Abstract

The dynamic range of holographic storage media is traditionally characterized in terms of M/#. However, this is a system parameter that assumes simple, uniform plane-wave holograms. Realistic architectures violate this assumption so that M/# measured with plane waves cannot be used to predict system diffraction efficiency. Thus, there currently is no systematic method predicting signal strength and medium consumption for holographic storage architectures a priori. We define a new material parameter, the modulation integral, MI, and show how this may be used for dynamic range budgeting and diffraction efficiency prediction in complex storage systems. The method is illustrated by applying it to two architectures, collinear and angle polytopic, in order to estimate the M/# required for achieving a target storage density in the presence of empirical optical scatter noise.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. J. van Heerden, “Theory of optical information storage in solids,” Appl. Opt. 2, 393-400 (1963).
    [CrossRef]
  2. H. J. Coufal, D. Psaltis, and G. T. Sincerbox, eds., Holographic Data Storage (Springer, 2000).
  3. F. H. Mok, “Angle-multiplexed storage of 5000 holograms in lithium niobate,” Opt. Lett. 18, 915-917 (1993).
    [CrossRef] [PubMed]
  4. D. Psaltis, M. Levine, A. Pu, G. Barbastathis, and K. Curtis, “Holographic storage using shift multiplexing,” Opt. Lett. 20, 782-784 (1995).
    [CrossRef] [PubMed]
  5. L. Dhar, A. Hale, H. E. Katz, M. L. Schilling, M. G. Schnoes, and F. C. Schilling, “Recording media that exhibit high dynamic range for digital holographic data storage,” Opt. Lett. 24, 487-489 (1999).
    [CrossRef]
  6. D. A. Waldman, R. T. Ingwall, P. K. Dhal, M. G. Horner, E. S. Kolb, H.-Y. S. Li, R. A. Minns, and H. G. Schild, “Cationic ring-opening photopolymerimization methods for volume hologram recording,” Proc. SPIE 2689, 127-141 (1996).
    [CrossRef]
  7. K. Curtis, W. L. Wilson, and L. Dhar, “High density holographic storage,” presented at the International Symposium on Optical Memory 2004, Jeju, South Korea, October 2004.
  8. H. Horimai, X. Tan, and J. Li, “Collinear holography,” Appl. Opt. 44, 2575-2579 (2005).
    [CrossRef] [PubMed]
  9. H. F. Shih, “Integrated optical unit design for the collinear holographic storage system,” IEEE Trans. Magn. 43, 948-950 (2007).
    [CrossRef]
  10. K. Ishioka, K. Tanaka, N. Kojima, A. Fukumoto, and M. Sugiki, “Optical collinear holographic recording system using a blue laser and a random phase mask,” presented at the OSA International Symposium on Optical Memory and Optical Data Storage (ISOM/ODS), Honolulu, Hawaii, 10 July 2005, paper ThE3.
  11. K. Tanaka, M. Hara, K. Tokuyama, K. Hirooka, K. Ishioka, A. Fukumoto, and M. Sugiki, “Improvements in multiplexed recording performance in coaxial holographic data storage,” presented at the International Symposium on Optical Memory 2006, Takamatsu, Kagawa, Japan, October 2006 .
  12. K. Anderson and K. Curtis, “Polytopic multiplexing,” Opt. Lett. 29, 1402-1404 (2004).
    [CrossRef] [PubMed]
  13. K. Curtis, K. Anderson, and M. R. Ayres, “M/# requirements for holographic data storage,” in 2006 Optical Data Storage Topical Meeting (IEEE, 2006), pp. 9-11.
    [CrossRef]
  14. F. H. Mok, G. W. Burr, and D. Psaltis, “System metric for holographic memory systems,” Opt. Lett. 21, 896-898 (1996).
    [CrossRef] [PubMed]
  15. K. Curtis and D. Psaltis, “Cross talk for angle- and wavelength-multiplexed image plane holograms,” Opt. Lett. 19, 1774-1776 (1994).
    [CrossRef] [PubMed]
  16. M. C. Bashaw, J. F. Heanue, A. Aharoni, J. F. Walkup, and L. Hesselink, “Cross-talk considerations for angular and phase-encoded multiplexing in volume holography,” J. Opt. Soc. Am. B 11, 1820-1836 (1994).
    [CrossRef]
  17. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909-2947 (1969).
  18. J. Ashley, M.-P. Bernal, G. W. Burr, H. Coufal, H. Guenther, J. A. Hoffnagle, C. M. Jefferson, B. Marcus, R. M. Macfarlane, R. M. Shelby, and G. T. Sincerbox, “Holographic data storage,” IBM J. Res. Dev. 44, 341-368 (2000).
    [CrossRef]
  19. F.T. S.Yu and S.Yin, eds., Photorefractive Optics Materials, Properties, and Applications (Academic, 2000).
  20. M. Born and E. Wolf, Principles of Optics, 6th ed. (Cambridge University Press, 1980), p. 10.
  21. A. Pu, K. Curtis, and D. Psaltis, “Exposure schedule for multiplexing holograms in photopolymer films,” Opt. Eng. 35, 2824-2829 (1996).
    [CrossRef]
  22. R. T. Weverka, K. Wagner, R. R. Mcleod, K. Wu, and C. Garvin, “Low-loss acousto-optic photonic switch,” in Acousto-Optic Signal Processing Theory and Implementation (Marcel Dekker, 1996), pp. 479-573.
  23. B. Gombkötő, P. Koppa, P. Maák, and E. Lőrincz, “Application of the fast-Fourier-transform- based volume integral equation method to model volume diffraction in shift-multiplexed holographic data storage,” J. Opt. Soc. Am. A 23, 2954-2960 (2006).
    [CrossRef]
  24. H. Trautner, W. Hossfeld, J. Knittel, O. Malki, F. Przygodda, and H. Richter, “Test of key elements for common path holography,” Proc. SPIE 5939, 593903 (2005).
    [CrossRef]
  25. K. Kimura, “Improvement of the optical signal-to-noise ratio in common-path holographic storage by use of a polarization-controlling media structure,” Opt. Lett. 30, 878-880 (2005).
    [CrossRef] [PubMed]
  26. H. Horimai and X. Tan, “Collinear technology for a holographic versatile disk,” Appl. Opt. 45, 910-914 (2006).
    [CrossRef] [PubMed]
  27. H. Horimai and Y. Aoki, “Holographic versatile disc (HVD),” presented at the OSA International Symposium on Optical Memory and Optical Data Storage (ISOM/ODS), Honolulu, Hawaii, July 2005.
  28. H. Horimai and Y. Aoki, “Holographic versatile disc (HVDTM) system,” presented at the International Symposium on Optical Memory 2006, Takamatsu, Kagawa, Japan, October 2006.
  29. K. Anderson, E. Fotheringham, A. Hill, B. Sissom, and K. Curtis, “High speed holographic data storage at 100 Gbit/in2,” OSA International Symposium on Optical Memory and Optical Data Storage (ISOM/ODS), Honolulu, Hawaii, July 2005.
  30. Z. Karpati, K. Banko, G. Szarvas, S. Kautny, and L. Domjan, “Comparison from M# consumption point of view for the coaxial holographic storage arrangements,” presented at the International Symposium on Optical Memory 2006, Takamatsu, Kagawa, Japan, October 2006.

2007 (1)

H. F. Shih, “Integrated optical unit design for the collinear holographic storage system,” IEEE Trans. Magn. 43, 948-950 (2007).
[CrossRef]

2006 (2)

2005 (3)

2004 (1)

2000 (1)

J. Ashley, M.-P. Bernal, G. W. Burr, H. Coufal, H. Guenther, J. A. Hoffnagle, C. M. Jefferson, B. Marcus, R. M. Macfarlane, R. M. Shelby, and G. T. Sincerbox, “Holographic data storage,” IBM J. Res. Dev. 44, 341-368 (2000).
[CrossRef]

1999 (1)

1996 (3)

F. H. Mok, G. W. Burr, and D. Psaltis, “System metric for holographic memory systems,” Opt. Lett. 21, 896-898 (1996).
[CrossRef] [PubMed]

D. A. Waldman, R. T. Ingwall, P. K. Dhal, M. G. Horner, E. S. Kolb, H.-Y. S. Li, R. A. Minns, and H. G. Schild, “Cationic ring-opening photopolymerimization methods for volume hologram recording,” Proc. SPIE 2689, 127-141 (1996).
[CrossRef]

A. Pu, K. Curtis, and D. Psaltis, “Exposure schedule for multiplexing holograms in photopolymer films,” Opt. Eng. 35, 2824-2829 (1996).
[CrossRef]

1995 (1)

1994 (2)

1993 (1)

1969 (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909-2947 (1969).

1963 (1)

Aharoni, A.

Anderson, K.

K. Anderson and K. Curtis, “Polytopic multiplexing,” Opt. Lett. 29, 1402-1404 (2004).
[CrossRef] [PubMed]

K. Anderson, E. Fotheringham, A. Hill, B. Sissom, and K. Curtis, “High speed holographic data storage at 100 Gbit/in2,” OSA International Symposium on Optical Memory and Optical Data Storage (ISOM/ODS), Honolulu, Hawaii, July 2005.

K. Curtis, K. Anderson, and M. R. Ayres, “M/# requirements for holographic data storage,” in 2006 Optical Data Storage Topical Meeting (IEEE, 2006), pp. 9-11.
[CrossRef]

Aoki, Y.

H. Horimai and Y. Aoki, “Holographic versatile disc (HVDTM) system,” presented at the International Symposium on Optical Memory 2006, Takamatsu, Kagawa, Japan, October 2006.

H. Horimai and Y. Aoki, “Holographic versatile disc (HVD),” presented at the OSA International Symposium on Optical Memory and Optical Data Storage (ISOM/ODS), Honolulu, Hawaii, July 2005.

Ashley, J.

J. Ashley, M.-P. Bernal, G. W. Burr, H. Coufal, H. Guenther, J. A. Hoffnagle, C. M. Jefferson, B. Marcus, R. M. Macfarlane, R. M. Shelby, and G. T. Sincerbox, “Holographic data storage,” IBM J. Res. Dev. 44, 341-368 (2000).
[CrossRef]

Ayres, M. R.

K. Curtis, K. Anderson, and M. R. Ayres, “M/# requirements for holographic data storage,” in 2006 Optical Data Storage Topical Meeting (IEEE, 2006), pp. 9-11.
[CrossRef]

Banko, K.

Z. Karpati, K. Banko, G. Szarvas, S. Kautny, and L. Domjan, “Comparison from M# consumption point of view for the coaxial holographic storage arrangements,” presented at the International Symposium on Optical Memory 2006, Takamatsu, Kagawa, Japan, October 2006.

Barbastathis, G.

Bashaw, M. C.

Born, M.

M. Born and E. Wolf, Principles of Optics, 6th ed. (Cambridge University Press, 1980), p. 10.

Burr, G. W.

J. Ashley, M.-P. Bernal, G. W. Burr, H. Coufal, H. Guenther, J. A. Hoffnagle, C. M. Jefferson, B. Marcus, R. M. Macfarlane, R. M. Shelby, and G. T. Sincerbox, “Holographic data storage,” IBM J. Res. Dev. 44, 341-368 (2000).
[CrossRef]

F. H. Mok, G. W. Burr, and D. Psaltis, “System metric for holographic memory systems,” Opt. Lett. 21, 896-898 (1996).
[CrossRef] [PubMed]

Coufal, H.

J. Ashley, M.-P. Bernal, G. W. Burr, H. Coufal, H. Guenther, J. A. Hoffnagle, C. M. Jefferson, B. Marcus, R. M. Macfarlane, R. M. Shelby, and G. T. Sincerbox, “Holographic data storage,” IBM J. Res. Dev. 44, 341-368 (2000).
[CrossRef]

Curtis, K.

K. Anderson and K. Curtis, “Polytopic multiplexing,” Opt. Lett. 29, 1402-1404 (2004).
[CrossRef] [PubMed]

A. Pu, K. Curtis, and D. Psaltis, “Exposure schedule for multiplexing holograms in photopolymer films,” Opt. Eng. 35, 2824-2829 (1996).
[CrossRef]

D. Psaltis, M. Levine, A. Pu, G. Barbastathis, and K. Curtis, “Holographic storage using shift multiplexing,” Opt. Lett. 20, 782-784 (1995).
[CrossRef] [PubMed]

K. Curtis and D. Psaltis, “Cross talk for angle- and wavelength-multiplexed image plane holograms,” Opt. Lett. 19, 1774-1776 (1994).
[CrossRef] [PubMed]

K. Anderson, E. Fotheringham, A. Hill, B. Sissom, and K. Curtis, “High speed holographic data storage at 100 Gbit/in2,” OSA International Symposium on Optical Memory and Optical Data Storage (ISOM/ODS), Honolulu, Hawaii, July 2005.

K. Curtis, K. Anderson, and M. R. Ayres, “M/# requirements for holographic data storage,” in 2006 Optical Data Storage Topical Meeting (IEEE, 2006), pp. 9-11.
[CrossRef]

K. Curtis, W. L. Wilson, and L. Dhar, “High density holographic storage,” presented at the International Symposium on Optical Memory 2004, Jeju, South Korea, October 2004.

Dhal, P. K.

D. A. Waldman, R. T. Ingwall, P. K. Dhal, M. G. Horner, E. S. Kolb, H.-Y. S. Li, R. A. Minns, and H. G. Schild, “Cationic ring-opening photopolymerimization methods for volume hologram recording,” Proc. SPIE 2689, 127-141 (1996).
[CrossRef]

Dhar, L.

L. Dhar, A. Hale, H. E. Katz, M. L. Schilling, M. G. Schnoes, and F. C. Schilling, “Recording media that exhibit high dynamic range for digital holographic data storage,” Opt. Lett. 24, 487-489 (1999).
[CrossRef]

K. Curtis, W. L. Wilson, and L. Dhar, “High density holographic storage,” presented at the International Symposium on Optical Memory 2004, Jeju, South Korea, October 2004.

Domjan, L.

Z. Karpati, K. Banko, G. Szarvas, S. Kautny, and L. Domjan, “Comparison from M# consumption point of view for the coaxial holographic storage arrangements,” presented at the International Symposium on Optical Memory 2006, Takamatsu, Kagawa, Japan, October 2006.

Fotheringham, E.

K. Anderson, E. Fotheringham, A. Hill, B. Sissom, and K. Curtis, “High speed holographic data storage at 100 Gbit/in2,” OSA International Symposium on Optical Memory and Optical Data Storage (ISOM/ODS), Honolulu, Hawaii, July 2005.

Fukumoto, A.

K. Ishioka, K. Tanaka, N. Kojima, A. Fukumoto, and M. Sugiki, “Optical collinear holographic recording system using a blue laser and a random phase mask,” presented at the OSA International Symposium on Optical Memory and Optical Data Storage (ISOM/ODS), Honolulu, Hawaii, 10 July 2005, paper ThE3.

K. Tanaka, M. Hara, K. Tokuyama, K. Hirooka, K. Ishioka, A. Fukumoto, and M. Sugiki, “Improvements in multiplexed recording performance in coaxial holographic data storage,” presented at the International Symposium on Optical Memory 2006, Takamatsu, Kagawa, Japan, October 2006 .

Garvin, C.

R. T. Weverka, K. Wagner, R. R. Mcleod, K. Wu, and C. Garvin, “Low-loss acousto-optic photonic switch,” in Acousto-Optic Signal Processing Theory and Implementation (Marcel Dekker, 1996), pp. 479-573.

Gombköto, B.

Guenther, H.

J. Ashley, M.-P. Bernal, G. W. Burr, H. Coufal, H. Guenther, J. A. Hoffnagle, C. M. Jefferson, B. Marcus, R. M. Macfarlane, R. M. Shelby, and G. T. Sincerbox, “Holographic data storage,” IBM J. Res. Dev. 44, 341-368 (2000).
[CrossRef]

Hale, A.

Hara, M.

K. Tanaka, M. Hara, K. Tokuyama, K. Hirooka, K. Ishioka, A. Fukumoto, and M. Sugiki, “Improvements in multiplexed recording performance in coaxial holographic data storage,” presented at the International Symposium on Optical Memory 2006, Takamatsu, Kagawa, Japan, October 2006 .

Heanue, J. F.

Hesselink, L.

Hill, A.

K. Anderson, E. Fotheringham, A. Hill, B. Sissom, and K. Curtis, “High speed holographic data storage at 100 Gbit/in2,” OSA International Symposium on Optical Memory and Optical Data Storage (ISOM/ODS), Honolulu, Hawaii, July 2005.

Hirooka, K.

K. Tanaka, M. Hara, K. Tokuyama, K. Hirooka, K. Ishioka, A. Fukumoto, and M. Sugiki, “Improvements in multiplexed recording performance in coaxial holographic data storage,” presented at the International Symposium on Optical Memory 2006, Takamatsu, Kagawa, Japan, October 2006 .

Hoffnagle, J. A.

J. Ashley, M.-P. Bernal, G. W. Burr, H. Coufal, H. Guenther, J. A. Hoffnagle, C. M. Jefferson, B. Marcus, R. M. Macfarlane, R. M. Shelby, and G. T. Sincerbox, “Holographic data storage,” IBM J. Res. Dev. 44, 341-368 (2000).
[CrossRef]

Horimai, H.

H. Horimai and X. Tan, “Collinear technology for a holographic versatile disk,” Appl. Opt. 45, 910-914 (2006).
[CrossRef] [PubMed]

H. Horimai, X. Tan, and J. Li, “Collinear holography,” Appl. Opt. 44, 2575-2579 (2005).
[CrossRef] [PubMed]

H. Horimai and Y. Aoki, “Holographic versatile disc (HVD),” presented at the OSA International Symposium on Optical Memory and Optical Data Storage (ISOM/ODS), Honolulu, Hawaii, July 2005.

H. Horimai and Y. Aoki, “Holographic versatile disc (HVDTM) system,” presented at the International Symposium on Optical Memory 2006, Takamatsu, Kagawa, Japan, October 2006.

Horner, M. G.

D. A. Waldman, R. T. Ingwall, P. K. Dhal, M. G. Horner, E. S. Kolb, H.-Y. S. Li, R. A. Minns, and H. G. Schild, “Cationic ring-opening photopolymerimization methods for volume hologram recording,” Proc. SPIE 2689, 127-141 (1996).
[CrossRef]

Hossfeld, W.

H. Trautner, W. Hossfeld, J. Knittel, O. Malki, F. Przygodda, and H. Richter, “Test of key elements for common path holography,” Proc. SPIE 5939, 593903 (2005).
[CrossRef]

Ingwall, R. T.

D. A. Waldman, R. T. Ingwall, P. K. Dhal, M. G. Horner, E. S. Kolb, H.-Y. S. Li, R. A. Minns, and H. G. Schild, “Cationic ring-opening photopolymerimization methods for volume hologram recording,” Proc. SPIE 2689, 127-141 (1996).
[CrossRef]

Ishioka, K.

K. Tanaka, M. Hara, K. Tokuyama, K. Hirooka, K. Ishioka, A. Fukumoto, and M. Sugiki, “Improvements in multiplexed recording performance in coaxial holographic data storage,” presented at the International Symposium on Optical Memory 2006, Takamatsu, Kagawa, Japan, October 2006 .

K. Ishioka, K. Tanaka, N. Kojima, A. Fukumoto, and M. Sugiki, “Optical collinear holographic recording system using a blue laser and a random phase mask,” presented at the OSA International Symposium on Optical Memory and Optical Data Storage (ISOM/ODS), Honolulu, Hawaii, 10 July 2005, paper ThE3.

Jefferson, C. M.

J. Ashley, M.-P. Bernal, G. W. Burr, H. Coufal, H. Guenther, J. A. Hoffnagle, C. M. Jefferson, B. Marcus, R. M. Macfarlane, R. M. Shelby, and G. T. Sincerbox, “Holographic data storage,” IBM J. Res. Dev. 44, 341-368 (2000).
[CrossRef]

Karpati, Z.

Z. Karpati, K. Banko, G. Szarvas, S. Kautny, and L. Domjan, “Comparison from M# consumption point of view for the coaxial holographic storage arrangements,” presented at the International Symposium on Optical Memory 2006, Takamatsu, Kagawa, Japan, October 2006.

Katz, H. E.

Kautny, S.

Z. Karpati, K. Banko, G. Szarvas, S. Kautny, and L. Domjan, “Comparison from M# consumption point of view for the coaxial holographic storage arrangements,” presented at the International Symposium on Optical Memory 2006, Takamatsu, Kagawa, Japan, October 2006.

Kimura, K.

Knittel, J.

H. Trautner, W. Hossfeld, J. Knittel, O. Malki, F. Przygodda, and H. Richter, “Test of key elements for common path holography,” Proc. SPIE 5939, 593903 (2005).
[CrossRef]

Kogelnik, H.

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909-2947 (1969).

Kojima, N.

K. Ishioka, K. Tanaka, N. Kojima, A. Fukumoto, and M. Sugiki, “Optical collinear holographic recording system using a blue laser and a random phase mask,” presented at the OSA International Symposium on Optical Memory and Optical Data Storage (ISOM/ODS), Honolulu, Hawaii, 10 July 2005, paper ThE3.

Kolb, E. S.

D. A. Waldman, R. T. Ingwall, P. K. Dhal, M. G. Horner, E. S. Kolb, H.-Y. S. Li, R. A. Minns, and H. G. Schild, “Cationic ring-opening photopolymerimization methods for volume hologram recording,” Proc. SPIE 2689, 127-141 (1996).
[CrossRef]

Koppa, P.

Levine, M.

Li, H.-Y. S.

D. A. Waldman, R. T. Ingwall, P. K. Dhal, M. G. Horner, E. S. Kolb, H.-Y. S. Li, R. A. Minns, and H. G. Schild, “Cationic ring-opening photopolymerimization methods for volume hologram recording,” Proc. SPIE 2689, 127-141 (1996).
[CrossRef]

Li, J.

Lorincz, E.

Maák, P.

Macfarlane, R. M.

J. Ashley, M.-P. Bernal, G. W. Burr, H. Coufal, H. Guenther, J. A. Hoffnagle, C. M. Jefferson, B. Marcus, R. M. Macfarlane, R. M. Shelby, and G. T. Sincerbox, “Holographic data storage,” IBM J. Res. Dev. 44, 341-368 (2000).
[CrossRef]

Malki, O.

H. Trautner, W. Hossfeld, J. Knittel, O. Malki, F. Przygodda, and H. Richter, “Test of key elements for common path holography,” Proc. SPIE 5939, 593903 (2005).
[CrossRef]

Marcus, B.

J. Ashley, M.-P. Bernal, G. W. Burr, H. Coufal, H. Guenther, J. A. Hoffnagle, C. M. Jefferson, B. Marcus, R. M. Macfarlane, R. M. Shelby, and G. T. Sincerbox, “Holographic data storage,” IBM J. Res. Dev. 44, 341-368 (2000).
[CrossRef]

Mcleod, R. R.

R. T. Weverka, K. Wagner, R. R. Mcleod, K. Wu, and C. Garvin, “Low-loss acousto-optic photonic switch,” in Acousto-Optic Signal Processing Theory and Implementation (Marcel Dekker, 1996), pp. 479-573.

Minns, R. A.

D. A. Waldman, R. T. Ingwall, P. K. Dhal, M. G. Horner, E. S. Kolb, H.-Y. S. Li, R. A. Minns, and H. G. Schild, “Cationic ring-opening photopolymerimization methods for volume hologram recording,” Proc. SPIE 2689, 127-141 (1996).
[CrossRef]

Mok, F. H.

Przygodda, F.

H. Trautner, W. Hossfeld, J. Knittel, O. Malki, F. Przygodda, and H. Richter, “Test of key elements for common path holography,” Proc. SPIE 5939, 593903 (2005).
[CrossRef]

Psaltis, D.

Pu, A.

A. Pu, K. Curtis, and D. Psaltis, “Exposure schedule for multiplexing holograms in photopolymer films,” Opt. Eng. 35, 2824-2829 (1996).
[CrossRef]

D. Psaltis, M. Levine, A. Pu, G. Barbastathis, and K. Curtis, “Holographic storage using shift multiplexing,” Opt. Lett. 20, 782-784 (1995).
[CrossRef] [PubMed]

Richter, H.

H. Trautner, W. Hossfeld, J. Knittel, O. Malki, F. Przygodda, and H. Richter, “Test of key elements for common path holography,” Proc. SPIE 5939, 593903 (2005).
[CrossRef]

Schild, H. G.

D. A. Waldman, R. T. Ingwall, P. K. Dhal, M. G. Horner, E. S. Kolb, H.-Y. S. Li, R. A. Minns, and H. G. Schild, “Cationic ring-opening photopolymerimization methods for volume hologram recording,” Proc. SPIE 2689, 127-141 (1996).
[CrossRef]

Schilling, F. C.

Schilling, M. L.

Schnoes, M. G.

Shelby, R. M.

J. Ashley, M.-P. Bernal, G. W. Burr, H. Coufal, H. Guenther, J. A. Hoffnagle, C. M. Jefferson, B. Marcus, R. M. Macfarlane, R. M. Shelby, and G. T. Sincerbox, “Holographic data storage,” IBM J. Res. Dev. 44, 341-368 (2000).
[CrossRef]

Shih, H. F.

H. F. Shih, “Integrated optical unit design for the collinear holographic storage system,” IEEE Trans. Magn. 43, 948-950 (2007).
[CrossRef]

Sincerbox, G. T.

J. Ashley, M.-P. Bernal, G. W. Burr, H. Coufal, H. Guenther, J. A. Hoffnagle, C. M. Jefferson, B. Marcus, R. M. Macfarlane, R. M. Shelby, and G. T. Sincerbox, “Holographic data storage,” IBM J. Res. Dev. 44, 341-368 (2000).
[CrossRef]

Sissom, B.

K. Anderson, E. Fotheringham, A. Hill, B. Sissom, and K. Curtis, “High speed holographic data storage at 100 Gbit/in2,” OSA International Symposium on Optical Memory and Optical Data Storage (ISOM/ODS), Honolulu, Hawaii, July 2005.

Sugiki, M.

K. Ishioka, K. Tanaka, N. Kojima, A. Fukumoto, and M. Sugiki, “Optical collinear holographic recording system using a blue laser and a random phase mask,” presented at the OSA International Symposium on Optical Memory and Optical Data Storage (ISOM/ODS), Honolulu, Hawaii, 10 July 2005, paper ThE3.

K. Tanaka, M. Hara, K. Tokuyama, K. Hirooka, K. Ishioka, A. Fukumoto, and M. Sugiki, “Improvements in multiplexed recording performance in coaxial holographic data storage,” presented at the International Symposium on Optical Memory 2006, Takamatsu, Kagawa, Japan, October 2006 .

Szarvas, G.

Z. Karpati, K. Banko, G. Szarvas, S. Kautny, and L. Domjan, “Comparison from M# consumption point of view for the coaxial holographic storage arrangements,” presented at the International Symposium on Optical Memory 2006, Takamatsu, Kagawa, Japan, October 2006.

Tan, X.

Tanaka, K.

K. Ishioka, K. Tanaka, N. Kojima, A. Fukumoto, and M. Sugiki, “Optical collinear holographic recording system using a blue laser and a random phase mask,” presented at the OSA International Symposium on Optical Memory and Optical Data Storage (ISOM/ODS), Honolulu, Hawaii, 10 July 2005, paper ThE3.

K. Tanaka, M. Hara, K. Tokuyama, K. Hirooka, K. Ishioka, A. Fukumoto, and M. Sugiki, “Improvements in multiplexed recording performance in coaxial holographic data storage,” presented at the International Symposium on Optical Memory 2006, Takamatsu, Kagawa, Japan, October 2006 .

Tokuyama, K.

K. Tanaka, M. Hara, K. Tokuyama, K. Hirooka, K. Ishioka, A. Fukumoto, and M. Sugiki, “Improvements in multiplexed recording performance in coaxial holographic data storage,” presented at the International Symposium on Optical Memory 2006, Takamatsu, Kagawa, Japan, October 2006 .

Trautner, H.

H. Trautner, W. Hossfeld, J. Knittel, O. Malki, F. Przygodda, and H. Richter, “Test of key elements for common path holography,” Proc. SPIE 5939, 593903 (2005).
[CrossRef]

van Heerden, P. J.

Wagner, K.

R. T. Weverka, K. Wagner, R. R. Mcleod, K. Wu, and C. Garvin, “Low-loss acousto-optic photonic switch,” in Acousto-Optic Signal Processing Theory and Implementation (Marcel Dekker, 1996), pp. 479-573.

Waldman, D. A.

D. A. Waldman, R. T. Ingwall, P. K. Dhal, M. G. Horner, E. S. Kolb, H.-Y. S. Li, R. A. Minns, and H. G. Schild, “Cationic ring-opening photopolymerimization methods for volume hologram recording,” Proc. SPIE 2689, 127-141 (1996).
[CrossRef]

Walkup, J. F.

Weverka, R. T.

R. T. Weverka, K. Wagner, R. R. Mcleod, K. Wu, and C. Garvin, “Low-loss acousto-optic photonic switch,” in Acousto-Optic Signal Processing Theory and Implementation (Marcel Dekker, 1996), pp. 479-573.

Wilson, W. L.

K. Curtis, W. L. Wilson, and L. Dhar, “High density holographic storage,” presented at the International Symposium on Optical Memory 2004, Jeju, South Korea, October 2004.

Wolf, E.

M. Born and E. Wolf, Principles of Optics, 6th ed. (Cambridge University Press, 1980), p. 10.

Wu, K.

R. T. Weverka, K. Wagner, R. R. Mcleod, K. Wu, and C. Garvin, “Low-loss acousto-optic photonic switch,” in Acousto-Optic Signal Processing Theory and Implementation (Marcel Dekker, 1996), pp. 479-573.

Appl. Opt. (3)

Bell Syst. Tech. J. (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909-2947 (1969).

IBM J. Res. Dev. (1)

J. Ashley, M.-P. Bernal, G. W. Burr, H. Coufal, H. Guenther, J. A. Hoffnagle, C. M. Jefferson, B. Marcus, R. M. Macfarlane, R. M. Shelby, and G. T. Sincerbox, “Holographic data storage,” IBM J. Res. Dev. 44, 341-368 (2000).
[CrossRef]

IEEE Trans. Magn. (1)

H. F. Shih, “Integrated optical unit design for the collinear holographic storage system,” IEEE Trans. Magn. 43, 948-950 (2007).
[CrossRef]

J. Opt. Soc. Am. A (1)

J. Opt. Soc. Am. B (1)

Opt. Eng. (1)

A. Pu, K. Curtis, and D. Psaltis, “Exposure schedule for multiplexing holograms in photopolymer films,” Opt. Eng. 35, 2824-2829 (1996).
[CrossRef]

Opt. Lett. (7)

Proc. SPIE (2)

H. Trautner, W. Hossfeld, J. Knittel, O. Malki, F. Przygodda, and H. Richter, “Test of key elements for common path holography,” Proc. SPIE 5939, 593903 (2005).
[CrossRef]

D. A. Waldman, R. T. Ingwall, P. K. Dhal, M. G. Horner, E. S. Kolb, H.-Y. S. Li, R. A. Minns, and H. G. Schild, “Cationic ring-opening photopolymerimization methods for volume hologram recording,” Proc. SPIE 2689, 127-141 (1996).
[CrossRef]

Other (12)

K. Curtis, W. L. Wilson, and L. Dhar, “High density holographic storage,” presented at the International Symposium on Optical Memory 2004, Jeju, South Korea, October 2004.

K. Curtis, K. Anderson, and M. R. Ayres, “M/# requirements for holographic data storage,” in 2006 Optical Data Storage Topical Meeting (IEEE, 2006), pp. 9-11.
[CrossRef]

K. Ishioka, K. Tanaka, N. Kojima, A. Fukumoto, and M. Sugiki, “Optical collinear holographic recording system using a blue laser and a random phase mask,” presented at the OSA International Symposium on Optical Memory and Optical Data Storage (ISOM/ODS), Honolulu, Hawaii, 10 July 2005, paper ThE3.

K. Tanaka, M. Hara, K. Tokuyama, K. Hirooka, K. Ishioka, A. Fukumoto, and M. Sugiki, “Improvements in multiplexed recording performance in coaxial holographic data storage,” presented at the International Symposium on Optical Memory 2006, Takamatsu, Kagawa, Japan, October 2006 .

F.T. S.Yu and S.Yin, eds., Photorefractive Optics Materials, Properties, and Applications (Academic, 2000).

M. Born and E. Wolf, Principles of Optics, 6th ed. (Cambridge University Press, 1980), p. 10.

H. Horimai and Y. Aoki, “Holographic versatile disc (HVD),” presented at the OSA International Symposium on Optical Memory and Optical Data Storage (ISOM/ODS), Honolulu, Hawaii, July 2005.

H. Horimai and Y. Aoki, “Holographic versatile disc (HVDTM) system,” presented at the International Symposium on Optical Memory 2006, Takamatsu, Kagawa, Japan, October 2006.

K. Anderson, E. Fotheringham, A. Hill, B. Sissom, and K. Curtis, “High speed holographic data storage at 100 Gbit/in2,” OSA International Symposium on Optical Memory and Optical Data Storage (ISOM/ODS), Honolulu, Hawaii, July 2005.

Z. Karpati, K. Banko, G. Szarvas, S. Kautny, and L. Domjan, “Comparison from M# consumption point of view for the coaxial holographic storage arrangements,” presented at the International Symposium on Optical Memory 2006, Takamatsu, Kagawa, Japan, October 2006.

R. T. Weverka, K. Wagner, R. R. Mcleod, K. Wu, and C. Garvin, “Low-loss acousto-optic photonic switch,” in Acousto-Optic Signal Processing Theory and Implementation (Marcel Dekker, 1996), pp. 479-573.

H. J. Coufal, D. Psaltis, and G. T. Sincerbox, eds., Holographic Data Storage (Springer, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

(a) Evaluation of the polarization density envelope on the k-sphere in accordance with Eq. (11). (b) Equivalent evaluation of the baseband polarization density envelope on plane normal to k S j in accordance with Eq. (15).

Fig. 2
Fig. 2

(a) Independent gratings diffracting into different modes may be treated incoherently. (b) Independent gratings diffracting into the same mode added coherently.

Fig. 3
Fig. 3

Schematic representation of angle-polytopic hologram.

Fig. 4
Fig. 4

External angle map for angle-polytopic beam components. The reference and signal components shown are subsampled from the complete, slowly varying sets.

Fig. 5
Fig. 5

Schematic representation of collinear hologram.

Fig. 6
Fig. 6

External angle map for blue collinear beam components.

Fig. 7
Fig. 7

Scatter bidirectional transmission distribution function (BTDF) measured for InPhase Tapestry medium.

Tables (6)

Tables Icon

Table 1 Summary of Parameters for the Angle-Polytopic Architecture

Tables Icon

Table 2 Summary of Parameters for the Blue Collinear Architecture

Tables Icon

Table 3 Summary of Parameters for the Green Collinear Architecture

Tables Icon

Table 4 Equivalent Area Results for the Models

Tables Icon

Table 5 Single Hologram Bit Densities for the Models

Tables Icon

Table 6 Architecture M I Consumption Efficiency, and Δ n max and M/# Required to Achieve the Target Storage Density

Equations (24)

Equations on this page are rendered with MathJax. Learn more.

η = ( M / # M ) 2 ,
η 1 / 2 = sin ( π n 1 L λ ( c R c S ) 1 / 2 ) ,
n ( r ) = n init + S T I ( r ) ,
M I Δ n ( r ) d r = S T I ( r ) d r .
M / # = η 1 / 2 = π L λ mean ( Δ n ( r ) ) = π L M I λ V = π M I λ A ,
A eq = π M I λ η 1 / 2 .
M I = S T P L cos θ ,
η = | c D | c P | E D | 2 | E P | 2 = sin 2 ( π n 1 L λ ( c P c D ) 1 / 2 ) ( transmission ) , η = | c D | c P | E D | 2 | E P | 2 = tanh 2 ( π n 1 L λ ( c P c D ) 1 / 2 ) ( reflection ) ,
| E D E P | ( | c P | c D ) 1 / 2 π n 1 L λ ( c P c D ) 1 / 2 = k 0 2 ε 1 L 4 k D z ,
E P ( r ) = e j k P · r , Δ ε ( r ) = ε 1 cos ( k ε · r ) rect ( z L ) ,
E D ( k ) = j k 0 2 ( 2 π ) 3 2 k D z Δ ε ( k ) * E P ( k ) | | k | = k n ,
E R ( r ) = i = 1 m A R i ( r ) exp ( j k R i · r ) , E S ( r ) = j = 1 n A S j ( r ) exp ( j k S j · r ) ,
Δ ε i j ( r ) = 2 n 0 S T A R i * ( r ) A S j ( r ) exp ( j k ε i j · r ) ,
E D i j ( k ) = j k 0 2 ( 2 π ) 3 2 k D z Δ ε i j ( k ) * E P i ( k ) | | k | = k n = j k 0 2 n 0 S T ( 2 π ) 3 k D z A R i * ( k k ε i j ) * A S j ( k k ε i j ) * A R i ( k k S j k ε i j ) | | k | = k n .
E D i j ( k + k S j ) j k 0 2 ( 2 π ) 3 k D z n 0 S T A R i ( k ) A R i ( k ) * A S j ( k ) | k · k S j = 0 ,
E D j ( k x , k y ) = i = 1 m E D i j ( k x , k y ) .
η j = | E D j ( k x , k y ) | 2 d k x d k y P P ,
η = j = 1 n η j .
M I / bit = A eff λ η 1 / 2 / ( π b ) ,
M / # = N eff η 1 / 2 ,
Δ n max = λ M / # π L .
M / # π Δ n max L / λ .
M / # = i = 1 n c R i c S i m i η i 1 / 2 ,
M I = ( λ A / π ) M / # = Δ n max V ,

Metrics