liquid samples,” Opt. Commun. 277, 57-62 (2007).
[CrossRef]

U. Köpf, “Application of speckling for measuring the deflection of laser light by phase objects,” Opt. Commun. 5, 347-350(1972).
[CrossRef]

S. Mallick and M. L. Roblin, “Speckle pattern interferometry applied to the study of phase objects,” Opt. Commun. 6, 45-49 (1972).
[CrossRef]

Opt. Express (1)

Opt. Laser Technol. (2)

M. Wang, “Fourier transform moiré tomography for high-sensitivity mapping asymmetric 3-D temperature field,” Opt. Laser Technol. 34, 679-685 (2002).
[CrossRef]

T. P. Davies, “Schlieren photography--short bibliography and review,” Opt. Laser Technol. 13, 37-42 (1981).
[CrossRef]

Opt. Lasers Eng. (1)

H. Kleine, H. Grönig, and K. Takayama, “Simultaneous shadow, schlieren and interferometric visualization of compressible flows,” Opt. Lasers Eng. 44, 170-189 (2006).

Opt. Lett. (2)

Opt. Pura Apl. (1)

C. Molpeceres, J. A. Porro, G. Gómez, M. Morales, and J. L. Ocaña, “Instrumentación de proceso de tratamiento de materiales por onda de choque generadas por láser (laser shock processing),” Opt. Pura Apl. 36, 51-57 (2003).

Phys. Fluids (1)

E. A. Brujan, G. S. Keen, A. Vogel, and J. R. Blake, “The final stage of the collapse of a cavitation bubble close to a rigid boundary,” Phys. Fluids 14, 85-92 (2002).
[CrossRef]

Phys. Rev. Lett. (1)

M. Frenz, G. Paltauf, and H. Schmidt-Kloiber, “Laser-generated cavitation in absorbing liquid induced by acoustic diffraction,” Phys. Rev. Lett. 76, 3546-3549 (1996).
[CrossRef]

Pis'ma Zh. Tekh. Fiz. (1)

G. V. Dreiden, Yu. I. Ostrovsky, and M. I. Etinberg, “Interference-holographic study of a process of cavitation bubble collapse,” Pis'ma Zh. Tekh. Fiz. 6, 805-811 (1980).

Proc. SPIE (1)

J. L. Ocaña, M. Morales, C. Molpeceres, J. Torres, J. A. Porro, G. Gómez, and C. Rubio, “Predictive assessment and experimental characterization of the influence of irradiation parameters on surface deformation and residual stresses in laser shock processed metallic alloys,” Proc. SPIE 5448, 642-653 (2004).

Prog. Mater. Sci. (1)

G. W. Yang, “Laser ablation in liquids: Application in the synthesis of nanocrystals,” Prog. Mater. Sci. 52, 648-698(2007).
[CrossRef]

Prog. Quantum Electron. (1)

P. K. Kennedy, D. X. Hammer, and B. A. Rockwell, “Laser-induced breakdown in aqueous media,” Prog. Quantum Electron. 21, 155-248 (1997).
[CrossRef]

Rev. Sci. Instrum. (1)

Y. Mori, K. Shimada, M. Nakahara, and K. Nagayama, “New water shock sensor,” Rev. Sci. Instrum. 72, 2123-2127 (2001).
[CrossRef]

Tech. Phys. (1)

I. I. Komissarova, G. V. Ostrovskaya, V. N. Philippov, and E. N. Shedova, “Generation of shock waves in water and in air by CO2 laser radiation focused on the free surface of a liquid,” Tech. Phys. 42, 247-249 (1997).
[CrossRef]

Ultrasonics (2)

W. P. Schiffers, S. J. Shaw, and D. C. Emmony, “Acoustical and optical tracking of the collapse of a laser-generated, cavitation bubble near a solid boundary,” Ultrasonics 36, 559-563 (1998).
[CrossRef]

W. Lauterborn and W. Hentschel, “Cavitation bubble dynamics studied by high speed photography and holography: part one,” Ultrasonics 23, 260-267 (1985).
[CrossRef]

Ultrasound Med. Biol. (1)

J. Lubbers and R. Graaff, “A simple and accurate formula for the sound velocity in water,” Ultrasound Med. Biol. 24, 1065-1068 (1998).

Wear (1)

U. Sánchez-Santana, C. Rubio-González, G. Gómez-Rosas, J. L. Ocaña, C. Molpeceres, J. Porro, and M. Morales, “Wear and friction of 6061-T6 aluminum alloy treated by laser shock processing,” Wear 260, 847-854 (2006).
[CrossRef]

Other (8)

ImageJ and its Java source code are freely available at http://rsbweb.nih.gov/ij/index.html

http://www.matweb.com/.

IAPWS 5C, “Release on refractive index of ordinary water substance as a function of wavelength, temperature and pressure” (International Association for the Properties of Water and Steam,September 1997), http://www.iapws.org/relguide/rindex.pdf.

G. S. Settles, Schlieren and Shadowgraph Techniques (Springer-Verlag, 2001).

A. Kruusing, Handbook of Liquids-Assisted Laser Processing (Elsevier, 2007), p. 464.

Yu. I. Ostrovsky, M. M. Butusov, and G. V. Ostrovskaya, Interferometry by Holography (Springer-Verlag, 1980).

S. Suzuki, T. Itoh, and D. Suzuki, “Visualization and pressure measurement of underwater shock waves induced by pulsed laser irradiation,” in Symposium on Interdisciplinary Shock Wave Research (Sendai, 2004), http://rainbow.ifs.tohoku.ac.jp/~iswi/ISISW/ISISWsuzuki.pdf.

M. Born and E. Wolf, Principles of Optics: Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 7th ed. (expanded) (Cambridge University Press, 2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Simplified scheme of the optical setup: (1) laser, (2) 100% mirror, (3) lens f = 200 mm , (4) tank, (5) laser + safety shunter , (6) 100% mirror, (7) beam expander, (8) Mach–Zehnder interferometer, (9) electromechanical optical gate, (10) spectral filter, (11) lens f = 150 mm , (12) spatial filter, (13) ICCD + frame grabber + PC .

Fig. 2
Fig. 2

Raw false schlieren photographs for 2000 ns delay time after 1, 2, and 10 shots. Exposure time 2 ns . Frequency-doubled Nd:YAG laser beam probe. Laser pulses propagate from right to left.

Fig. 3
Fig. 3

Raw false schlieren photographs (first row) and raw schlieren photographs (second row) for delay times from 25 ns to 100 ns . Exposure time 2 ns , frequency-doubled Nd:YAG laser beam probe. Third row, schlieren photograph at 100 ns delay time with enhanced contrast and increased magnification. Laser pulses propagate from right to left.

Fig. 4
Fig. 4

Interferograms of the interaction zone for delay times from 25 ns to 100 ns . Exposure time 2 ns , Ar + laser beam probe. Laser pulses propagate from right to left.

Fig. 5
Fig. 5

Raw schlieren photographs for delay times from 150 ns to 5000 ns . Exposure time 2 ns , frequency-doubled Nd:YAG laser beam probe. (1) sample, (2) V-shaped optical disturbances, (3) almost plane wavefront moving away from the sample, (4) cavitation bubble at its initial stage of expansion, (5) almost hemispherical shock wave, (6) wavefront resulting from the superposition of spherical shock waves due to optical breakdown, and (7) track of optical disturbances. Laser pulses propagate from right to left.

Fig. 6
Fig. 6

Interferogram of the interaction zone at t = 750 ns . Exposure time 2 ns , Ar + laser beam probe. The following phenomena can be observed: V-shaped phase objects as folds of the otherwise straight interference fringes, the curvature of the interference fringes inside the cylindrical shock front (this suggests a radially graded optical path), the random structure of the interference patterns inside the hemispherical shock front and near the rims of the cylindrical shock front, and the phase disturbance track. Laser pulses propagate from right to left.

Fig. 7
Fig. 7

Onset and collapse of the cavitation bubble. Raw false schlieren photographs for delay times from 70 μs to 15 ms . Exposure time 2 ns , frequency-doubled Nd:YAG laser beam probe. Laser pulses propagate from right to left.

Fig. 8
Fig. 8

Measured variables. x sh ( t ) , position of the rim of the hemispherical shock front on the x axis; Δ y f ( t ) , half-width of the cylindrical shock front; x a i , position of the rim of the plane front i; i = 1 , 2 , 3 , 4 ; x c ( t ) , Δ y c ( t ) ; position of the rim of the cavitation bubble on the x axis and its half-width on the y axis, respectively; α 1 , α 2 ; angles of the V-shaped optical disturbances.

Fig. 9
Fig. 9

Plot of the position x sh ( t ) of the rim of the hemispherical shock front.

Fig. 10
Fig. 10

Plots of the speed v sh ( t ) of the rim of the hemispherical shock front. Thin lines denote the estimated uncertainty.

Fig. 11
Fig. 11

Plot of the half-width Δ y f ( t ) of the cylindrical shock front.

Fig. 12
Fig. 12

Plots of the speed v f ( t ) of the rim of cylindrical shock front. Thin lines denote the estimated uncertainty.

Fig. 13
Fig. 13

Plots of the positions x a i ( t ) of the rim of the plane fronts i, i = 1 , 2 , 3 , 4 .

Fig. 14
Fig. 14

Plots of the position x c ( t ) and the half-width Δ y c ( t ) of the cavitation bubble.

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

x sh ( t ) = x sh 0 + v sh 0 t A sh exp ( t t sh τ sh ) mm , R 2 = 0.9996 , for     0 . 1 5 μs < t < 6 μs ,
x sh = [ ( 1.528 ± 0.006 ) t + 0.58 ± 0.01 ) ] mm , R 2 = 0.9999 , 2 μs t 6 μs .
v sh ( t ) = v sh 0 + A sh τ sh exp ( t t sh τ sh ) mm , for     0 . 1 5 μs < t < 6 μs .
v sh 0 = ( 1528 ± 6 ) m / s , for     2 μs t 6 μs .
y f ( t ) = y f 0 + v f 0 t A f exp ( t t f τ f ) mm , R 2 = 0.9996 , for     0.03 μs < t < 1 μs ,
y f = [ ( 1.500 ± 0.005 ) t + 0.244 ± 0.001 ) mm , R 2 = 0.9995 , 0.1 μs < t 1 μs .
v f ( t ) = v f 0 + A f τ f exp ( t t f 0 τ f ) mm , for     0 . 03 μs < t < 1 μs ,
v f 0 = ( 1500 ± 5 ) m / s , for     0.1 μs < t < 1 μs .
Δ t = 2 d v sample ,
x a i ( t ) = v water t + x 0 i ,
x 0 i = 2 ( i 1 ) d v water v sample + x r v water τ 0 ,
x 0 i = m ( i 1 ) + x 0 ,
m = 2 v water v sample d ,
x 0 = x r v water τ 0 .
v sample = 2 d m v water 6400 m / s ,
v long = E ρ 5127 m / s , v trans = G ρ 3170 m / s ,

Metrics