Abstract

We developed a high-speed linear detection time-domain optical coherence tomography (OCT) technique that detected a reflective grating-generated spatial optical delay in the reference arm using a line scan camera during probe-beam scanning. Using an InGaAs line scan camera (512 pixels) operating at 47,000  lines/s, the calculation of the absolute value of the difference between two sequential lines can be approximately displayed as cross-sectional images with 500 lateral pixels at 94  frames/s. After data acquisition, we performed postprocessing that involves a Hilbert transform to improve the image quality of an OCT image. Our OCT system was successfully used to image a human finger in vivo with 93dB sensitivity.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
    [CrossRef] [PubMed]
  2. A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43-48 (1995).
    [CrossRef]
  3. G. Häusler and M. W. Lindner, ““Coherence radar” and “spectral radar”-new tools for dermatological diagnosis,” J. Biomed. Opt. 3, 21-31 (1998).
    [CrossRef]
  4. R. Leitgeb, C. Hitzenberger, and A. Fercher, “Performance of fourier domain vs. time domain optical coherence tomography,” Opt. Express 11, 889-894 (2003).
    [CrossRef] [PubMed]
  5. R. Huber, D. C. Adler, and J. G. Fujimoto, “Buffered Fourier domain mode locking:unidirectional swept laser sources for optical coherence tomography imaging at 370,000 lines/s,” Opt. Lett. 31, 2975-2977 (2006).
    [CrossRef] [PubMed]
  6. B. Potsaid, I. Gorczynska, V. J. Srinivasan, Y. Chen, J. Jiang, A. Cable, and J. G. Fujimoto, “Ultrahigh speed spectral / Fourier domain OCT ophthalmic imaging at 70,000 to 312,500 axial scans per second,” Opt. Express 16, 15149-15169 (2008).
    [CrossRef] [PubMed]
  7. I. Zeylikovich, A. Gilerson, and R. R. Alfano, “Nonmechanical grating-generated scanning coherence microscopy,” Opt. Lett. 23, 1797-1799 (1998).
    [CrossRef]
  8. Y. Watanabe, K. Yamada, and M. Sato, “In vivo nonmechanical scanning grating-generated optical coherence tomography using an InGaAs digital camera,” Opt. Commun. 261, 376-380 (2006).
    [CrossRef]
  9. Y. Watanabe, K. Yamada, and M. Sato, “Three-dimensional imaging by ultrahigh-speed axial-lateral parallel time domain optical coherence tomography,” Opt. Express 14, 5201-5209(2006).
    [CrossRef] [PubMed]
  10. Y. Watanabe, Y. Takasugi, K. Yamada, and M. Sato, “Axial-lateral parallel time domain OCT with optical zoom lens and high order diffracted lights for variable imaging range,” Opt. Express 15, 5208-5217 (2007).
    [CrossRef] [PubMed]
  11. Y. Watanabe and M. Sato, “Quasi-single shot axial-lateral parallel time domain optical coherence tomography with Hilbert transformation,” Opt. Express 16, 524-534 (2008).
    [CrossRef] [PubMed]
  12. G. Brun, I. Verrier, A. Barthélémy, C. Froehly, and J. P. Goure, “Measurements of mode propagation time in multimode fibers using a real-time interferometric amplitude correlator,” J. Opt. Commun. 13, 134-139 (1992).
    [CrossRef]
  13. I. Zeylikovich and R. R. Alfano, “Ultrafast dark-field interferometric microscopic reflectometry,” Opt. Lett. 21, 1682-1684(1996).
    [CrossRef] [PubMed]
  14. I. Verrier, G. Brun, and J. P. Goure, “SISAM interferometer for distance measurements,” Appl. Opt. 36, 6225-6230 (1997).
    [CrossRef]
  15. P. Koch, V. Hellemanns, and G. Hüttmann, “Linear optical coherence tomography system with extended measurement range,” Opt. Lett. 31, 2882-2884 (2006).
    [CrossRef] [PubMed]
  16. A. Dubois, L. Vabre, A. C. Boccara, and E. Beaurepaire, “High-resolution full-field optical coherence tomography with a Linnik microscope,” Appl. Opt. 41, 805-812 (2002).
    [CrossRef] [PubMed]
  17. T. Shimobaba, Y. Sato, J. Miura, M. Takenouchi, and T. Ito, “Real-time digital holographic microscopy using the graphic processing unit,” Opt. Express 16, 11776-11781(2008).
    [CrossRef] [PubMed]

2008 (3)

2007 (1)

2006 (4)

2003 (1)

2002 (1)

1998 (2)

G. Häusler and M. W. Lindner, ““Coherence radar” and “spectral radar”-new tools for dermatological diagnosis,” J. Biomed. Opt. 3, 21-31 (1998).
[CrossRef]

I. Zeylikovich, A. Gilerson, and R. R. Alfano, “Nonmechanical grating-generated scanning coherence microscopy,” Opt. Lett. 23, 1797-1799 (1998).
[CrossRef]

1997 (1)

1996 (1)

1995 (1)

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43-48 (1995).
[CrossRef]

1992 (1)

G. Brun, I. Verrier, A. Barthélémy, C. Froehly, and J. P. Goure, “Measurements of mode propagation time in multimode fibers using a real-time interferometric amplitude correlator,” J. Opt. Commun. 13, 134-139 (1992).
[CrossRef]

1991 (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Adler, D. C.

Alfano, R. R.

Barthélémy, A.

G. Brun, I. Verrier, A. Barthélémy, C. Froehly, and J. P. Goure, “Measurements of mode propagation time in multimode fibers using a real-time interferometric amplitude correlator,” J. Opt. Commun. 13, 134-139 (1992).
[CrossRef]

Beaurepaire, E.

Boccara, A. C.

Brun, G.

I. Verrier, G. Brun, and J. P. Goure, “SISAM interferometer for distance measurements,” Appl. Opt. 36, 6225-6230 (1997).
[CrossRef]

G. Brun, I. Verrier, A. Barthélémy, C. Froehly, and J. P. Goure, “Measurements of mode propagation time in multimode fibers using a real-time interferometric amplitude correlator,” J. Opt. Commun. 13, 134-139 (1992).
[CrossRef]

Cable, A.

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Chen, Y.

Dubois, A.

El-Zaiat, S. Y.

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43-48 (1995).
[CrossRef]

Fercher, A.

Fercher, A. F.

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43-48 (1995).
[CrossRef]

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Froehly, C.

G. Brun, I. Verrier, A. Barthélémy, C. Froehly, and J. P. Goure, “Measurements of mode propagation time in multimode fibers using a real-time interferometric amplitude correlator,” J. Opt. Commun. 13, 134-139 (1992).
[CrossRef]

Fujimoto, J. G.

Gilerson, A.

Gorczynska, I.

Goure, J. P.

I. Verrier, G. Brun, and J. P. Goure, “SISAM interferometer for distance measurements,” Appl. Opt. 36, 6225-6230 (1997).
[CrossRef]

G. Brun, I. Verrier, A. Barthélémy, C. Froehly, and J. P. Goure, “Measurements of mode propagation time in multimode fibers using a real-time interferometric amplitude correlator,” J. Opt. Commun. 13, 134-139 (1992).
[CrossRef]

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Häusler, G.

G. Häusler and M. W. Lindner, ““Coherence radar” and “spectral radar”-new tools for dermatological diagnosis,” J. Biomed. Opt. 3, 21-31 (1998).
[CrossRef]

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Hellemanns, V.

Hitzenberger, C.

Hitzenberger, C. K.

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43-48 (1995).
[CrossRef]

Huang, D.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Huber, R.

Hüttmann, G.

Ito, T.

Jiang, J.

Kamp, G.

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43-48 (1995).
[CrossRef]

Koch, P.

Leitgeb, R.

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Lindner, M. W.

G. Häusler and M. W. Lindner, ““Coherence radar” and “spectral radar”-new tools for dermatological diagnosis,” J. Biomed. Opt. 3, 21-31 (1998).
[CrossRef]

Miura, J.

Potsaid, B.

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Sato, M.

Sato, Y.

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Shimobaba, T.

Srinivasan, V. J.

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Takasugi, Y.

Takenouchi, M.

Vabre, L.

Verrier, I.

I. Verrier, G. Brun, and J. P. Goure, “SISAM interferometer for distance measurements,” Appl. Opt. 36, 6225-6230 (1997).
[CrossRef]

G. Brun, I. Verrier, A. Barthélémy, C. Froehly, and J. P. Goure, “Measurements of mode propagation time in multimode fibers using a real-time interferometric amplitude correlator,” J. Opt. Commun. 13, 134-139 (1992).
[CrossRef]

Watanabe, Y.

Yamada, K.

Zeylikovich, I.

Appl. Opt. (2)

J. Biomed. Opt. (1)

G. Häusler and M. W. Lindner, ““Coherence radar” and “spectral radar”-new tools for dermatological diagnosis,” J. Biomed. Opt. 3, 21-31 (1998).
[CrossRef]

J. Opt. Commun. (1)

G. Brun, I. Verrier, A. Barthélémy, C. Froehly, and J. P. Goure, “Measurements of mode propagation time in multimode fibers using a real-time interferometric amplitude correlator,” J. Opt. Commun. 13, 134-139 (1992).
[CrossRef]

Opt. Commun. (2)

A. F. Fercher, C. K. Hitzenberger, G. Kamp, and S. Y. El-Zaiat, “Measurement of intraocular distances by backscattering spectral interferometry,” Opt. Commun. 117, 43-48 (1995).
[CrossRef]

Y. Watanabe, K. Yamada, and M. Sato, “In vivo nonmechanical scanning grating-generated optical coherence tomography using an InGaAs digital camera,” Opt. Commun. 261, 376-380 (2006).
[CrossRef]

Opt. Express (6)

Opt. Lett. (4)

Science (1)

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Supplementary Material (2)

» Media 1: MOV (3315 KB)     
» Media 2: MOV (3336 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Schematic of linear detection time-domain optical coherence tomography. SLD, superluminescent diode; ND filter, neutral density filter; dashed line, imaging ray.

Fig. 2
Fig. 2

Flow chart of the calculation of the OCT image using the Hilbert transform.

Fig. 3
Fig. 3

(a) Camera output, (b) demodulated axial profile.

Fig. 4
Fig. 4

Sensitivities with an attenuation of 50 dB in the sample arm at different depths.

Fig. 5
Fig. 5

In vivo OCT images of a human nail-fold region by (a) the absolute value in the difference between data for two sequential lines (Media 1), (b) demodulation with the Hilbert transform (Media 2). Imaging area, 4.0 mm × 2.6 mm ( lateral × axial ) ; NP, nail plate; E, epidermis; D, dermis; scale bar, 1 mm .

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

θ = sin 1 ( n λ 0 / 2 p ) ,
Δ L = d tan θ ,
E = I ref + I sig + I inc + 2 [ I sig ( x , z ) I ref * | γ ( z ) | ] 1 / 2 cos ϕ ( x , z ) ,
S = f 2 ( x , z ) + f H 2 ( x , z ) = 4 [ I sig ( x , z ) I ref * | γ ( z ) | ] .
R min FF OCT = ( R ref + R inc ) 2 R ref ξ max ,
α R min L OCT = ( R ref + α R inc ) 2 R ref ξ max .

Metrics