Abstract

A hyperspectral imaging technique was attempted to classify green tea. Five grades of green tea samples were attempted. A hyperspectral imaging system was developed for data acquisition of tea samples. Principal component analysis was performed on the hyperspectral data to determine three optimal band images. Texture analysis was conducted on each optimal band image to extract characteristic variables. A support vector machine (SVM) was used to construct the classification model. The classification rates were 98% and 95% in the training and prediction sets, respectively. The SVM algorithm shows excellent performance in classification results in contrast with other pattern recognitions classifiers. Overall results show that the hyperspectral imaging technique coupled with a SVM classifier can be efficiently utilized to classify green tea.

© 2009 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Detection of citrus canker and Huanglongbing using fluorescence imaging spectroscopy and support vector machine technique

Caio Bruno Wetterich, Ruan Felipe de Oliveira Neves, José Belasque, and Luis Gustavo Marcassa
Appl. Opt. 55(2) 400-407 (2016)

Identification and characterization of colorectal cancer using Raman spectroscopy and feature selection techniques

Shaoxin Li, Gong Chen, Yanjiao Zhang, Zhouyi Guo, Zhiming Liu, Junfa Xu, Xueqiang Li, and Lin Lin
Opt. Express 22(21) 25895-25908 (2014)

Classification of steel materials by laser-induced breakdown spectroscopy coupled with support vector machines

Long Liang, Tianlong Zhang, Kang Wang, Hongsheng Tang, Xiaofeng Yang, Xiaoqin Zhu, Yixiang Duan, and Hua Li
Appl. Opt. 53(4) 544-552 (2014)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (5)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (8)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription