Abstract

A two-layer tissue diffuse reflectance model is described. The model is based on a simple one-layer model that we have recently developed and successfully applied to the analysis of in vivo skin reflectance. The model, which is specifically designed for use with a fiber optic probe, has as its main features simplicity and ease of application, and it is capable of estimating the thickness and the absorption coefficient of a superficial absorbing and scattering layer. Both of these parameters are of great interest for the noninvasive study of epithelial biological tissues. The validity range and accuracy of the model are tested on tissue phantoms in both the forward and inverse modes of application.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Amelink, H. J. C. M. Sterenborg, M. P. L. Bard, and S. A. Burgers, “In vivo measurement of the local optical properties of tissue by use of differential path-length spectroscopy,” Opt. Lett. 29, 1087-1089 (2004).
    [CrossRef] [PubMed]
  2. R. Reif, O. A'Amar, and I. J. Bigio, “Analytical model of light reflectance for extraction of the optical properties in small volumes of turbid media,” Appl. Opt. 46, 7317-7328 (2007).
    [CrossRef] [PubMed]
  3. G. Zonios and A. Dimou, “Modeling diffuse reflectance from semi-infinite turbid media: application to the study of skin optical properties,” Opt. Express 14, 8661-8674 (2006).
    [CrossRef] [PubMed]
  4. C. Billet and R. Sablong, “Differential optical spectroscopy for absorption characterization of scattering media,” Opt. Lett. 32, 3251-3253 (2007).
    [CrossRef] [PubMed]
  5. A. Kienle, M. S. Patterson, N. Dognitz, R. Bays, G. Wagnieres, and H. van den Bergh, “Noninvasive determination of the optical properties of two-layered turbid media,” Appl. Opt. 37, 779-791 (1998).
    [CrossRef]
  6. G. Alexandrakis, T. J. Farrell, and M. S. Patterson, “Accuracy of the diffusion approximation in determining the optical properties of a two-layer turbid medium,” Appl. Opt. 37, 7401-7409 (1998).
    [CrossRef]
  7. A. D. Kim, C. Hayakawa, and V. Venugopalan, “Estimating optical properties in layered tissues by use of the Born approximation of the radiative transport equation,” Opt. Lett. 31, 1088-1090 (2006).
    [CrossRef] [PubMed]
  8. Y. S. Fawzi, A.-B. M. Youssef, M. H. El-Batanony, and Y. M. Kadah, “Determination of the optical properties of a two-layer tissue model by detecting photons migrating at progressively increasing depths,” Appl. Opt. 42, 6398-6411 (2003).
    [CrossRef] [PubMed]
  9. Q. Liu and N. Ramanujam, “Sequential estimation of optical properties of a two-layered epithelial tissue model from depth-resolved ultraviolet-visible diffuse reflectance spectra,” Appl. Opt. 45, 4776-4790 (2006).
    [CrossRef] [PubMed]
  10. G. Zonios, I. Bassukas, and A. Dimou, “Comparative evaluation of two simple diffuse reflectance models for biological tissue applications,” Appl. Opt. 47, 4965-4973 (2008).
    [CrossRef] [PubMed]
  11. W. J. Wiscombe, “Mie scattering calculations: advances in technique and fast vector speed computer codes,” NCAR Technical Note NCAR/TN-140+STR (National Center for Atmospheric Research, Boulder, Colorado, 1979).
  12. O. W. van Assendelft, Spectrophotometry of Haemoglobin Derivatives (C. C. Thomas, 1970).
  13. Y. S. Fawzy and H. Zheng, “Determination of scattering volume fraction and particle size distribution in the superficial layer of a turbid medium by using diffuse reflectance spectroscopy,” Appl. Opt. 45, 3902-3912 (2006).
    [CrossRef] [PubMed]
  14. L. H. Wang, S. L. Jacques, and L. Q. Zheng, “MCML: Monte-Carlo modeling of light transport in multilayered tissues,” Comput. Methods Programs Biomed. 47, 131-146 (1995).
    [CrossRef] [PubMed]
  15. D. G. Papageorgiou, I. N. Demetropoulos, and I. E. Lagaris, “MERLIN-3.0--A multidimensional optimization environment,” Comput. Phys. Commun. 109, 227-249 (1998).
    [CrossRef]
  16. M. Johns, C. A. Giller, D. C. German, and H. L. Liu, “Determination of reduced scattering coefficient of biological tissue from a needle-like probe,” Opt. Express 13, 4828-4842 (2005).
    [CrossRef] [PubMed]
  17. G. Zonios, A. Dimou, I. Bassukas, D. Galaris, A. Tsolakidis, and E. Kaxiras, “Melanin absorption spectroscopy: new method for noninvasive skin investigation and melanoma detection,” J. Biomed. Opt. 13, 014017 (2008).
    [CrossRef] [PubMed]
  18. G. Zonios and A. Dimou, “Melanin optical properties provide evidence for chemical and structural disorder in vivo,” Opt. Express 16, 8263-8268 (2008).
    [CrossRef] [PubMed]
  19. J. B. Dawson, D. J. Barker, D. J. Ellis, E. Grassam, J. A. Cotterill, G. W. Fisher, and J. W. Feather, “A theoretical and experimental study of light absorption and scattering by in vivo skin,” Phys. Med. Biol. 25, 695-709 (1980).
    [CrossRef] [PubMed]

2008 (3)

2007 (2)

2006 (4)

2005 (1)

2004 (1)

2003 (1)

1998 (3)

1995 (1)

L. H. Wang, S. L. Jacques, and L. Q. Zheng, “MCML: Monte-Carlo modeling of light transport in multilayered tissues,” Comput. Methods Programs Biomed. 47, 131-146 (1995).
[CrossRef] [PubMed]

1980 (1)

J. B. Dawson, D. J. Barker, D. J. Ellis, E. Grassam, J. A. Cotterill, G. W. Fisher, and J. W. Feather, “A theoretical and experimental study of light absorption and scattering by in vivo skin,” Phys. Med. Biol. 25, 695-709 (1980).
[CrossRef] [PubMed]

A'Amar, O.

Alexandrakis, G.

Amelink, A.

Bard, M. P. L.

Barker, D. J.

J. B. Dawson, D. J. Barker, D. J. Ellis, E. Grassam, J. A. Cotterill, G. W. Fisher, and J. W. Feather, “A theoretical and experimental study of light absorption and scattering by in vivo skin,” Phys. Med. Biol. 25, 695-709 (1980).
[CrossRef] [PubMed]

Bassukas, I.

G. Zonios, A. Dimou, I. Bassukas, D. Galaris, A. Tsolakidis, and E. Kaxiras, “Melanin absorption spectroscopy: new method for noninvasive skin investigation and melanoma detection,” J. Biomed. Opt. 13, 014017 (2008).
[CrossRef] [PubMed]

G. Zonios, I. Bassukas, and A. Dimou, “Comparative evaluation of two simple diffuse reflectance models for biological tissue applications,” Appl. Opt. 47, 4965-4973 (2008).
[CrossRef] [PubMed]

Bays, R.

Bigio, I. J.

Billet, C.

Burgers, S. A.

Cotterill, J. A.

J. B. Dawson, D. J. Barker, D. J. Ellis, E. Grassam, J. A. Cotterill, G. W. Fisher, and J. W. Feather, “A theoretical and experimental study of light absorption and scattering by in vivo skin,” Phys. Med. Biol. 25, 695-709 (1980).
[CrossRef] [PubMed]

Dawson, J. B.

J. B. Dawson, D. J. Barker, D. J. Ellis, E. Grassam, J. A. Cotterill, G. W. Fisher, and J. W. Feather, “A theoretical and experimental study of light absorption and scattering by in vivo skin,” Phys. Med. Biol. 25, 695-709 (1980).
[CrossRef] [PubMed]

Demetropoulos, I. N.

D. G. Papageorgiou, I. N. Demetropoulos, and I. E. Lagaris, “MERLIN-3.0--A multidimensional optimization environment,” Comput. Phys. Commun. 109, 227-249 (1998).
[CrossRef]

Dimou, A.

Dognitz, N.

El-Batanony, M. H.

Ellis, D. J.

J. B. Dawson, D. J. Barker, D. J. Ellis, E. Grassam, J. A. Cotterill, G. W. Fisher, and J. W. Feather, “A theoretical and experimental study of light absorption and scattering by in vivo skin,” Phys. Med. Biol. 25, 695-709 (1980).
[CrossRef] [PubMed]

Farrell, T. J.

Fawzi, Y. S.

Fawzy, Y. S.

Feather, J. W.

J. B. Dawson, D. J. Barker, D. J. Ellis, E. Grassam, J. A. Cotterill, G. W. Fisher, and J. W. Feather, “A theoretical and experimental study of light absorption and scattering by in vivo skin,” Phys. Med. Biol. 25, 695-709 (1980).
[CrossRef] [PubMed]

Fisher, G. W.

J. B. Dawson, D. J. Barker, D. J. Ellis, E. Grassam, J. A. Cotterill, G. W. Fisher, and J. W. Feather, “A theoretical and experimental study of light absorption and scattering by in vivo skin,” Phys. Med. Biol. 25, 695-709 (1980).
[CrossRef] [PubMed]

Galaris, D.

G. Zonios, A. Dimou, I. Bassukas, D. Galaris, A. Tsolakidis, and E. Kaxiras, “Melanin absorption spectroscopy: new method for noninvasive skin investigation and melanoma detection,” J. Biomed. Opt. 13, 014017 (2008).
[CrossRef] [PubMed]

German, D. C.

Giller, C. A.

Grassam, E.

J. B. Dawson, D. J. Barker, D. J. Ellis, E. Grassam, J. A. Cotterill, G. W. Fisher, and J. W. Feather, “A theoretical and experimental study of light absorption and scattering by in vivo skin,” Phys. Med. Biol. 25, 695-709 (1980).
[CrossRef] [PubMed]

Hayakawa, C.

Jacques, S. L.

L. H. Wang, S. L. Jacques, and L. Q. Zheng, “MCML: Monte-Carlo modeling of light transport in multilayered tissues,” Comput. Methods Programs Biomed. 47, 131-146 (1995).
[CrossRef] [PubMed]

Johns, M.

Kadah, Y. M.

Kaxiras, E.

G. Zonios, A. Dimou, I. Bassukas, D. Galaris, A. Tsolakidis, and E. Kaxiras, “Melanin absorption spectroscopy: new method for noninvasive skin investigation and melanoma detection,” J. Biomed. Opt. 13, 014017 (2008).
[CrossRef] [PubMed]

Kienle, A.

Kim, A. D.

Lagaris, I. E.

D. G. Papageorgiou, I. N. Demetropoulos, and I. E. Lagaris, “MERLIN-3.0--A multidimensional optimization environment,” Comput. Phys. Commun. 109, 227-249 (1998).
[CrossRef]

Liu, H. L.

Liu, Q.

Papageorgiou, D. G.

D. G. Papageorgiou, I. N. Demetropoulos, and I. E. Lagaris, “MERLIN-3.0--A multidimensional optimization environment,” Comput. Phys. Commun. 109, 227-249 (1998).
[CrossRef]

Patterson, M. S.

Ramanujam, N.

Reif, R.

Sablong, R.

Sterenborg, H. J. C. M.

Tsolakidis, A.

G. Zonios, A. Dimou, I. Bassukas, D. Galaris, A. Tsolakidis, and E. Kaxiras, “Melanin absorption spectroscopy: new method for noninvasive skin investigation and melanoma detection,” J. Biomed. Opt. 13, 014017 (2008).
[CrossRef] [PubMed]

van Assendelft, O. W.

O. W. van Assendelft, Spectrophotometry of Haemoglobin Derivatives (C. C. Thomas, 1970).

van den Bergh, H.

Venugopalan, V.

Wagnieres, G.

Wang, L. H.

L. H. Wang, S. L. Jacques, and L. Q. Zheng, “MCML: Monte-Carlo modeling of light transport in multilayered tissues,” Comput. Methods Programs Biomed. 47, 131-146 (1995).
[CrossRef] [PubMed]

Wiscombe, W. J.

W. J. Wiscombe, “Mie scattering calculations: advances in technique and fast vector speed computer codes,” NCAR Technical Note NCAR/TN-140+STR (National Center for Atmospheric Research, Boulder, Colorado, 1979).

Youssef, A.-B. M.

Zheng, H.

Zheng, L. Q.

L. H. Wang, S. L. Jacques, and L. Q. Zheng, “MCML: Monte-Carlo modeling of light transport in multilayered tissues,” Comput. Methods Programs Biomed. 47, 131-146 (1995).
[CrossRef] [PubMed]

Zonios, G.

Appl. Opt. (7)

R. Reif, O. A'Amar, and I. J. Bigio, “Analytical model of light reflectance for extraction of the optical properties in small volumes of turbid media,” Appl. Opt. 46, 7317-7328 (2007).
[CrossRef] [PubMed]

A. Kienle, M. S. Patterson, N. Dognitz, R. Bays, G. Wagnieres, and H. van den Bergh, “Noninvasive determination of the optical properties of two-layered turbid media,” Appl. Opt. 37, 779-791 (1998).
[CrossRef]

G. Alexandrakis, T. J. Farrell, and M. S. Patterson, “Accuracy of the diffusion approximation in determining the optical properties of a two-layer turbid medium,” Appl. Opt. 37, 7401-7409 (1998).
[CrossRef]

Y. S. Fawzi, A.-B. M. Youssef, M. H. El-Batanony, and Y. M. Kadah, “Determination of the optical properties of a two-layer tissue model by detecting photons migrating at progressively increasing depths,” Appl. Opt. 42, 6398-6411 (2003).
[CrossRef] [PubMed]

Q. Liu and N. Ramanujam, “Sequential estimation of optical properties of a two-layered epithelial tissue model from depth-resolved ultraviolet-visible diffuse reflectance spectra,” Appl. Opt. 45, 4776-4790 (2006).
[CrossRef] [PubMed]

G. Zonios, I. Bassukas, and A. Dimou, “Comparative evaluation of two simple diffuse reflectance models for biological tissue applications,” Appl. Opt. 47, 4965-4973 (2008).
[CrossRef] [PubMed]

Y. S. Fawzy and H. Zheng, “Determination of scattering volume fraction and particle size distribution in the superficial layer of a turbid medium by using diffuse reflectance spectroscopy,” Appl. Opt. 45, 3902-3912 (2006).
[CrossRef] [PubMed]

Comput. Methods Programs Biomed. (1)

L. H. Wang, S. L. Jacques, and L. Q. Zheng, “MCML: Monte-Carlo modeling of light transport in multilayered tissues,” Comput. Methods Programs Biomed. 47, 131-146 (1995).
[CrossRef] [PubMed]

Comput. Phys. Commun. (1)

D. G. Papageorgiou, I. N. Demetropoulos, and I. E. Lagaris, “MERLIN-3.0--A multidimensional optimization environment,” Comput. Phys. Commun. 109, 227-249 (1998).
[CrossRef]

J. Biomed. Opt. (1)

G. Zonios, A. Dimou, I. Bassukas, D. Galaris, A. Tsolakidis, and E. Kaxiras, “Melanin absorption spectroscopy: new method for noninvasive skin investigation and melanoma detection,” J. Biomed. Opt. 13, 014017 (2008).
[CrossRef] [PubMed]

Opt. Express (3)

Opt. Lett. (3)

Phys. Med. Biol. (1)

J. B. Dawson, D. J. Barker, D. J. Ellis, E. Grassam, J. A. Cotterill, G. W. Fisher, and J. W. Feather, “A theoretical and experimental study of light absorption and scattering by in vivo skin,” Phys. Med. Biol. 25, 695-709 (1980).
[CrossRef] [PubMed]

Other (2)

W. J. Wiscombe, “Mie scattering calculations: advances in technique and fast vector speed computer codes,” NCAR Technical Note NCAR/TN-140+STR (National Center for Atmospheric Research, Boulder, Colorado, 1979).

O. W. van Assendelft, Spectrophotometry of Haemoglobin Derivatives (C. C. Thomas, 1970).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Geometry of the two-layer tissue model. The top layer is an absorbing and scattering layer with thickness, z, while the bottom layer is a scattering-only layer.

Fig. 2
Fig. 2

(a) Diffuse reflectance as a function of the absorption coefficient for variable top layer thickness, z, measured on a tissue phantom. Data points represent tissue phantom data; solid lines represent fits to the data using Eq. (3). (b) Deviation between the model and the experimental data shown in (a) ( μ s = 1.8 mm 1 ).

Fig. 3
Fig. 3

(a) Model performance for a different value of the reduced scattering coefficient ( μ s = 0.9 mm 1 ). Data points represent tissue phantom data; solid lines represent fits to the data using Eq. (3) and (b) percent deviation between the model and the experimental data shown in (a).

Fig. 4
Fig. 4

Same as in Fig. 3, but for a different value of the reduced scattering coefficient ( μ s = 2.7 mm 1 ).

Fig. 5
Fig. 5

Percentile error for the inverse application of the model in determining model parameters on tissue phantoms: (a) absorption coefficient and (b) top layer thickness.

Fig. 6
Fig. 6

Average penetration depth of light calculated using Monte Carlo simulations (data points). The solid lines represent an empirical fit using Eq. (4).

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

R = μ s k 1 + k 2 μ a .
k 2 ( z ) = 1 a + b z 3 / 2 ,
R = μ s k 1 + μ a a + b z 3 / 2 .
z = 1 a 1 + a 2 μ s + a 3 μ a ,

Metrics