Abstract

A 980nm bottom-emitting vertical-cavity surface-emitting laser array with a nonuniform linear arrangement is reported to realize emission with a Gaussian far-field distribution. This array is composed of five symmetrically arranged elements of 200μm, 150μm, and 100μm diameter, with center spacing of 300μm and 250μm, respectively. An output power of 880mW with a high power density of 1kW/cm2 is obtained. The divergence angle is below 20° in the range of operating current from 0A to 6A. The theoretical simulation of the near-field and the far-field distribution is in good agreement with the experimental result. The comparison between this nonuniform linear array, the single device, and the conventional two-dimensional array is carried out to demonstrate the good performance of the linear array.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Wiedenmann, R. King, C. Jung, R. Jager, and R. Michalzik, “Design and analysis of single-mode oxidized VCSELs for high-speed optical interconnects,” IEEE. J. Sel. Top. Quantum Electron. 5, 503-511 (1999).
    [CrossRef]
  2. R. S. Geels, S. W. Corzine, and L. A. Coldren, “InGaAs vertical cavity surface emitting lasers,” IEEE J. Quantum Electron. 27, 1359-1367 (1991).
    [CrossRef]
  3. F. Mederer, R. Jager, P. Schnitzer, H. Unold, M. Kicherer, K. J. Ebeling, M. Natomi, and R. Yoshida, “Multi-Gigabit/s graded-index POF data link with butt-coupled single-mode InGaAs VCSEL,” IEEE Photon. Technol. Lett. 12, 199-201 (2000).
    [CrossRef]
  4. R. Jäger, M. Grabherr, C. Jung, R. Michalzik, G. Reiner, B. Weigl, and K. J. Ebeling, “57% wallplug efficiency oxide-confined 850 nm wavelength GaAs VCSELs,” Electron. Lett. 33, 330-331 (1997).
    [CrossRef]
  5. N. Ueki, H. Nakayama, J. Sakurai, A. Murakami, H. Otoma, Y. Miyamoto, M. Yamamoto, R. Ishii, M. Yoshikama, and T. Nakamura, “Complete polarization control of 12×8-bit matrix-addressed oxide-confined vertical-cavity surface-emitting laser array,” Jpn. J. Appl. Phys. 40, L33-L35 (2001).
    [CrossRef]
  6. M. C. Amann, M. Ortsiefer, R. Shau, and J. Rosskopf, “Vertical-cavity surface-emitting laser diodes for telecommunication wavelengths,” Proc. SPIE 4871, 123-129 (2002).
    [CrossRef]
  7. P. Li, J. Sun, H. Chen, and W. Guo, “Study of the model of laser diode emitted beam based on multimode Gaussian distribution,” Proc. SPIE 6824, 68241H (2007).
    [CrossRef]
  8. “Lasers and laser-related equipment. Test methods for laser beam parameters, beam widths, divergence angle and beam propagation factor,” ISO 11146 (International Organization for Standardization, 1996).
  9. S. A. Riyopoulos, D. Dialetis, J. Liu, and B. Riely, “Generic representation of active cavity VCSEL eigenmodes by optimized waist Gauss-Laguerre modes,” IEEE J. Sel. Top. Quantum Electron. 7, 312-327 (2001).
    [CrossRef]
  10. J.-F. Seurin, C. L. Ghosh, V. Khalfin, A. Miglo, G. Xu, J. D. Wynn, P. Pradhan, and L. A. D'Asaro, “High-power high-efficiency 2D VCSEL arrays,” Proc. SPIE 6908, 690808 (2008).
    [CrossRef]
  11. Y. Sun, Z. Jin, Y. Ning, L. Qin, C. Yan, G. Luo, G. Tao, Y. Liu, L. Wang, D. Cui, H. Li, and Z. Xu, “Fabrication and experimental characterization of high power bottom-emitting VCSELs,” Opt. Precision Eng. 12, 449-453 (2004).
  12. T. Li, Y. Ning, Y. Sun, C. Wang, J. Liu, Y. Liu, and L. Wang, “High-power InGaAs VCSELs single devices and 2-D arrays,” J. Luminescence 122-123, 571-573 (2007).
    [CrossRef]

2008 (1)

J.-F. Seurin, C. L. Ghosh, V. Khalfin, A. Miglo, G. Xu, J. D. Wynn, P. Pradhan, and L. A. D'Asaro, “High-power high-efficiency 2D VCSEL arrays,” Proc. SPIE 6908, 690808 (2008).
[CrossRef]

2007 (2)

T. Li, Y. Ning, Y. Sun, C. Wang, J. Liu, Y. Liu, and L. Wang, “High-power InGaAs VCSELs single devices and 2-D arrays,” J. Luminescence 122-123, 571-573 (2007).
[CrossRef]

P. Li, J. Sun, H. Chen, and W. Guo, “Study of the model of laser diode emitted beam based on multimode Gaussian distribution,” Proc. SPIE 6824, 68241H (2007).
[CrossRef]

2004 (1)

Y. Sun, Z. Jin, Y. Ning, L. Qin, C. Yan, G. Luo, G. Tao, Y. Liu, L. Wang, D. Cui, H. Li, and Z. Xu, “Fabrication and experimental characterization of high power bottom-emitting VCSELs,” Opt. Precision Eng. 12, 449-453 (2004).

2002 (1)

M. C. Amann, M. Ortsiefer, R. Shau, and J. Rosskopf, “Vertical-cavity surface-emitting laser diodes for telecommunication wavelengths,” Proc. SPIE 4871, 123-129 (2002).
[CrossRef]

2001 (2)

N. Ueki, H. Nakayama, J. Sakurai, A. Murakami, H. Otoma, Y. Miyamoto, M. Yamamoto, R. Ishii, M. Yoshikama, and T. Nakamura, “Complete polarization control of 12×8-bit matrix-addressed oxide-confined vertical-cavity surface-emitting laser array,” Jpn. J. Appl. Phys. 40, L33-L35 (2001).
[CrossRef]

S. A. Riyopoulos, D. Dialetis, J. Liu, and B. Riely, “Generic representation of active cavity VCSEL eigenmodes by optimized waist Gauss-Laguerre modes,” IEEE J. Sel. Top. Quantum Electron. 7, 312-327 (2001).
[CrossRef]

2000 (1)

F. Mederer, R. Jager, P. Schnitzer, H. Unold, M. Kicherer, K. J. Ebeling, M. Natomi, and R. Yoshida, “Multi-Gigabit/s graded-index POF data link with butt-coupled single-mode InGaAs VCSEL,” IEEE Photon. Technol. Lett. 12, 199-201 (2000).
[CrossRef]

1999 (1)

D. Wiedenmann, R. King, C. Jung, R. Jager, and R. Michalzik, “Design and analysis of single-mode oxidized VCSELs for high-speed optical interconnects,” IEEE. J. Sel. Top. Quantum Electron. 5, 503-511 (1999).
[CrossRef]

1997 (1)

R. Jäger, M. Grabherr, C. Jung, R. Michalzik, G. Reiner, B. Weigl, and K. J. Ebeling, “57% wallplug efficiency oxide-confined 850 nm wavelength GaAs VCSELs,” Electron. Lett. 33, 330-331 (1997).
[CrossRef]

1991 (1)

R. S. Geels, S. W. Corzine, and L. A. Coldren, “InGaAs vertical cavity surface emitting lasers,” IEEE J. Quantum Electron. 27, 1359-1367 (1991).
[CrossRef]

Amann, M. C.

M. C. Amann, M. Ortsiefer, R. Shau, and J. Rosskopf, “Vertical-cavity surface-emitting laser diodes for telecommunication wavelengths,” Proc. SPIE 4871, 123-129 (2002).
[CrossRef]

Chen, H.

P. Li, J. Sun, H. Chen, and W. Guo, “Study of the model of laser diode emitted beam based on multimode Gaussian distribution,” Proc. SPIE 6824, 68241H (2007).
[CrossRef]

Coldren, L. A.

R. S. Geels, S. W. Corzine, and L. A. Coldren, “InGaAs vertical cavity surface emitting lasers,” IEEE J. Quantum Electron. 27, 1359-1367 (1991).
[CrossRef]

Corzine, S. W.

R. S. Geels, S. W. Corzine, and L. A. Coldren, “InGaAs vertical cavity surface emitting lasers,” IEEE J. Quantum Electron. 27, 1359-1367 (1991).
[CrossRef]

Cui, D.

Y. Sun, Z. Jin, Y. Ning, L. Qin, C. Yan, G. Luo, G. Tao, Y. Liu, L. Wang, D. Cui, H. Li, and Z. Xu, “Fabrication and experimental characterization of high power bottom-emitting VCSELs,” Opt. Precision Eng. 12, 449-453 (2004).

D'Asaro, L. A.

J.-F. Seurin, C. L. Ghosh, V. Khalfin, A. Miglo, G. Xu, J. D. Wynn, P. Pradhan, and L. A. D'Asaro, “High-power high-efficiency 2D VCSEL arrays,” Proc. SPIE 6908, 690808 (2008).
[CrossRef]

Dialetis, D.

S. A. Riyopoulos, D. Dialetis, J. Liu, and B. Riely, “Generic representation of active cavity VCSEL eigenmodes by optimized waist Gauss-Laguerre modes,” IEEE J. Sel. Top. Quantum Electron. 7, 312-327 (2001).
[CrossRef]

Ebeling, K. J.

F. Mederer, R. Jager, P. Schnitzer, H. Unold, M. Kicherer, K. J. Ebeling, M. Natomi, and R. Yoshida, “Multi-Gigabit/s graded-index POF data link with butt-coupled single-mode InGaAs VCSEL,” IEEE Photon. Technol. Lett. 12, 199-201 (2000).
[CrossRef]

R. Jäger, M. Grabherr, C. Jung, R. Michalzik, G. Reiner, B. Weigl, and K. J. Ebeling, “57% wallplug efficiency oxide-confined 850 nm wavelength GaAs VCSELs,” Electron. Lett. 33, 330-331 (1997).
[CrossRef]

Geels, R. S.

R. S. Geels, S. W. Corzine, and L. A. Coldren, “InGaAs vertical cavity surface emitting lasers,” IEEE J. Quantum Electron. 27, 1359-1367 (1991).
[CrossRef]

Ghosh, C. L.

J.-F. Seurin, C. L. Ghosh, V. Khalfin, A. Miglo, G. Xu, J. D. Wynn, P. Pradhan, and L. A. D'Asaro, “High-power high-efficiency 2D VCSEL arrays,” Proc. SPIE 6908, 690808 (2008).
[CrossRef]

Grabherr, M.

R. Jäger, M. Grabherr, C. Jung, R. Michalzik, G. Reiner, B. Weigl, and K. J. Ebeling, “57% wallplug efficiency oxide-confined 850 nm wavelength GaAs VCSELs,” Electron. Lett. 33, 330-331 (1997).
[CrossRef]

Guo, W.

P. Li, J. Sun, H. Chen, and W. Guo, “Study of the model of laser diode emitted beam based on multimode Gaussian distribution,” Proc. SPIE 6824, 68241H (2007).
[CrossRef]

Ishii, R.

N. Ueki, H. Nakayama, J. Sakurai, A. Murakami, H. Otoma, Y. Miyamoto, M. Yamamoto, R. Ishii, M. Yoshikama, and T. Nakamura, “Complete polarization control of 12×8-bit matrix-addressed oxide-confined vertical-cavity surface-emitting laser array,” Jpn. J. Appl. Phys. 40, L33-L35 (2001).
[CrossRef]

Jager, R.

F. Mederer, R. Jager, P. Schnitzer, H. Unold, M. Kicherer, K. J. Ebeling, M. Natomi, and R. Yoshida, “Multi-Gigabit/s graded-index POF data link with butt-coupled single-mode InGaAs VCSEL,” IEEE Photon. Technol. Lett. 12, 199-201 (2000).
[CrossRef]

D. Wiedenmann, R. King, C. Jung, R. Jager, and R. Michalzik, “Design and analysis of single-mode oxidized VCSELs for high-speed optical interconnects,” IEEE. J. Sel. Top. Quantum Electron. 5, 503-511 (1999).
[CrossRef]

Jäger, R.

R. Jäger, M. Grabherr, C. Jung, R. Michalzik, G. Reiner, B. Weigl, and K. J. Ebeling, “57% wallplug efficiency oxide-confined 850 nm wavelength GaAs VCSELs,” Electron. Lett. 33, 330-331 (1997).
[CrossRef]

Jin, Z.

Y. Sun, Z. Jin, Y. Ning, L. Qin, C. Yan, G. Luo, G. Tao, Y. Liu, L. Wang, D. Cui, H. Li, and Z. Xu, “Fabrication and experimental characterization of high power bottom-emitting VCSELs,” Opt. Precision Eng. 12, 449-453 (2004).

Jung, C.

D. Wiedenmann, R. King, C. Jung, R. Jager, and R. Michalzik, “Design and analysis of single-mode oxidized VCSELs for high-speed optical interconnects,” IEEE. J. Sel. Top. Quantum Electron. 5, 503-511 (1999).
[CrossRef]

R. Jäger, M. Grabherr, C. Jung, R. Michalzik, G. Reiner, B. Weigl, and K. J. Ebeling, “57% wallplug efficiency oxide-confined 850 nm wavelength GaAs VCSELs,” Electron. Lett. 33, 330-331 (1997).
[CrossRef]

Khalfin, V.

J.-F. Seurin, C. L. Ghosh, V. Khalfin, A. Miglo, G. Xu, J. D. Wynn, P. Pradhan, and L. A. D'Asaro, “High-power high-efficiency 2D VCSEL arrays,” Proc. SPIE 6908, 690808 (2008).
[CrossRef]

Kicherer, M.

F. Mederer, R. Jager, P. Schnitzer, H. Unold, M. Kicherer, K. J. Ebeling, M. Natomi, and R. Yoshida, “Multi-Gigabit/s graded-index POF data link with butt-coupled single-mode InGaAs VCSEL,” IEEE Photon. Technol. Lett. 12, 199-201 (2000).
[CrossRef]

King, R.

D. Wiedenmann, R. King, C. Jung, R. Jager, and R. Michalzik, “Design and analysis of single-mode oxidized VCSELs for high-speed optical interconnects,” IEEE. J. Sel. Top. Quantum Electron. 5, 503-511 (1999).
[CrossRef]

Li, H.

Y. Sun, Z. Jin, Y. Ning, L. Qin, C. Yan, G. Luo, G. Tao, Y. Liu, L. Wang, D. Cui, H. Li, and Z. Xu, “Fabrication and experimental characterization of high power bottom-emitting VCSELs,” Opt. Precision Eng. 12, 449-453 (2004).

Li, P.

P. Li, J. Sun, H. Chen, and W. Guo, “Study of the model of laser diode emitted beam based on multimode Gaussian distribution,” Proc. SPIE 6824, 68241H (2007).
[CrossRef]

Li, T.

T. Li, Y. Ning, Y. Sun, C. Wang, J. Liu, Y. Liu, and L. Wang, “High-power InGaAs VCSELs single devices and 2-D arrays,” J. Luminescence 122-123, 571-573 (2007).
[CrossRef]

Liu, J.

T. Li, Y. Ning, Y. Sun, C. Wang, J. Liu, Y. Liu, and L. Wang, “High-power InGaAs VCSELs single devices and 2-D arrays,” J. Luminescence 122-123, 571-573 (2007).
[CrossRef]

S. A. Riyopoulos, D. Dialetis, J. Liu, and B. Riely, “Generic representation of active cavity VCSEL eigenmodes by optimized waist Gauss-Laguerre modes,” IEEE J. Sel. Top. Quantum Electron. 7, 312-327 (2001).
[CrossRef]

Liu, Y.

T. Li, Y. Ning, Y. Sun, C. Wang, J. Liu, Y. Liu, and L. Wang, “High-power InGaAs VCSELs single devices and 2-D arrays,” J. Luminescence 122-123, 571-573 (2007).
[CrossRef]

Y. Sun, Z. Jin, Y. Ning, L. Qin, C. Yan, G. Luo, G. Tao, Y. Liu, L. Wang, D. Cui, H. Li, and Z. Xu, “Fabrication and experimental characterization of high power bottom-emitting VCSELs,” Opt. Precision Eng. 12, 449-453 (2004).

Luo, G.

Y. Sun, Z. Jin, Y. Ning, L. Qin, C. Yan, G. Luo, G. Tao, Y. Liu, L. Wang, D. Cui, H. Li, and Z. Xu, “Fabrication and experimental characterization of high power bottom-emitting VCSELs,” Opt. Precision Eng. 12, 449-453 (2004).

Mederer, F.

F. Mederer, R. Jager, P. Schnitzer, H. Unold, M. Kicherer, K. J. Ebeling, M. Natomi, and R. Yoshida, “Multi-Gigabit/s graded-index POF data link with butt-coupled single-mode InGaAs VCSEL,” IEEE Photon. Technol. Lett. 12, 199-201 (2000).
[CrossRef]

Michalzik, R.

D. Wiedenmann, R. King, C. Jung, R. Jager, and R. Michalzik, “Design and analysis of single-mode oxidized VCSELs for high-speed optical interconnects,” IEEE. J. Sel. Top. Quantum Electron. 5, 503-511 (1999).
[CrossRef]

R. Jäger, M. Grabherr, C. Jung, R. Michalzik, G. Reiner, B. Weigl, and K. J. Ebeling, “57% wallplug efficiency oxide-confined 850 nm wavelength GaAs VCSELs,” Electron. Lett. 33, 330-331 (1997).
[CrossRef]

Miglo, A.

J.-F. Seurin, C. L. Ghosh, V. Khalfin, A. Miglo, G. Xu, J. D. Wynn, P. Pradhan, and L. A. D'Asaro, “High-power high-efficiency 2D VCSEL arrays,” Proc. SPIE 6908, 690808 (2008).
[CrossRef]

Miyamoto, Y.

N. Ueki, H. Nakayama, J. Sakurai, A. Murakami, H. Otoma, Y. Miyamoto, M. Yamamoto, R. Ishii, M. Yoshikama, and T. Nakamura, “Complete polarization control of 12×8-bit matrix-addressed oxide-confined vertical-cavity surface-emitting laser array,” Jpn. J. Appl. Phys. 40, L33-L35 (2001).
[CrossRef]

Murakami, A.

N. Ueki, H. Nakayama, J. Sakurai, A. Murakami, H. Otoma, Y. Miyamoto, M. Yamamoto, R. Ishii, M. Yoshikama, and T. Nakamura, “Complete polarization control of 12×8-bit matrix-addressed oxide-confined vertical-cavity surface-emitting laser array,” Jpn. J. Appl. Phys. 40, L33-L35 (2001).
[CrossRef]

Nakamura, T.

N. Ueki, H. Nakayama, J. Sakurai, A. Murakami, H. Otoma, Y. Miyamoto, M. Yamamoto, R. Ishii, M. Yoshikama, and T. Nakamura, “Complete polarization control of 12×8-bit matrix-addressed oxide-confined vertical-cavity surface-emitting laser array,” Jpn. J. Appl. Phys. 40, L33-L35 (2001).
[CrossRef]

Nakayama, H.

N. Ueki, H. Nakayama, J. Sakurai, A. Murakami, H. Otoma, Y. Miyamoto, M. Yamamoto, R. Ishii, M. Yoshikama, and T. Nakamura, “Complete polarization control of 12×8-bit matrix-addressed oxide-confined vertical-cavity surface-emitting laser array,” Jpn. J. Appl. Phys. 40, L33-L35 (2001).
[CrossRef]

Natomi, M.

F. Mederer, R. Jager, P. Schnitzer, H. Unold, M. Kicherer, K. J. Ebeling, M. Natomi, and R. Yoshida, “Multi-Gigabit/s graded-index POF data link with butt-coupled single-mode InGaAs VCSEL,” IEEE Photon. Technol. Lett. 12, 199-201 (2000).
[CrossRef]

Ning, Y.

T. Li, Y. Ning, Y. Sun, C. Wang, J. Liu, Y. Liu, and L. Wang, “High-power InGaAs VCSELs single devices and 2-D arrays,” J. Luminescence 122-123, 571-573 (2007).
[CrossRef]

Y. Sun, Z. Jin, Y. Ning, L. Qin, C. Yan, G. Luo, G. Tao, Y. Liu, L. Wang, D. Cui, H. Li, and Z. Xu, “Fabrication and experimental characterization of high power bottom-emitting VCSELs,” Opt. Precision Eng. 12, 449-453 (2004).

Ortsiefer, M.

M. C. Amann, M. Ortsiefer, R. Shau, and J. Rosskopf, “Vertical-cavity surface-emitting laser diodes for telecommunication wavelengths,” Proc. SPIE 4871, 123-129 (2002).
[CrossRef]

Otoma, H.

N. Ueki, H. Nakayama, J. Sakurai, A. Murakami, H. Otoma, Y. Miyamoto, M. Yamamoto, R. Ishii, M. Yoshikama, and T. Nakamura, “Complete polarization control of 12×8-bit matrix-addressed oxide-confined vertical-cavity surface-emitting laser array,” Jpn. J. Appl. Phys. 40, L33-L35 (2001).
[CrossRef]

Pradhan, P.

J.-F. Seurin, C. L. Ghosh, V. Khalfin, A. Miglo, G. Xu, J. D. Wynn, P. Pradhan, and L. A. D'Asaro, “High-power high-efficiency 2D VCSEL arrays,” Proc. SPIE 6908, 690808 (2008).
[CrossRef]

Qin, L.

Y. Sun, Z. Jin, Y. Ning, L. Qin, C. Yan, G. Luo, G. Tao, Y. Liu, L. Wang, D. Cui, H. Li, and Z. Xu, “Fabrication and experimental characterization of high power bottom-emitting VCSELs,” Opt. Precision Eng. 12, 449-453 (2004).

Reiner, G.

R. Jäger, M. Grabherr, C. Jung, R. Michalzik, G. Reiner, B. Weigl, and K. J. Ebeling, “57% wallplug efficiency oxide-confined 850 nm wavelength GaAs VCSELs,” Electron. Lett. 33, 330-331 (1997).
[CrossRef]

Riely, B.

S. A. Riyopoulos, D. Dialetis, J. Liu, and B. Riely, “Generic representation of active cavity VCSEL eigenmodes by optimized waist Gauss-Laguerre modes,” IEEE J. Sel. Top. Quantum Electron. 7, 312-327 (2001).
[CrossRef]

Riyopoulos, S. A.

S. A. Riyopoulos, D. Dialetis, J. Liu, and B. Riely, “Generic representation of active cavity VCSEL eigenmodes by optimized waist Gauss-Laguerre modes,” IEEE J. Sel. Top. Quantum Electron. 7, 312-327 (2001).
[CrossRef]

Rosskopf, J.

M. C. Amann, M. Ortsiefer, R. Shau, and J. Rosskopf, “Vertical-cavity surface-emitting laser diodes for telecommunication wavelengths,” Proc. SPIE 4871, 123-129 (2002).
[CrossRef]

Sakurai, J.

N. Ueki, H. Nakayama, J. Sakurai, A. Murakami, H. Otoma, Y. Miyamoto, M. Yamamoto, R. Ishii, M. Yoshikama, and T. Nakamura, “Complete polarization control of 12×8-bit matrix-addressed oxide-confined vertical-cavity surface-emitting laser array,” Jpn. J. Appl. Phys. 40, L33-L35 (2001).
[CrossRef]

Schnitzer, P.

F. Mederer, R. Jager, P. Schnitzer, H. Unold, M. Kicherer, K. J. Ebeling, M. Natomi, and R. Yoshida, “Multi-Gigabit/s graded-index POF data link with butt-coupled single-mode InGaAs VCSEL,” IEEE Photon. Technol. Lett. 12, 199-201 (2000).
[CrossRef]

Seurin, J.-F.

J.-F. Seurin, C. L. Ghosh, V. Khalfin, A. Miglo, G. Xu, J. D. Wynn, P. Pradhan, and L. A. D'Asaro, “High-power high-efficiency 2D VCSEL arrays,” Proc. SPIE 6908, 690808 (2008).
[CrossRef]

Shau, R.

M. C. Amann, M. Ortsiefer, R. Shau, and J. Rosskopf, “Vertical-cavity surface-emitting laser diodes for telecommunication wavelengths,” Proc. SPIE 4871, 123-129 (2002).
[CrossRef]

Sun, J.

P. Li, J. Sun, H. Chen, and W. Guo, “Study of the model of laser diode emitted beam based on multimode Gaussian distribution,” Proc. SPIE 6824, 68241H (2007).
[CrossRef]

Sun, Y.

T. Li, Y. Ning, Y. Sun, C. Wang, J. Liu, Y. Liu, and L. Wang, “High-power InGaAs VCSELs single devices and 2-D arrays,” J. Luminescence 122-123, 571-573 (2007).
[CrossRef]

Y. Sun, Z. Jin, Y. Ning, L. Qin, C. Yan, G. Luo, G. Tao, Y. Liu, L. Wang, D. Cui, H. Li, and Z. Xu, “Fabrication and experimental characterization of high power bottom-emitting VCSELs,” Opt. Precision Eng. 12, 449-453 (2004).

Tao, G.

Y. Sun, Z. Jin, Y. Ning, L. Qin, C. Yan, G. Luo, G. Tao, Y. Liu, L. Wang, D. Cui, H. Li, and Z. Xu, “Fabrication and experimental characterization of high power bottom-emitting VCSELs,” Opt. Precision Eng. 12, 449-453 (2004).

Ueki, N.

N. Ueki, H. Nakayama, J. Sakurai, A. Murakami, H. Otoma, Y. Miyamoto, M. Yamamoto, R. Ishii, M. Yoshikama, and T. Nakamura, “Complete polarization control of 12×8-bit matrix-addressed oxide-confined vertical-cavity surface-emitting laser array,” Jpn. J. Appl. Phys. 40, L33-L35 (2001).
[CrossRef]

Unold, H.

F. Mederer, R. Jager, P. Schnitzer, H. Unold, M. Kicherer, K. J. Ebeling, M. Natomi, and R. Yoshida, “Multi-Gigabit/s graded-index POF data link with butt-coupled single-mode InGaAs VCSEL,” IEEE Photon. Technol. Lett. 12, 199-201 (2000).
[CrossRef]

Wang, C.

T. Li, Y. Ning, Y. Sun, C. Wang, J. Liu, Y. Liu, and L. Wang, “High-power InGaAs VCSELs single devices and 2-D arrays,” J. Luminescence 122-123, 571-573 (2007).
[CrossRef]

Wang, L.

T. Li, Y. Ning, Y. Sun, C. Wang, J. Liu, Y. Liu, and L. Wang, “High-power InGaAs VCSELs single devices and 2-D arrays,” J. Luminescence 122-123, 571-573 (2007).
[CrossRef]

Y. Sun, Z. Jin, Y. Ning, L. Qin, C. Yan, G. Luo, G. Tao, Y. Liu, L. Wang, D. Cui, H. Li, and Z. Xu, “Fabrication and experimental characterization of high power bottom-emitting VCSELs,” Opt. Precision Eng. 12, 449-453 (2004).

Weigl, B.

R. Jäger, M. Grabherr, C. Jung, R. Michalzik, G. Reiner, B. Weigl, and K. J. Ebeling, “57% wallplug efficiency oxide-confined 850 nm wavelength GaAs VCSELs,” Electron. Lett. 33, 330-331 (1997).
[CrossRef]

Wiedenmann, D.

D. Wiedenmann, R. King, C. Jung, R. Jager, and R. Michalzik, “Design and analysis of single-mode oxidized VCSELs for high-speed optical interconnects,” IEEE. J. Sel. Top. Quantum Electron. 5, 503-511 (1999).
[CrossRef]

Wynn, J. D.

J.-F. Seurin, C. L. Ghosh, V. Khalfin, A. Miglo, G. Xu, J. D. Wynn, P. Pradhan, and L. A. D'Asaro, “High-power high-efficiency 2D VCSEL arrays,” Proc. SPIE 6908, 690808 (2008).
[CrossRef]

Xu, G.

J.-F. Seurin, C. L. Ghosh, V. Khalfin, A. Miglo, G. Xu, J. D. Wynn, P. Pradhan, and L. A. D'Asaro, “High-power high-efficiency 2D VCSEL arrays,” Proc. SPIE 6908, 690808 (2008).
[CrossRef]

Xu, Z.

Y. Sun, Z. Jin, Y. Ning, L. Qin, C. Yan, G. Luo, G. Tao, Y. Liu, L. Wang, D. Cui, H. Li, and Z. Xu, “Fabrication and experimental characterization of high power bottom-emitting VCSELs,” Opt. Precision Eng. 12, 449-453 (2004).

Yamamoto, M.

N. Ueki, H. Nakayama, J. Sakurai, A. Murakami, H. Otoma, Y. Miyamoto, M. Yamamoto, R. Ishii, M. Yoshikama, and T. Nakamura, “Complete polarization control of 12×8-bit matrix-addressed oxide-confined vertical-cavity surface-emitting laser array,” Jpn. J. Appl. Phys. 40, L33-L35 (2001).
[CrossRef]

Yan, C.

Y. Sun, Z. Jin, Y. Ning, L. Qin, C. Yan, G. Luo, G. Tao, Y. Liu, L. Wang, D. Cui, H. Li, and Z. Xu, “Fabrication and experimental characterization of high power bottom-emitting VCSELs,” Opt. Precision Eng. 12, 449-453 (2004).

Yoshida, R.

F. Mederer, R. Jager, P. Schnitzer, H. Unold, M. Kicherer, K. J. Ebeling, M. Natomi, and R. Yoshida, “Multi-Gigabit/s graded-index POF data link with butt-coupled single-mode InGaAs VCSEL,” IEEE Photon. Technol. Lett. 12, 199-201 (2000).
[CrossRef]

Yoshikama, M.

N. Ueki, H. Nakayama, J. Sakurai, A. Murakami, H. Otoma, Y. Miyamoto, M. Yamamoto, R. Ishii, M. Yoshikama, and T. Nakamura, “Complete polarization control of 12×8-bit matrix-addressed oxide-confined vertical-cavity surface-emitting laser array,” Jpn. J. Appl. Phys. 40, L33-L35 (2001).
[CrossRef]

Electron. Lett. (1)

R. Jäger, M. Grabherr, C. Jung, R. Michalzik, G. Reiner, B. Weigl, and K. J. Ebeling, “57% wallplug efficiency oxide-confined 850 nm wavelength GaAs VCSELs,” Electron. Lett. 33, 330-331 (1997).
[CrossRef]

IEEE J. Quantum Electron. (1)

R. S. Geels, S. W. Corzine, and L. A. Coldren, “InGaAs vertical cavity surface emitting lasers,” IEEE J. Quantum Electron. 27, 1359-1367 (1991).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

S. A. Riyopoulos, D. Dialetis, J. Liu, and B. Riely, “Generic representation of active cavity VCSEL eigenmodes by optimized waist Gauss-Laguerre modes,” IEEE J. Sel. Top. Quantum Electron. 7, 312-327 (2001).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

F. Mederer, R. Jager, P. Schnitzer, H. Unold, M. Kicherer, K. J. Ebeling, M. Natomi, and R. Yoshida, “Multi-Gigabit/s graded-index POF data link with butt-coupled single-mode InGaAs VCSEL,” IEEE Photon. Technol. Lett. 12, 199-201 (2000).
[CrossRef]

IEEE. J. Sel. Top. Quantum Electron. (1)

D. Wiedenmann, R. King, C. Jung, R. Jager, and R. Michalzik, “Design and analysis of single-mode oxidized VCSELs for high-speed optical interconnects,” IEEE. J. Sel. Top. Quantum Electron. 5, 503-511 (1999).
[CrossRef]

J. Luminescence (1)

T. Li, Y. Ning, Y. Sun, C. Wang, J. Liu, Y. Liu, and L. Wang, “High-power InGaAs VCSELs single devices and 2-D arrays,” J. Luminescence 122-123, 571-573 (2007).
[CrossRef]

Jpn. J. Appl. Phys. (1)

N. Ueki, H. Nakayama, J. Sakurai, A. Murakami, H. Otoma, Y. Miyamoto, M. Yamamoto, R. Ishii, M. Yoshikama, and T. Nakamura, “Complete polarization control of 12×8-bit matrix-addressed oxide-confined vertical-cavity surface-emitting laser array,” Jpn. J. Appl. Phys. 40, L33-L35 (2001).
[CrossRef]

Opt. Precision Eng. (1)

Y. Sun, Z. Jin, Y. Ning, L. Qin, C. Yan, G. Luo, G. Tao, Y. Liu, L. Wang, D. Cui, H. Li, and Z. Xu, “Fabrication and experimental characterization of high power bottom-emitting VCSELs,” Opt. Precision Eng. 12, 449-453 (2004).

Proc. SPIE (3)

M. C. Amann, M. Ortsiefer, R. Shau, and J. Rosskopf, “Vertical-cavity surface-emitting laser diodes for telecommunication wavelengths,” Proc. SPIE 4871, 123-129 (2002).
[CrossRef]

P. Li, J. Sun, H. Chen, and W. Guo, “Study of the model of laser diode emitted beam based on multimode Gaussian distribution,” Proc. SPIE 6824, 68241H (2007).
[CrossRef]

J.-F. Seurin, C. L. Ghosh, V. Khalfin, A. Miglo, G. Xu, J. D. Wynn, P. Pradhan, and L. A. D'Asaro, “High-power high-efficiency 2D VCSEL arrays,” Proc. SPIE 6908, 690808 (2008).
[CrossRef]

Other (1)

“Lasers and laser-related equipment. Test methods for laser beam parameters, beam widths, divergence angle and beam propagation factor,” ISO 11146 (International Organization for Standardization, 1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic diagram of (a) bottom-emitting VCSEL and (b) nonuniform linear array.

Fig. 2
Fig. 2

Relationship between multimode Gaussian beam and fundamental mode Gaussian beam.

Fig. 3
Fig. 3

Near-field distribution of the nonuniform linear array.

Fig. 4
Fig. 4

Superimposed far-field distribution (solid line) of the linear array and far-field distribution of each element (dashed line).

Fig. 5
Fig. 5

Dependence of output power and forward voltage on the current of a nonuniform linear array.

Fig. 6
Fig. 6

Dependence of the output power on the current of the three kinds of devices.

Fig. 7
Fig. 7

Lasing spectra of the three kinds of devices.

Fig. 8
Fig. 8

Far-field images and lasing intensity distribution of (a) single device, (b) 2D array, and (c) linear array.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

I m ( x , z ) = i = 0 + C i I i ( x , z ) ,
C i = 2 ω 0 2 ω 0 m 2 + ω 0 2 ( ω 0 m 2 ω 0 2 ω 0 m 2 + ω 0 2 ) i .
I i ( x , z ) = A i H i 2 ( 2 ω 0 ( z ) x ) exp ( 2 x 2 ω 0 ( z ) 2 ) .
A i = 2 n eff ω ε 0 β ( π a m 2 ) P ,
H i ( x ) = ( 1 ) i e x 2 i x i e x 2
I m ( x , z ) P · + 2 ω 0 2 ω 0 m 2 + ω 0 2 ( ω 0 m 2 ω 0 2 ω 0 m 2 + ω 0 2 ) i · H i 2 ( 2 ω 0 ( z ) x ) exp ( 2 x 2 ω 0 ( z ) 2 ) .
I m ( θ , z ) P + 2 ω 0 2 ω 0 m 2 + ω 0 2 ( ω 0 m 2 ω 0 2 ω 0 m 2 + ω 0 2 ) i H i 2 ( 2 ω 0 ( z ) t g ( θ ) z ) exp ( 2 t g 2 ( θ ) z 2 ω 0 ( z ) 2 ) .

Metrics