Abstract

We present an analysis of the laboratory reflectance and emissivity spectra of 11 soil samples collected on different field campaigns carried out over a diverse suite of test sites in Europe, North Africa, and South America from 2002 to 2008. Hemispherical reflectance spectra were measured from 2.0 to 14μm with a Fourier transform infrared spectrometer, and x-ray diffraction analysis (XRD) was used to determine the mineralogical phases of the soil samples. Emissivity spectra were obtained from the hemispherical reflectance measurements using Kirchhoff’s law and compared with in situ radiance measurements obtained with a CIMEL Electronique CE312-2 thermal radiometer and converted to emissivity using the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) temperature and emissivity separation algorithm. The CIMEL has five narrow bands at approximately the same positions as the ASTER. Results show a root mean square error typically below 0.015 between laboratory emissivity measurements and emissivity measurements derived from the field radiometer.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. Becker, W. Ngai, and M. P. Stoll, “An active method for measuring thermal infrared effective emissivities: implications and perspectives for remote sensing,” Adv. Space Res. 1, 193-210 (1981).
    [CrossRef]
  2. J. A. Sobrino and J. Cuenca, “Angular variation of thermal infrared emissivity for some natural surfaces from experimental measurements,” Appl. Opt. 38, 3931-3936 (1999).
    [CrossRef]
  3. J. Cuenca and J. A. Sobrino, “Experimental measurements for studying angular and spectral variation of thermal infrared emissivity,” Appl. Opt. 43, 4598-4602 (2004).
    [CrossRef] [PubMed]
  4. J. W. Salisbury, A. Wald, and D. M. D'Aria, “Thermal-infrared remote sensing and Kirchhoffs's law. 1. Laboratory measurements,” J. Geophys. Res. 99, 11897-11911 (1994).
    [CrossRef]
  5. J. W. Salisbury, L. S. Walter, N. Vergo, and D. M. D'Aria, Infrared (2.1-25 μm) Spectra of Minerals (Johns Hopkins U. Press, 1991), p. 267.
  6. P. Christensen and S. T. Harrison, “Thermal infrared emission spectroscopy of natural surfaces: application to desert varnish coatings and rocks,” J. Geophys. Res. 98, 19819-19834 (1993).
    [CrossRef]
  7. P. R. Christensen, J. L. Bandfield, V. E. Hamilton, D. A. Howard, M. E. Lane, J. L. Piatek, S. W. Ruff, and W. L. Stefanov, “A thermal emission spectral library of rock forming minerals,” J. Geophys. Res. 105, 9735-9738 (2000).
    [CrossRef]
  8. http://speclib.asu.edu/.
  9. A. M. Baldridge, S. J. Hook, C. I. Grove, and G. Rivera, “The ASTER spectral library version 2.0,” Remote Sens. Environ. 113, 711-715 (2009).
    [CrossRef]
  10. http://speclib.jpl.nasa.gov/.
  11. F. E. Nicodemus, “Directional reflectance and emissivity of an opaque surface,” Appl. Opt. 4, 767-773 (1965).
    [CrossRef]
  12. S. J. Hook, J. E. Dmochowski, K. A. Howard, L. C. Rowan, K. E. Karlstrom, and J. M. Stock, “Mapping variations in weight percent silica measured from multispectral thermal infrared imagery--Examples from the Hiller Mountains, Nevada, USA and Tres Virgenes-La Reforma, Baja California Sur, Mexico,” Remote Sens. Environ. 95, 273-289 (2005).
    [CrossRef]
  13. A. Gillespie, S. Rokugawa, T. Matsunaga, J. S. Cothern, S. J. Hook, and A. B. Kahle, “A temperature and emissivity separation algorithm for advance spaceborne thermal emission and reflection radiometer (ASTER) images,” IEEE Trans. Geosci. Remote Sens. 36, 1113-1126 (1998).
    [CrossRef]
  14. P. S. Kealy and S. J. Hook, “Separating temperature and emissivity in thermal infrared multispectral scanner data: implications for recovering land surface temperatures,” IEEE Trans. Geosci. Remote Sens. 31, 1155-1164 (1993).
    [CrossRef]
  15. V. Payan and A. Royer, “Analysis of temperature and emissivity separation (TES) algorithm applicability and sensitivity,” Int. J. Remote Sens. 25, 15-37 (2004).
    [CrossRef]
  16. J. C. Jiménez-Muñoz and J. A. Sobrino, “Emissivity spectra obtained from field and laboratory measurements using the temperature and emissivity separation algorithm,” Appl. Opt. 45, 7104-7109 (2006).
    [CrossRef] [PubMed]

2009

A. M. Baldridge, S. J. Hook, C. I. Grove, and G. Rivera, “The ASTER spectral library version 2.0,” Remote Sens. Environ. 113, 711-715 (2009).
[CrossRef]

2006

2005

S. J. Hook, J. E. Dmochowski, K. A. Howard, L. C. Rowan, K. E. Karlstrom, and J. M. Stock, “Mapping variations in weight percent silica measured from multispectral thermal infrared imagery--Examples from the Hiller Mountains, Nevada, USA and Tres Virgenes-La Reforma, Baja California Sur, Mexico,” Remote Sens. Environ. 95, 273-289 (2005).
[CrossRef]

2004

V. Payan and A. Royer, “Analysis of temperature and emissivity separation (TES) algorithm applicability and sensitivity,” Int. J. Remote Sens. 25, 15-37 (2004).
[CrossRef]

J. Cuenca and J. A. Sobrino, “Experimental measurements for studying angular and spectral variation of thermal infrared emissivity,” Appl. Opt. 43, 4598-4602 (2004).
[CrossRef] [PubMed]

2000

P. R. Christensen, J. L. Bandfield, V. E. Hamilton, D. A. Howard, M. E. Lane, J. L. Piatek, S. W. Ruff, and W. L. Stefanov, “A thermal emission spectral library of rock forming minerals,” J. Geophys. Res. 105, 9735-9738 (2000).
[CrossRef]

1999

1998

A. Gillespie, S. Rokugawa, T. Matsunaga, J. S. Cothern, S. J. Hook, and A. B. Kahle, “A temperature and emissivity separation algorithm for advance spaceborne thermal emission and reflection radiometer (ASTER) images,” IEEE Trans. Geosci. Remote Sens. 36, 1113-1126 (1998).
[CrossRef]

1994

J. W. Salisbury, A. Wald, and D. M. D'Aria, “Thermal-infrared remote sensing and Kirchhoffs's law. 1. Laboratory measurements,” J. Geophys. Res. 99, 11897-11911 (1994).
[CrossRef]

1993

P. Christensen and S. T. Harrison, “Thermal infrared emission spectroscopy of natural surfaces: application to desert varnish coatings and rocks,” J. Geophys. Res. 98, 19819-19834 (1993).
[CrossRef]

P. S. Kealy and S. J. Hook, “Separating temperature and emissivity in thermal infrared multispectral scanner data: implications for recovering land surface temperatures,” IEEE Trans. Geosci. Remote Sens. 31, 1155-1164 (1993).
[CrossRef]

1981

F. Becker, W. Ngai, and M. P. Stoll, “An active method for measuring thermal infrared effective emissivities: implications and perspectives for remote sensing,” Adv. Space Res. 1, 193-210 (1981).
[CrossRef]

1965

Baldridge, A. M.

A. M. Baldridge, S. J. Hook, C. I. Grove, and G. Rivera, “The ASTER spectral library version 2.0,” Remote Sens. Environ. 113, 711-715 (2009).
[CrossRef]

Bandfield, J. L.

P. R. Christensen, J. L. Bandfield, V. E. Hamilton, D. A. Howard, M. E. Lane, J. L. Piatek, S. W. Ruff, and W. L. Stefanov, “A thermal emission spectral library of rock forming minerals,” J. Geophys. Res. 105, 9735-9738 (2000).
[CrossRef]

Becker, F.

F. Becker, W. Ngai, and M. P. Stoll, “An active method for measuring thermal infrared effective emissivities: implications and perspectives for remote sensing,” Adv. Space Res. 1, 193-210 (1981).
[CrossRef]

Christensen, P.

P. Christensen and S. T. Harrison, “Thermal infrared emission spectroscopy of natural surfaces: application to desert varnish coatings and rocks,” J. Geophys. Res. 98, 19819-19834 (1993).
[CrossRef]

Christensen, P. R.

P. R. Christensen, J. L. Bandfield, V. E. Hamilton, D. A. Howard, M. E. Lane, J. L. Piatek, S. W. Ruff, and W. L. Stefanov, “A thermal emission spectral library of rock forming minerals,” J. Geophys. Res. 105, 9735-9738 (2000).
[CrossRef]

Cothern, J. S.

A. Gillespie, S. Rokugawa, T. Matsunaga, J. S. Cothern, S. J. Hook, and A. B. Kahle, “A temperature and emissivity separation algorithm for advance spaceborne thermal emission and reflection radiometer (ASTER) images,” IEEE Trans. Geosci. Remote Sens. 36, 1113-1126 (1998).
[CrossRef]

Cuenca, J.

D'Aria, D. M.

J. W. Salisbury, A. Wald, and D. M. D'Aria, “Thermal-infrared remote sensing and Kirchhoffs's law. 1. Laboratory measurements,” J. Geophys. Res. 99, 11897-11911 (1994).
[CrossRef]

J. W. Salisbury, L. S. Walter, N. Vergo, and D. M. D'Aria, Infrared (2.1-25 μm) Spectra of Minerals (Johns Hopkins U. Press, 1991), p. 267.

Dmochowski, J. E.

S. J. Hook, J. E. Dmochowski, K. A. Howard, L. C. Rowan, K. E. Karlstrom, and J. M. Stock, “Mapping variations in weight percent silica measured from multispectral thermal infrared imagery--Examples from the Hiller Mountains, Nevada, USA and Tres Virgenes-La Reforma, Baja California Sur, Mexico,” Remote Sens. Environ. 95, 273-289 (2005).
[CrossRef]

Gillespie, A.

A. Gillespie, S. Rokugawa, T. Matsunaga, J. S. Cothern, S. J. Hook, and A. B. Kahle, “A temperature and emissivity separation algorithm for advance spaceborne thermal emission and reflection radiometer (ASTER) images,” IEEE Trans. Geosci. Remote Sens. 36, 1113-1126 (1998).
[CrossRef]

Grove, C. I.

A. M. Baldridge, S. J. Hook, C. I. Grove, and G. Rivera, “The ASTER spectral library version 2.0,” Remote Sens. Environ. 113, 711-715 (2009).
[CrossRef]

Hamilton, V. E.

P. R. Christensen, J. L. Bandfield, V. E. Hamilton, D. A. Howard, M. E. Lane, J. L. Piatek, S. W. Ruff, and W. L. Stefanov, “A thermal emission spectral library of rock forming minerals,” J. Geophys. Res. 105, 9735-9738 (2000).
[CrossRef]

Harrison, S. T.

P. Christensen and S. T. Harrison, “Thermal infrared emission spectroscopy of natural surfaces: application to desert varnish coatings and rocks,” J. Geophys. Res. 98, 19819-19834 (1993).
[CrossRef]

Hook, S. J.

A. M. Baldridge, S. J. Hook, C. I. Grove, and G. Rivera, “The ASTER spectral library version 2.0,” Remote Sens. Environ. 113, 711-715 (2009).
[CrossRef]

S. J. Hook, J. E. Dmochowski, K. A. Howard, L. C. Rowan, K. E. Karlstrom, and J. M. Stock, “Mapping variations in weight percent silica measured from multispectral thermal infrared imagery--Examples from the Hiller Mountains, Nevada, USA and Tres Virgenes-La Reforma, Baja California Sur, Mexico,” Remote Sens. Environ. 95, 273-289 (2005).
[CrossRef]

A. Gillespie, S. Rokugawa, T. Matsunaga, J. S. Cothern, S. J. Hook, and A. B. Kahle, “A temperature and emissivity separation algorithm for advance spaceborne thermal emission and reflection radiometer (ASTER) images,” IEEE Trans. Geosci. Remote Sens. 36, 1113-1126 (1998).
[CrossRef]

P. S. Kealy and S. J. Hook, “Separating temperature and emissivity in thermal infrared multispectral scanner data: implications for recovering land surface temperatures,” IEEE Trans. Geosci. Remote Sens. 31, 1155-1164 (1993).
[CrossRef]

Howard, D. A.

P. R. Christensen, J. L. Bandfield, V. E. Hamilton, D. A. Howard, M. E. Lane, J. L. Piatek, S. W. Ruff, and W. L. Stefanov, “A thermal emission spectral library of rock forming minerals,” J. Geophys. Res. 105, 9735-9738 (2000).
[CrossRef]

Howard, K. A.

S. J. Hook, J. E. Dmochowski, K. A. Howard, L. C. Rowan, K. E. Karlstrom, and J. M. Stock, “Mapping variations in weight percent silica measured from multispectral thermal infrared imagery--Examples from the Hiller Mountains, Nevada, USA and Tres Virgenes-La Reforma, Baja California Sur, Mexico,” Remote Sens. Environ. 95, 273-289 (2005).
[CrossRef]

Jiménez-Muñoz, J. C.

Kahle, A. B.

A. Gillespie, S. Rokugawa, T. Matsunaga, J. S. Cothern, S. J. Hook, and A. B. Kahle, “A temperature and emissivity separation algorithm for advance spaceborne thermal emission and reflection radiometer (ASTER) images,” IEEE Trans. Geosci. Remote Sens. 36, 1113-1126 (1998).
[CrossRef]

Karlstrom, K. E.

S. J. Hook, J. E. Dmochowski, K. A. Howard, L. C. Rowan, K. E. Karlstrom, and J. M. Stock, “Mapping variations in weight percent silica measured from multispectral thermal infrared imagery--Examples from the Hiller Mountains, Nevada, USA and Tres Virgenes-La Reforma, Baja California Sur, Mexico,” Remote Sens. Environ. 95, 273-289 (2005).
[CrossRef]

Kealy, P. S.

P. S. Kealy and S. J. Hook, “Separating temperature and emissivity in thermal infrared multispectral scanner data: implications for recovering land surface temperatures,” IEEE Trans. Geosci. Remote Sens. 31, 1155-1164 (1993).
[CrossRef]

Lane, M. E.

P. R. Christensen, J. L. Bandfield, V. E. Hamilton, D. A. Howard, M. E. Lane, J. L. Piatek, S. W. Ruff, and W. L. Stefanov, “A thermal emission spectral library of rock forming minerals,” J. Geophys. Res. 105, 9735-9738 (2000).
[CrossRef]

Matsunaga, T.

A. Gillespie, S. Rokugawa, T. Matsunaga, J. S. Cothern, S. J. Hook, and A. B. Kahle, “A temperature and emissivity separation algorithm for advance spaceborne thermal emission and reflection radiometer (ASTER) images,” IEEE Trans. Geosci. Remote Sens. 36, 1113-1126 (1998).
[CrossRef]

Ngai, W.

F. Becker, W. Ngai, and M. P. Stoll, “An active method for measuring thermal infrared effective emissivities: implications and perspectives for remote sensing,” Adv. Space Res. 1, 193-210 (1981).
[CrossRef]

Nicodemus, F. E.

Payan, V.

V. Payan and A. Royer, “Analysis of temperature and emissivity separation (TES) algorithm applicability and sensitivity,” Int. J. Remote Sens. 25, 15-37 (2004).
[CrossRef]

Piatek, J. L.

P. R. Christensen, J. L. Bandfield, V. E. Hamilton, D. A. Howard, M. E. Lane, J. L. Piatek, S. W. Ruff, and W. L. Stefanov, “A thermal emission spectral library of rock forming minerals,” J. Geophys. Res. 105, 9735-9738 (2000).
[CrossRef]

Rivera, G.

A. M. Baldridge, S. J. Hook, C. I. Grove, and G. Rivera, “The ASTER spectral library version 2.0,” Remote Sens. Environ. 113, 711-715 (2009).
[CrossRef]

Rokugawa, S.

A. Gillespie, S. Rokugawa, T. Matsunaga, J. S. Cothern, S. J. Hook, and A. B. Kahle, “A temperature and emissivity separation algorithm for advance spaceborne thermal emission and reflection radiometer (ASTER) images,” IEEE Trans. Geosci. Remote Sens. 36, 1113-1126 (1998).
[CrossRef]

Rowan, L. C.

S. J. Hook, J. E. Dmochowski, K. A. Howard, L. C. Rowan, K. E. Karlstrom, and J. M. Stock, “Mapping variations in weight percent silica measured from multispectral thermal infrared imagery--Examples from the Hiller Mountains, Nevada, USA and Tres Virgenes-La Reforma, Baja California Sur, Mexico,” Remote Sens. Environ. 95, 273-289 (2005).
[CrossRef]

Royer, A.

V. Payan and A. Royer, “Analysis of temperature and emissivity separation (TES) algorithm applicability and sensitivity,” Int. J. Remote Sens. 25, 15-37 (2004).
[CrossRef]

Ruff, S. W.

P. R. Christensen, J. L. Bandfield, V. E. Hamilton, D. A. Howard, M. E. Lane, J. L. Piatek, S. W. Ruff, and W. L. Stefanov, “A thermal emission spectral library of rock forming minerals,” J. Geophys. Res. 105, 9735-9738 (2000).
[CrossRef]

Salisbury, J. W.

J. W. Salisbury, A. Wald, and D. M. D'Aria, “Thermal-infrared remote sensing and Kirchhoffs's law. 1. Laboratory measurements,” J. Geophys. Res. 99, 11897-11911 (1994).
[CrossRef]

J. W. Salisbury, L. S. Walter, N. Vergo, and D. M. D'Aria, Infrared (2.1-25 μm) Spectra of Minerals (Johns Hopkins U. Press, 1991), p. 267.

Sobrino, J. A.

Stefanov, W. L.

P. R. Christensen, J. L. Bandfield, V. E. Hamilton, D. A. Howard, M. E. Lane, J. L. Piatek, S. W. Ruff, and W. L. Stefanov, “A thermal emission spectral library of rock forming minerals,” J. Geophys. Res. 105, 9735-9738 (2000).
[CrossRef]

Stock, J. M.

S. J. Hook, J. E. Dmochowski, K. A. Howard, L. C. Rowan, K. E. Karlstrom, and J. M. Stock, “Mapping variations in weight percent silica measured from multispectral thermal infrared imagery--Examples from the Hiller Mountains, Nevada, USA and Tres Virgenes-La Reforma, Baja California Sur, Mexico,” Remote Sens. Environ. 95, 273-289 (2005).
[CrossRef]

Stoll, M. P.

F. Becker, W. Ngai, and M. P. Stoll, “An active method for measuring thermal infrared effective emissivities: implications and perspectives for remote sensing,” Adv. Space Res. 1, 193-210 (1981).
[CrossRef]

Vergo, N.

J. W. Salisbury, L. S. Walter, N. Vergo, and D. M. D'Aria, Infrared (2.1-25 μm) Spectra of Minerals (Johns Hopkins U. Press, 1991), p. 267.

Wald, A.

J. W. Salisbury, A. Wald, and D. M. D'Aria, “Thermal-infrared remote sensing and Kirchhoffs's law. 1. Laboratory measurements,” J. Geophys. Res. 99, 11897-11911 (1994).
[CrossRef]

Walter, L. S.

J. W. Salisbury, L. S. Walter, N. Vergo, and D. M. D'Aria, Infrared (2.1-25 μm) Spectra of Minerals (Johns Hopkins U. Press, 1991), p. 267.

Adv. Space Res.

F. Becker, W. Ngai, and M. P. Stoll, “An active method for measuring thermal infrared effective emissivities: implications and perspectives for remote sensing,” Adv. Space Res. 1, 193-210 (1981).
[CrossRef]

Appl. Opt.

IEEE Trans. Geosci. Remote Sens.

A. Gillespie, S. Rokugawa, T. Matsunaga, J. S. Cothern, S. J. Hook, and A. B. Kahle, “A temperature and emissivity separation algorithm for advance spaceborne thermal emission and reflection radiometer (ASTER) images,” IEEE Trans. Geosci. Remote Sens. 36, 1113-1126 (1998).
[CrossRef]

P. S. Kealy and S. J. Hook, “Separating temperature and emissivity in thermal infrared multispectral scanner data: implications for recovering land surface temperatures,” IEEE Trans. Geosci. Remote Sens. 31, 1155-1164 (1993).
[CrossRef]

Int. J. Remote Sens.

V. Payan and A. Royer, “Analysis of temperature and emissivity separation (TES) algorithm applicability and sensitivity,” Int. J. Remote Sens. 25, 15-37 (2004).
[CrossRef]

J. Geophys. Res.

J. W. Salisbury, A. Wald, and D. M. D'Aria, “Thermal-infrared remote sensing and Kirchhoffs's law. 1. Laboratory measurements,” J. Geophys. Res. 99, 11897-11911 (1994).
[CrossRef]

P. Christensen and S. T. Harrison, “Thermal infrared emission spectroscopy of natural surfaces: application to desert varnish coatings and rocks,” J. Geophys. Res. 98, 19819-19834 (1993).
[CrossRef]

P. R. Christensen, J. L. Bandfield, V. E. Hamilton, D. A. Howard, M. E. Lane, J. L. Piatek, S. W. Ruff, and W. L. Stefanov, “A thermal emission spectral library of rock forming minerals,” J. Geophys. Res. 105, 9735-9738 (2000).
[CrossRef]

Remote Sens. Environ.

A. M. Baldridge, S. J. Hook, C. I. Grove, and G. Rivera, “The ASTER spectral library version 2.0,” Remote Sens. Environ. 113, 711-715 (2009).
[CrossRef]

S. J. Hook, J. E. Dmochowski, K. A. Howard, L. C. Rowan, K. E. Karlstrom, and J. M. Stock, “Mapping variations in weight percent silica measured from multispectral thermal infrared imagery--Examples from the Hiller Mountains, Nevada, USA and Tres Virgenes-La Reforma, Baja California Sur, Mexico,” Remote Sens. Environ. 95, 273-289 (2005).
[CrossRef]

Other

http://speclib.jpl.nasa.gov/.

http://speclib.asu.edu/.

J. W. Salisbury, L. S. Walter, N. Vergo, and D. M. D'Aria, Infrared (2.1-25 μm) Spectra of Minerals (Johns Hopkins U. Press, 1991), p. 267.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (2)

Fig. 1
Fig. 1

Reflectance between 2.0 and 14.0 μm (left column) and emissivity between 8.0 and 14.0 μm (right column) for each soil.

Fig. 2
Fig. 2

Emissivity mean values of MD, LL, BS, and the seven spectra related with inceptisol orders provided by the JPL for each ASTER thermal bands. (a) Inceptisol refers to the mean value for seven samples, (b) entisol and (c) mollisol for 10 and nine samples, respectively, and (d) spodosol for only one.

Tables (4)

Tables Icon

Table 1 Sample Characteristics

Tables Icon

Table 2 Mineralogical Phases Of Soil Samples Analyzed With XRD a

Tables Icon

Table 3 Emissivity Values Retrieved by Filtered Spectrum and the TES Algorithm a

Tables Icon

Table 4 Emissivity Filtered Values of Soil Spectra Applied to Different Common Thermal Sensors

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

ε f = ε λ δ λ d λ δ λ d λ ,

Metrics