Abstract

We report experimental results from a flow-through integrating cavity absorption meter. The operating range of the device is from 0.004m1 to over 80m1 of absorption. Absorption coefficients have been measured with 8% or less change in the presence of over 200m1 of scattering in the medium. The instrument signal has been shown to be independent of flow rate up to 20  liters/min and thus independent of turbulence. This large operational range along with the ability to measure absorption independently of adverse scattering affects allows the instrument to be utilized in a wide range of environmental conditions.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. W. S. Pegau, J. S. Cleveland, W. Doss, C. D. Kennedy, R. A. Maffione, J. L. Mueller, R. Stone, C. C. Trees, A. D. Weidemann, W. H. Wells, and J. R. V. Zanefeld, “A comparison of methods for the measurements of the absorption coefficient in natural waters,” J. Geophys. Res. (Oceans) 100, 13201-13220 (1995).
    [CrossRef]
  2. T. J. Smyth, G. F. Moore, S. B. Groom, P. E. Land, and T. Tyrrell, “Optical modeling and measurements of a coccolithophore bloom,” Appl. Opt. 41, 7679-7688 (2002).
    [CrossRef]
  3. D. Doxaran, M. Babin, and E. Leymarie, “Near-infrared light scattering by particles in coastal waters,” Opt. Express 15, 12834-12849 (2007).
    [CrossRef] [PubMed]
  4. C. L. Gallegos, D. L. Correll, and J. W. Pierce, “Modeling spectral diffuse attenuation, absorption, and scattering coefficients in a turbid estuary,” Limnol. Oceanogr. 35, 1486-1502 (1990).
    [CrossRef]
  5. D. J. Gray, “Monte Carlo solutions to the radiative transfer equation in ocean optics: applications to instrument design and Mueller matrix imaging,” Ph.D. dissertation (Texas A&M University, 2003).
  6. D. J. Gray, G. W. Kattawar, and E. S. Fry, “Design and analysis of a flow-through integrating cavity absorption meter,” Appl. Opt. 45, 8990-8998 (2006).
    [CrossRef] [PubMed]
  7. E. S. Fry and G. W. Kattawar, “Measurement of the absorption coefficient of ocean water using isotropic illumination,” Proc. SPIE 925, 142-148 (1988).
  8. E. S. Fry, G. W. Kattawar, and R. M. Pope, “Integrating cavity absorption meter,” Appl. Opt. 31, 2055-2065 (1992).
    [CrossRef] [PubMed]
  9. N. J. McCormick, “Design of a flow-through integrating cavity for measuring the optical absorption coefficient,” in Oceans 1999 MTS/IEEE. Riding the Crest into the 21st Century (IEEE, 1999) Vol. 1, pp. 359-362.
  10. D. M. Hobbs and N. J. McCormick, “Design of an integrating cavity absorption meter,” Appl. Opt. 38, 456-461 (1999).
    [CrossRef]
  11. Spectralon is produced by Labsphere, Inc., North Sutton, N.H. 03260, USA.
  12. A Guide to Reflectance Coatings and Materials (Labsphere, Inc., 2006).
  13. Aerosil 90 is produced by Evonik Degussa Corp., Parsippany, N.J. 07054, USA.
  14. J. A. Musser, E. S. Fry, D. Haubrich, and X. Zhao, “Particle sizing via forward scattering near 0° and a new diffuse reflector,” presented at the 2005 Scientific Conference on Obscuration and Aerosol Research, Aberdeen, Md., USA, 20-22 June 2005.
  15. Milli-Q is produced by Millipore, Billerica, Mass. 01821, USA.
  16. SpectraMax Plus384 is produced by MDS, Inc., Mississauga, Ontario L4W 4V9, Canada.
  17. R. M. Pope and E. S. Fry, “Absorption spectrum (380-700 nm) of pure water. II. Integrating cavity measurements,” Appl. Opt. 36, 8710-8723 (1997).
    [CrossRef]
  18. J. T. O. Kirk, “Modeling the performance of an integrating-cavity absorption meter: theory and calculations for a spherical cavity,” Appl. Opt. 34, 4397-4408 (1995).
    [CrossRef] [PubMed]
  19. Ocean Optics USB2000 is produced by Ocean Optics, Inc., Dunedin, Fla. 34698, USA.
  20. J. A. Musser, E. S. Fry, and D. J. Gray, “Scattering independent absorption measurements, advances in integrating cavities, and particle sizing,” presented at the 2006 Scientific Conference on Obscuration and Aerosol Research, Aberdeen, Md., USA, 28-29 June 2006.
  21. W. Möller, K. P. Nikolaus, and A. Höpe, “Degradation of the diffuse reflectance of Spectralon under low-level irradiation,” Metrologia 40, S212-S215 (2003).
    [CrossRef]
  22. Spectralon Care and Handling Guidelines (Labsphere, Inc., 2006).

2007

2006

2003

W. Möller, K. P. Nikolaus, and A. Höpe, “Degradation of the diffuse reflectance of Spectralon under low-level irradiation,” Metrologia 40, S212-S215 (2003).
[CrossRef]

2002

1999

1997

1995

J. T. O. Kirk, “Modeling the performance of an integrating-cavity absorption meter: theory and calculations for a spherical cavity,” Appl. Opt. 34, 4397-4408 (1995).
[CrossRef] [PubMed]

W. S. Pegau, J. S. Cleveland, W. Doss, C. D. Kennedy, R. A. Maffione, J. L. Mueller, R. Stone, C. C. Trees, A. D. Weidemann, W. H. Wells, and J. R. V. Zanefeld, “A comparison of methods for the measurements of the absorption coefficient in natural waters,” J. Geophys. Res. (Oceans) 100, 13201-13220 (1995).
[CrossRef]

1992

1990

C. L. Gallegos, D. L. Correll, and J. W. Pierce, “Modeling spectral diffuse attenuation, absorption, and scattering coefficients in a turbid estuary,” Limnol. Oceanogr. 35, 1486-1502 (1990).
[CrossRef]

1988

E. S. Fry and G. W. Kattawar, “Measurement of the absorption coefficient of ocean water using isotropic illumination,” Proc. SPIE 925, 142-148 (1988).

Babin, M.

Cleveland, J. S.

W. S. Pegau, J. S. Cleveland, W. Doss, C. D. Kennedy, R. A. Maffione, J. L. Mueller, R. Stone, C. C. Trees, A. D. Weidemann, W. H. Wells, and J. R. V. Zanefeld, “A comparison of methods for the measurements of the absorption coefficient in natural waters,” J. Geophys. Res. (Oceans) 100, 13201-13220 (1995).
[CrossRef]

Correll, D. L.

C. L. Gallegos, D. L. Correll, and J. W. Pierce, “Modeling spectral diffuse attenuation, absorption, and scattering coefficients in a turbid estuary,” Limnol. Oceanogr. 35, 1486-1502 (1990).
[CrossRef]

Doss, W.

W. S. Pegau, J. S. Cleveland, W. Doss, C. D. Kennedy, R. A. Maffione, J. L. Mueller, R. Stone, C. C. Trees, A. D. Weidemann, W. H. Wells, and J. R. V. Zanefeld, “A comparison of methods for the measurements of the absorption coefficient in natural waters,” J. Geophys. Res. (Oceans) 100, 13201-13220 (1995).
[CrossRef]

Doxaran, D.

Fry, E. S.

D. J. Gray, G. W. Kattawar, and E. S. Fry, “Design and analysis of a flow-through integrating cavity absorption meter,” Appl. Opt. 45, 8990-8998 (2006).
[CrossRef] [PubMed]

R. M. Pope and E. S. Fry, “Absorption spectrum (380-700 nm) of pure water. II. Integrating cavity measurements,” Appl. Opt. 36, 8710-8723 (1997).
[CrossRef]

E. S. Fry, G. W. Kattawar, and R. M. Pope, “Integrating cavity absorption meter,” Appl. Opt. 31, 2055-2065 (1992).
[CrossRef] [PubMed]

E. S. Fry and G. W. Kattawar, “Measurement of the absorption coefficient of ocean water using isotropic illumination,” Proc. SPIE 925, 142-148 (1988).

J. A. Musser, E. S. Fry, D. Haubrich, and X. Zhao, “Particle sizing via forward scattering near 0° and a new diffuse reflector,” presented at the 2005 Scientific Conference on Obscuration and Aerosol Research, Aberdeen, Md., USA, 20-22 June 2005.

J. A. Musser, E. S. Fry, and D. J. Gray, “Scattering independent absorption measurements, advances in integrating cavities, and particle sizing,” presented at the 2006 Scientific Conference on Obscuration and Aerosol Research, Aberdeen, Md., USA, 28-29 June 2006.

Gallegos, C. L.

C. L. Gallegos, D. L. Correll, and J. W. Pierce, “Modeling spectral diffuse attenuation, absorption, and scattering coefficients in a turbid estuary,” Limnol. Oceanogr. 35, 1486-1502 (1990).
[CrossRef]

Gray, D. J.

D. J. Gray, G. W. Kattawar, and E. S. Fry, “Design and analysis of a flow-through integrating cavity absorption meter,” Appl. Opt. 45, 8990-8998 (2006).
[CrossRef] [PubMed]

J. A. Musser, E. S. Fry, and D. J. Gray, “Scattering independent absorption measurements, advances in integrating cavities, and particle sizing,” presented at the 2006 Scientific Conference on Obscuration and Aerosol Research, Aberdeen, Md., USA, 28-29 June 2006.

D. J. Gray, “Monte Carlo solutions to the radiative transfer equation in ocean optics: applications to instrument design and Mueller matrix imaging,” Ph.D. dissertation (Texas A&M University, 2003).

Groom, S. B.

Haubrich, D.

J. A. Musser, E. S. Fry, D. Haubrich, and X. Zhao, “Particle sizing via forward scattering near 0° and a new diffuse reflector,” presented at the 2005 Scientific Conference on Obscuration and Aerosol Research, Aberdeen, Md., USA, 20-22 June 2005.

Hobbs, D. M.

Höpe, A.

W. Möller, K. P. Nikolaus, and A. Höpe, “Degradation of the diffuse reflectance of Spectralon under low-level irradiation,” Metrologia 40, S212-S215 (2003).
[CrossRef]

Kattawar, G. W.

Kennedy, C. D.

W. S. Pegau, J. S. Cleveland, W. Doss, C. D. Kennedy, R. A. Maffione, J. L. Mueller, R. Stone, C. C. Trees, A. D. Weidemann, W. H. Wells, and J. R. V. Zanefeld, “A comparison of methods for the measurements of the absorption coefficient in natural waters,” J. Geophys. Res. (Oceans) 100, 13201-13220 (1995).
[CrossRef]

Kirk, J. T. O.

Land, P. E.

Leymarie, E.

Maffione, R. A.

W. S. Pegau, J. S. Cleveland, W. Doss, C. D. Kennedy, R. A. Maffione, J. L. Mueller, R. Stone, C. C. Trees, A. D. Weidemann, W. H. Wells, and J. R. V. Zanefeld, “A comparison of methods for the measurements of the absorption coefficient in natural waters,” J. Geophys. Res. (Oceans) 100, 13201-13220 (1995).
[CrossRef]

McCormick, N. J.

D. M. Hobbs and N. J. McCormick, “Design of an integrating cavity absorption meter,” Appl. Opt. 38, 456-461 (1999).
[CrossRef]

N. J. McCormick, “Design of a flow-through integrating cavity for measuring the optical absorption coefficient,” in Oceans 1999 MTS/IEEE. Riding the Crest into the 21st Century (IEEE, 1999) Vol. 1, pp. 359-362.

Möller, W.

W. Möller, K. P. Nikolaus, and A. Höpe, “Degradation of the diffuse reflectance of Spectralon under low-level irradiation,” Metrologia 40, S212-S215 (2003).
[CrossRef]

Moore, G. F.

Mueller, J. L.

W. S. Pegau, J. S. Cleveland, W. Doss, C. D. Kennedy, R. A. Maffione, J. L. Mueller, R. Stone, C. C. Trees, A. D. Weidemann, W. H. Wells, and J. R. V. Zanefeld, “A comparison of methods for the measurements of the absorption coefficient in natural waters,” J. Geophys. Res. (Oceans) 100, 13201-13220 (1995).
[CrossRef]

Musser, J. A.

J. A. Musser, E. S. Fry, and D. J. Gray, “Scattering independent absorption measurements, advances in integrating cavities, and particle sizing,” presented at the 2006 Scientific Conference on Obscuration and Aerosol Research, Aberdeen, Md., USA, 28-29 June 2006.

J. A. Musser, E. S. Fry, D. Haubrich, and X. Zhao, “Particle sizing via forward scattering near 0° and a new diffuse reflector,” presented at the 2005 Scientific Conference on Obscuration and Aerosol Research, Aberdeen, Md., USA, 20-22 June 2005.

Nikolaus, K. P.

W. Möller, K. P. Nikolaus, and A. Höpe, “Degradation of the diffuse reflectance of Spectralon under low-level irradiation,” Metrologia 40, S212-S215 (2003).
[CrossRef]

Pegau, W. S.

W. S. Pegau, J. S. Cleveland, W. Doss, C. D. Kennedy, R. A. Maffione, J. L. Mueller, R. Stone, C. C. Trees, A. D. Weidemann, W. H. Wells, and J. R. V. Zanefeld, “A comparison of methods for the measurements of the absorption coefficient in natural waters,” J. Geophys. Res. (Oceans) 100, 13201-13220 (1995).
[CrossRef]

Pierce, J. W.

C. L. Gallegos, D. L. Correll, and J. W. Pierce, “Modeling spectral diffuse attenuation, absorption, and scattering coefficients in a turbid estuary,” Limnol. Oceanogr. 35, 1486-1502 (1990).
[CrossRef]

Pope, R. M.

Smyth, T. J.

Stone, R.

W. S. Pegau, J. S. Cleveland, W. Doss, C. D. Kennedy, R. A. Maffione, J. L. Mueller, R. Stone, C. C. Trees, A. D. Weidemann, W. H. Wells, and J. R. V. Zanefeld, “A comparison of methods for the measurements of the absorption coefficient in natural waters,” J. Geophys. Res. (Oceans) 100, 13201-13220 (1995).
[CrossRef]

Trees, C. C.

W. S. Pegau, J. S. Cleveland, W. Doss, C. D. Kennedy, R. A. Maffione, J. L. Mueller, R. Stone, C. C. Trees, A. D. Weidemann, W. H. Wells, and J. R. V. Zanefeld, “A comparison of methods for the measurements of the absorption coefficient in natural waters,” J. Geophys. Res. (Oceans) 100, 13201-13220 (1995).
[CrossRef]

Tyrrell, T.

Weidemann, A. D.

W. S. Pegau, J. S. Cleveland, W. Doss, C. D. Kennedy, R. A. Maffione, J. L. Mueller, R. Stone, C. C. Trees, A. D. Weidemann, W. H. Wells, and J. R. V. Zanefeld, “A comparison of methods for the measurements of the absorption coefficient in natural waters,” J. Geophys. Res. (Oceans) 100, 13201-13220 (1995).
[CrossRef]

Wells, W. H.

W. S. Pegau, J. S. Cleveland, W. Doss, C. D. Kennedy, R. A. Maffione, J. L. Mueller, R. Stone, C. C. Trees, A. D. Weidemann, W. H. Wells, and J. R. V. Zanefeld, “A comparison of methods for the measurements of the absorption coefficient in natural waters,” J. Geophys. Res. (Oceans) 100, 13201-13220 (1995).
[CrossRef]

Zanefeld, J. R. V.

W. S. Pegau, J. S. Cleveland, W. Doss, C. D. Kennedy, R. A. Maffione, J. L. Mueller, R. Stone, C. C. Trees, A. D. Weidemann, W. H. Wells, and J. R. V. Zanefeld, “A comparison of methods for the measurements of the absorption coefficient in natural waters,” J. Geophys. Res. (Oceans) 100, 13201-13220 (1995).
[CrossRef]

Zhao, X.

J. A. Musser, E. S. Fry, D. Haubrich, and X. Zhao, “Particle sizing via forward scattering near 0° and a new diffuse reflector,” presented at the 2005 Scientific Conference on Obscuration and Aerosol Research, Aberdeen, Md., USA, 20-22 June 2005.

Appl. Opt.

J. Geophys. Res. (Oceans)

W. S. Pegau, J. S. Cleveland, W. Doss, C. D. Kennedy, R. A. Maffione, J. L. Mueller, R. Stone, C. C. Trees, A. D. Weidemann, W. H. Wells, and J. R. V. Zanefeld, “A comparison of methods for the measurements of the absorption coefficient in natural waters,” J. Geophys. Res. (Oceans) 100, 13201-13220 (1995).
[CrossRef]

Limnol. Oceanogr.

C. L. Gallegos, D. L. Correll, and J. W. Pierce, “Modeling spectral diffuse attenuation, absorption, and scattering coefficients in a turbid estuary,” Limnol. Oceanogr. 35, 1486-1502 (1990).
[CrossRef]

Metrologia

W. Möller, K. P. Nikolaus, and A. Höpe, “Degradation of the diffuse reflectance of Spectralon under low-level irradiation,” Metrologia 40, S212-S215 (2003).
[CrossRef]

Opt. Express

Proc. SPIE

E. S. Fry and G. W. Kattawar, “Measurement of the absorption coefficient of ocean water using isotropic illumination,” Proc. SPIE 925, 142-148 (1988).

Other

N. J. McCormick, “Design of a flow-through integrating cavity for measuring the optical absorption coefficient,” in Oceans 1999 MTS/IEEE. Riding the Crest into the 21st Century (IEEE, 1999) Vol. 1, pp. 359-362.

Spectralon is produced by Labsphere, Inc., North Sutton, N.H. 03260, USA.

A Guide to Reflectance Coatings and Materials (Labsphere, Inc., 2006).

Aerosil 90 is produced by Evonik Degussa Corp., Parsippany, N.J. 07054, USA.

J. A. Musser, E. S. Fry, D. Haubrich, and X. Zhao, “Particle sizing via forward scattering near 0° and a new diffuse reflector,” presented at the 2005 Scientific Conference on Obscuration and Aerosol Research, Aberdeen, Md., USA, 20-22 June 2005.

Milli-Q is produced by Millipore, Billerica, Mass. 01821, USA.

SpectraMax Plus384 is produced by MDS, Inc., Mississauga, Ontario L4W 4V9, Canada.

Ocean Optics USB2000 is produced by Ocean Optics, Inc., Dunedin, Fla. 34698, USA.

J. A. Musser, E. S. Fry, and D. J. Gray, “Scattering independent absorption measurements, advances in integrating cavities, and particle sizing,” presented at the 2006 Scientific Conference on Obscuration and Aerosol Research, Aberdeen, Md., USA, 28-29 June 2006.

Spectralon Care and Handling Guidelines (Labsphere, Inc., 2006).

D. J. Gray, “Monte Carlo solutions to the radiative transfer equation in ocean optics: applications to instrument design and Mueller matrix imaging,” Ph.D. dissertation (Texas A&M University, 2003).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

FT-ICAM geometry. Region A is the diffuse reflector, region B is the air gap, region C is the quartz tube, and region D is the sample volume. Regions A and B comprise the outer integrating cavity. The inner portion of region A along with regions C and D comprise the inner integrating cavity.

Fig. 2
Fig. 2

Intensity versus position along the FT-ICAM tube.

Fig. 3
Fig. 3

Intensity versus direction within the FT-ICAM.

Fig. 4
Fig. 4

Intensity versus radial position in the FT-ICAM.

Fig. 5
Fig. 5

FT-ICAM signal versus the absorption coefficient.

Fig. 6
Fig. 6

Results of the blind test and associated uncertainties of the FT-ICAM at 526 nm .

Fig. 7
Fig. 7

FT-ICAM’s response to flow rates.

Fig. 8
Fig. 8

FT-ICAM’s response as a function of the medium’s scattering coefficient.

Tables (2)

Tables Icon

Table 1 FT-ICAM Fitting Parameters, r, p, and q and Their Uncertainties Obtained by Fitting Signal ( a ) = r + p / ( a + q ) at Each of the FT-ICAM’s Operational Wavelengths

Tables Icon

Table 2 Uncertainties Associated with the FT-ICAM Calibration at 526 nm .

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

S = r + p a + q ,
a 526 nm = n = 1 N h n a λ ( n ) n = 1 N h n ,
a n = a f d 2 n + ( 2 n 1 ) a p w 2 n = V f d V T a f d + V p w V T a p w ,
S = r + p a + q .
a = p S r q .
Δ a = p ( S r ) 2 Δ S = ( a + q ) 2 p Δ S .
S = r + k e a R ,
Δ a = Δ S k R e a R .

Metrics