Abstract

We study theoretically and experimentally the gating performance of photocathode-gated image tube. A cross-correlation method is proposed to analyze the rising and falling speed and width of the image tube gain. Femtosecond pulses generated by a fiber laser are used as the light source of ultrahigh temporal resolution and trapezoid electrical signals are applied to a photocathode electrode as gating pulses. By adjusting the time delay between the laser pulse and the electrical gating pulse, various acceleration procedures for the photoelectrons generated at the photocathode can be observed. The photoelectrons arriving at the multichannel plate (MCP) with different kinetic energies receive different gain according to Eberhardt’s MCP gain model. The gain profile is obtained by measuring the output light power of the fluorescent screen at the output port of the tube. The theoretical analysis and experimental result show that the shape of the output gain curve of the image tube is deformed and the width is broadened in comparison with the symmetric electrical gating pulse.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. X. F. Wang, T. Uchida, D. M. Coleman, and S. Minami, “A two-dimensional fluorescence lifetime imaging system using a gated image intensifier,” Appl. Spectrosc. 45, 360-366 (1991).
    [CrossRef]
  2. X. F. Wang, T. Uchida, M. Maeshima, and S. Minami, “Fluorescence pattern analysis based on the time-resolved ratio method,” Appl. Spectrosc. 45, 560-565 (1991).
    [CrossRef]
  3. S. E. D. Webb, Y. Gu, S. Leveque-Fort, J. Siegel, M. J. Cole, K. Dowling, R. Jones, and P. M. W. French, “A wide-field time-domain fluorescence lifetime imaging microscope with optical sectioning,” Rev. Sci. Instrum. 73, 1898-1907 (2002).
    [CrossRef]
  4. H. M. Davies, A. E. Dangor, M. Coppins, and M. G. Haines, “Measurement of instability growth in a magnetized Z pinch in the finite-Larmor-radius regime,” Phys. Rev. Lett. 87, 145004 (2001).
    [CrossRef] [PubMed]
  5. M. Ito, H. Kume, and K. Oba, “Computer analysis of the timing properties in micro channel plate photomultiplier tubes,” IEEE Trans. Nucl. Sci. 31, 408-412 (1984).
    [CrossRef]
  6. B. H. Failor, D. F. Gorzen, C. J. Armentrout, and G. E. Busch, “Characterization of two-gated microchannel plate framing cameras,” Rev. Sci. Instrum. 62, 2862-2870 (1991).
    [CrossRef]
  7. E. H. Eberhardt, “Gain model for microchannel plates,” Appl. Opt. 18, 1418-1423 (1979).
    [CrossRef] [PubMed]
  8. L. Liu and B. Chang, “Spectral matching factors between super S25 and new S25 photo cathodes and reflective radiation of objects,” Appl. Opt. 43, 616-619 (2004).
    [CrossRef] [PubMed]

2004 (1)

2002 (1)

S. E. D. Webb, Y. Gu, S. Leveque-Fort, J. Siegel, M. J. Cole, K. Dowling, R. Jones, and P. M. W. French, “A wide-field time-domain fluorescence lifetime imaging microscope with optical sectioning,” Rev. Sci. Instrum. 73, 1898-1907 (2002).
[CrossRef]

2001 (1)

H. M. Davies, A. E. Dangor, M. Coppins, and M. G. Haines, “Measurement of instability growth in a magnetized Z pinch in the finite-Larmor-radius regime,” Phys. Rev. Lett. 87, 145004 (2001).
[CrossRef] [PubMed]

1991 (3)

1984 (1)

M. Ito, H. Kume, and K. Oba, “Computer analysis of the timing properties in micro channel plate photomultiplier tubes,” IEEE Trans. Nucl. Sci. 31, 408-412 (1984).
[CrossRef]

1979 (1)

Armentrout, C. J.

B. H. Failor, D. F. Gorzen, C. J. Armentrout, and G. E. Busch, “Characterization of two-gated microchannel plate framing cameras,” Rev. Sci. Instrum. 62, 2862-2870 (1991).
[CrossRef]

Busch, G. E.

B. H. Failor, D. F. Gorzen, C. J. Armentrout, and G. E. Busch, “Characterization of two-gated microchannel plate framing cameras,” Rev. Sci. Instrum. 62, 2862-2870 (1991).
[CrossRef]

Chang, B.

Cole, M. J.

S. E. D. Webb, Y. Gu, S. Leveque-Fort, J. Siegel, M. J. Cole, K. Dowling, R. Jones, and P. M. W. French, “A wide-field time-domain fluorescence lifetime imaging microscope with optical sectioning,” Rev. Sci. Instrum. 73, 1898-1907 (2002).
[CrossRef]

Coleman, D. M.

Coppins, M.

H. M. Davies, A. E. Dangor, M. Coppins, and M. G. Haines, “Measurement of instability growth in a magnetized Z pinch in the finite-Larmor-radius regime,” Phys. Rev. Lett. 87, 145004 (2001).
[CrossRef] [PubMed]

Dangor, A. E.

H. M. Davies, A. E. Dangor, M. Coppins, and M. G. Haines, “Measurement of instability growth in a magnetized Z pinch in the finite-Larmor-radius regime,” Phys. Rev. Lett. 87, 145004 (2001).
[CrossRef] [PubMed]

Davies, H. M.

H. M. Davies, A. E. Dangor, M. Coppins, and M. G. Haines, “Measurement of instability growth in a magnetized Z pinch in the finite-Larmor-radius regime,” Phys. Rev. Lett. 87, 145004 (2001).
[CrossRef] [PubMed]

Dowling, K.

S. E. D. Webb, Y. Gu, S. Leveque-Fort, J. Siegel, M. J. Cole, K. Dowling, R. Jones, and P. M. W. French, “A wide-field time-domain fluorescence lifetime imaging microscope with optical sectioning,” Rev. Sci. Instrum. 73, 1898-1907 (2002).
[CrossRef]

Eberhardt, E. H.

Failor, B. H.

B. H. Failor, D. F. Gorzen, C. J. Armentrout, and G. E. Busch, “Characterization of two-gated microchannel plate framing cameras,” Rev. Sci. Instrum. 62, 2862-2870 (1991).
[CrossRef]

French, P. M. W.

S. E. D. Webb, Y. Gu, S. Leveque-Fort, J. Siegel, M. J. Cole, K. Dowling, R. Jones, and P. M. W. French, “A wide-field time-domain fluorescence lifetime imaging microscope with optical sectioning,” Rev. Sci. Instrum. 73, 1898-1907 (2002).
[CrossRef]

Gorzen, D. F.

B. H. Failor, D. F. Gorzen, C. J. Armentrout, and G. E. Busch, “Characterization of two-gated microchannel plate framing cameras,” Rev. Sci. Instrum. 62, 2862-2870 (1991).
[CrossRef]

Gu, Y.

S. E. D. Webb, Y. Gu, S. Leveque-Fort, J. Siegel, M. J. Cole, K. Dowling, R. Jones, and P. M. W. French, “A wide-field time-domain fluorescence lifetime imaging microscope with optical sectioning,” Rev. Sci. Instrum. 73, 1898-1907 (2002).
[CrossRef]

Haines, M. G.

H. M. Davies, A. E. Dangor, M. Coppins, and M. G. Haines, “Measurement of instability growth in a magnetized Z pinch in the finite-Larmor-radius regime,” Phys. Rev. Lett. 87, 145004 (2001).
[CrossRef] [PubMed]

Ito, M.

M. Ito, H. Kume, and K. Oba, “Computer analysis of the timing properties in micro channel plate photomultiplier tubes,” IEEE Trans. Nucl. Sci. 31, 408-412 (1984).
[CrossRef]

Jones, R.

S. E. D. Webb, Y. Gu, S. Leveque-Fort, J. Siegel, M. J. Cole, K. Dowling, R. Jones, and P. M. W. French, “A wide-field time-domain fluorescence lifetime imaging microscope with optical sectioning,” Rev. Sci. Instrum. 73, 1898-1907 (2002).
[CrossRef]

Kume, H.

M. Ito, H. Kume, and K. Oba, “Computer analysis of the timing properties in micro channel plate photomultiplier tubes,” IEEE Trans. Nucl. Sci. 31, 408-412 (1984).
[CrossRef]

Leveque-Fort, S.

S. E. D. Webb, Y. Gu, S. Leveque-Fort, J. Siegel, M. J. Cole, K. Dowling, R. Jones, and P. M. W. French, “A wide-field time-domain fluorescence lifetime imaging microscope with optical sectioning,” Rev. Sci. Instrum. 73, 1898-1907 (2002).
[CrossRef]

Liu, L.

Maeshima, M.

Minami, S.

Oba, K.

M. Ito, H. Kume, and K. Oba, “Computer analysis of the timing properties in micro channel plate photomultiplier tubes,” IEEE Trans. Nucl. Sci. 31, 408-412 (1984).
[CrossRef]

Siegel, J.

S. E. D. Webb, Y. Gu, S. Leveque-Fort, J. Siegel, M. J. Cole, K. Dowling, R. Jones, and P. M. W. French, “A wide-field time-domain fluorescence lifetime imaging microscope with optical sectioning,” Rev. Sci. Instrum. 73, 1898-1907 (2002).
[CrossRef]

Uchida, T.

Wang, X. F.

Webb, S. E. D.

S. E. D. Webb, Y. Gu, S. Leveque-Fort, J. Siegel, M. J. Cole, K. Dowling, R. Jones, and P. M. W. French, “A wide-field time-domain fluorescence lifetime imaging microscope with optical sectioning,” Rev. Sci. Instrum. 73, 1898-1907 (2002).
[CrossRef]

Appl. Opt. (2)

Appl. Spectrosc. (2)

IEEE Trans. Nucl. Sci. (1)

M. Ito, H. Kume, and K. Oba, “Computer analysis of the timing properties in micro channel plate photomultiplier tubes,” IEEE Trans. Nucl. Sci. 31, 408-412 (1984).
[CrossRef]

Phys. Rev. Lett. (1)

H. M. Davies, A. E. Dangor, M. Coppins, and M. G. Haines, “Measurement of instability growth in a magnetized Z pinch in the finite-Larmor-radius regime,” Phys. Rev. Lett. 87, 145004 (2001).
[CrossRef] [PubMed]

Rev. Sci. Instrum. (2)

S. E. D. Webb, Y. Gu, S. Leveque-Fort, J. Siegel, M. J. Cole, K. Dowling, R. Jones, and P. M. W. French, “A wide-field time-domain fluorescence lifetime imaging microscope with optical sectioning,” Rev. Sci. Instrum. 73, 1898-1907 (2002).
[CrossRef]

B. H. Failor, D. F. Gorzen, C. J. Armentrout, and G. E. Busch, “Characterization of two-gated microchannel plate framing cameras,” Rev. Sci. Instrum. 62, 2862-2870 (1991).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Typical structure of a photocathode-gated image tube and the process of electrons propagating in the tube.

Fig. 2
Fig. 2

Waveform of the electrical gating pulse and the propagation time of electrons versus different time delays between laser pulses and electrical gating pulses.

Fig. 3
Fig. 3

Normalized gain that the electrons obtain when they pass through the MCP with different incident energy caused by different time delays.

Fig. 4
Fig. 4

Normalized output gain curve versus time when considering all three subprocesses of the electrons in the gated image tube.

Fig. 5
Fig. 5

Normalized gain curve of the image tube versus different input widths of gating pulses: (a)  0.5 ns , (b)  0.8 ns , (c)  1.5 ns , and (d)  4.5 ns .

Fig. 6
Fig. 6

Rising and falling edges and the width of the output gain of the image tube for different input widths of the gating pulse.

Fig. 7
Fig. 7

Schematic layout of the measurement of the gating response in the photocathode-gated image tube.

Fig. 8
Fig. 8

(a) Input gating pulse and (b) measured output light power at the fluorescent screen. Dashed-dotted line is the average power at the gain region and the dashed line is the average power of background noise.

Fig. 9
Fig. 9

Measured output gain width of the image tube versus different widths of input gating pulses.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

h ν = ( 1 / 2 ) m e v 2 + h ν 0 ,
a = eV ( t ) / m e L ,
v ( Δ t + τ ) = v 0 + 0 τ a ( Δ t + t ) d t ,
L = 0 t PC v ( Δ t + τ ) d τ = 0 t PC d τ 0 τ a ( Δ t + t ) d t .
G = δ 1 ( V / n V c ) k ( n 1 ) = γ [ ( n V p k + V ) / n V c ] k ( V / n V c ) k ( n 1 ) = A ( n V p k + V ) k ,
t out t in + 0.22 ns .

Metrics