Abstract

As critical dimensions for leading-edge semiconductor devices shrink, the line-edge roughness (LER) requirements are pushing well into the single digit nanometer regime. At these scales many new sources of LER must be considered. In the case of extreme ultraviolet (EUV) lithography, modeling has shown the lithographic mask to be a source of significant concern. Here we present a correlation-based methodology for experimentally measuring the magnitude of mask contributors to printed LER. The method is applied to recent printing results from a 0.3 numerical aperture EUV microfield exposure tool. The measurements demonstrate that such effects are indeed present and of significant magnitude. The method is also used to explore the effects of illumination coherence and defocus and has been used to verify model-based predictions of mask-induced LER.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Naulleau and G. Gallatin, “The line-edge roughness transfer function and its application to determining mask effects in EUV resist characterization,” Appl. Opt. 42, 3390-3397 (2003).
    [CrossRef] [PubMed]
  2. N. Beaudry and T. Milster, “Effects of mask roughness and condenser scattering in EUVL systems,” Proc. SPIE 3676, 653-662 (1999).
    [CrossRef]
  3. P. Naulleau, “The relevance of mask-roughness-induced printed line-edge roughness in recent and future EUV lithography tests,” Appl. Opt. 43, 4025-4032 (2004).
    [CrossRef] [PubMed]
  4. P. Naulleau, D. Niakoula, and G. Zhang, “System-level line-edge roughness limits in extreme ultraviolet lithography,” J. Vac. Sci. Technol. B 26, 1289-1293 (2008).
    [CrossRef]
  5. P. Naulleau, K. Goldberg, E. Anderson, K. Bradley, R. Delano, P. Denham, B. Gunion, B. Harteneck, B. Hoef, H. Huang, K. Jackson, G. Jones, D. Kemp, A. Liddle, R. Oort, A. Rawlins, S. Rekawa, F. Salmassi, R. Tackaberry, C. Chung, L. Hale, D. Phillion, G. Sommargren, and J. Taylor, “Status of EUV microexposure capabilities at the ALS using the 0.3-NA MET optic,” Proc. SPIE 5374, 881-891 (2004).
    [CrossRef]
  6. P. Naulleau, C. Anderson, J. Chiu, P. Denham, S. George, K. Goldberg, M. Goldstein, B. Hoef, R. Hudyma, G. Jones, C. Koh, B. La Fontaine, A. Ma, W. Montgomery, D. Niakoula, J. Park, T. Wallow, and S. Wurm, “22-nm half-pitch extreme ultraviolet node development at the SEMATECH Berkeley microfield exposure tool,” Microelectron. Eng. 86, 448-455 (2009).
    [CrossRef]
  7. SuMMIT.
  8. P. Naulleau and G. Gallatin, “Spatial scaling metrics of mask-induced induced line-edge roughness,” J. Vac. Sci. Technol. B 26, 1903-1910 (2008).
    [CrossRef]
  9. International Technology Roadmap for Semiconductors, “2006 update,” http://www.itrs.net/Links/2008ITRS/Home2008.htm.

2009

P. Naulleau, C. Anderson, J. Chiu, P. Denham, S. George, K. Goldberg, M. Goldstein, B. Hoef, R. Hudyma, G. Jones, C. Koh, B. La Fontaine, A. Ma, W. Montgomery, D. Niakoula, J. Park, T. Wallow, and S. Wurm, “22-nm half-pitch extreme ultraviolet node development at the SEMATECH Berkeley microfield exposure tool,” Microelectron. Eng. 86, 448-455 (2009).
[CrossRef]

2008

P. Naulleau and G. Gallatin, “Spatial scaling metrics of mask-induced induced line-edge roughness,” J. Vac. Sci. Technol. B 26, 1903-1910 (2008).
[CrossRef]

P. Naulleau, D. Niakoula, and G. Zhang, “System-level line-edge roughness limits in extreme ultraviolet lithography,” J. Vac. Sci. Technol. B 26, 1289-1293 (2008).
[CrossRef]

2004

P. Naulleau, K. Goldberg, E. Anderson, K. Bradley, R. Delano, P. Denham, B. Gunion, B. Harteneck, B. Hoef, H. Huang, K. Jackson, G. Jones, D. Kemp, A. Liddle, R. Oort, A. Rawlins, S. Rekawa, F. Salmassi, R. Tackaberry, C. Chung, L. Hale, D. Phillion, G. Sommargren, and J. Taylor, “Status of EUV microexposure capabilities at the ALS using the 0.3-NA MET optic,” Proc. SPIE 5374, 881-891 (2004).
[CrossRef]

P. Naulleau, “The relevance of mask-roughness-induced printed line-edge roughness in recent and future EUV lithography tests,” Appl. Opt. 43, 4025-4032 (2004).
[CrossRef] [PubMed]

2003

1999

N. Beaudry and T. Milster, “Effects of mask roughness and condenser scattering in EUVL systems,” Proc. SPIE 3676, 653-662 (1999).
[CrossRef]

Anderson, C.

P. Naulleau, C. Anderson, J. Chiu, P. Denham, S. George, K. Goldberg, M. Goldstein, B. Hoef, R. Hudyma, G. Jones, C. Koh, B. La Fontaine, A. Ma, W. Montgomery, D. Niakoula, J. Park, T. Wallow, and S. Wurm, “22-nm half-pitch extreme ultraviolet node development at the SEMATECH Berkeley microfield exposure tool,” Microelectron. Eng. 86, 448-455 (2009).
[CrossRef]

Anderson, E.

P. Naulleau, K. Goldberg, E. Anderson, K. Bradley, R. Delano, P. Denham, B. Gunion, B. Harteneck, B. Hoef, H. Huang, K. Jackson, G. Jones, D. Kemp, A. Liddle, R. Oort, A. Rawlins, S. Rekawa, F. Salmassi, R. Tackaberry, C. Chung, L. Hale, D. Phillion, G. Sommargren, and J. Taylor, “Status of EUV microexposure capabilities at the ALS using the 0.3-NA MET optic,” Proc. SPIE 5374, 881-891 (2004).
[CrossRef]

Beaudry, N.

N. Beaudry and T. Milster, “Effects of mask roughness and condenser scattering in EUVL systems,” Proc. SPIE 3676, 653-662 (1999).
[CrossRef]

Bradley, K.

P. Naulleau, K. Goldberg, E. Anderson, K. Bradley, R. Delano, P. Denham, B. Gunion, B. Harteneck, B. Hoef, H. Huang, K. Jackson, G. Jones, D. Kemp, A. Liddle, R. Oort, A. Rawlins, S. Rekawa, F. Salmassi, R. Tackaberry, C. Chung, L. Hale, D. Phillion, G. Sommargren, and J. Taylor, “Status of EUV microexposure capabilities at the ALS using the 0.3-NA MET optic,” Proc. SPIE 5374, 881-891 (2004).
[CrossRef]

Chiu, J.

P. Naulleau, C. Anderson, J. Chiu, P. Denham, S. George, K. Goldberg, M. Goldstein, B. Hoef, R. Hudyma, G. Jones, C. Koh, B. La Fontaine, A. Ma, W. Montgomery, D. Niakoula, J. Park, T. Wallow, and S. Wurm, “22-nm half-pitch extreme ultraviolet node development at the SEMATECH Berkeley microfield exposure tool,” Microelectron. Eng. 86, 448-455 (2009).
[CrossRef]

Chung, C.

P. Naulleau, K. Goldberg, E. Anderson, K. Bradley, R. Delano, P. Denham, B. Gunion, B. Harteneck, B. Hoef, H. Huang, K. Jackson, G. Jones, D. Kemp, A. Liddle, R. Oort, A. Rawlins, S. Rekawa, F. Salmassi, R. Tackaberry, C. Chung, L. Hale, D. Phillion, G. Sommargren, and J. Taylor, “Status of EUV microexposure capabilities at the ALS using the 0.3-NA MET optic,” Proc. SPIE 5374, 881-891 (2004).
[CrossRef]

Delano, R.

P. Naulleau, K. Goldberg, E. Anderson, K. Bradley, R. Delano, P. Denham, B. Gunion, B. Harteneck, B. Hoef, H. Huang, K. Jackson, G. Jones, D. Kemp, A. Liddle, R. Oort, A. Rawlins, S. Rekawa, F. Salmassi, R. Tackaberry, C. Chung, L. Hale, D. Phillion, G. Sommargren, and J. Taylor, “Status of EUV microexposure capabilities at the ALS using the 0.3-NA MET optic,” Proc. SPIE 5374, 881-891 (2004).
[CrossRef]

Denham, P.

P. Naulleau, C. Anderson, J. Chiu, P. Denham, S. George, K. Goldberg, M. Goldstein, B. Hoef, R. Hudyma, G. Jones, C. Koh, B. La Fontaine, A. Ma, W. Montgomery, D. Niakoula, J. Park, T. Wallow, and S. Wurm, “22-nm half-pitch extreme ultraviolet node development at the SEMATECH Berkeley microfield exposure tool,” Microelectron. Eng. 86, 448-455 (2009).
[CrossRef]

P. Naulleau, K. Goldberg, E. Anderson, K. Bradley, R. Delano, P. Denham, B. Gunion, B. Harteneck, B. Hoef, H. Huang, K. Jackson, G. Jones, D. Kemp, A. Liddle, R. Oort, A. Rawlins, S. Rekawa, F. Salmassi, R. Tackaberry, C. Chung, L. Hale, D. Phillion, G. Sommargren, and J. Taylor, “Status of EUV microexposure capabilities at the ALS using the 0.3-NA MET optic,” Proc. SPIE 5374, 881-891 (2004).
[CrossRef]

Gallatin, G.

P. Naulleau and G. Gallatin, “Spatial scaling metrics of mask-induced induced line-edge roughness,” J. Vac. Sci. Technol. B 26, 1903-1910 (2008).
[CrossRef]

P. Naulleau and G. Gallatin, “The line-edge roughness transfer function and its application to determining mask effects in EUV resist characterization,” Appl. Opt. 42, 3390-3397 (2003).
[CrossRef] [PubMed]

George, S.

P. Naulleau, C. Anderson, J. Chiu, P. Denham, S. George, K. Goldberg, M. Goldstein, B. Hoef, R. Hudyma, G. Jones, C. Koh, B. La Fontaine, A. Ma, W. Montgomery, D. Niakoula, J. Park, T. Wallow, and S. Wurm, “22-nm half-pitch extreme ultraviolet node development at the SEMATECH Berkeley microfield exposure tool,” Microelectron. Eng. 86, 448-455 (2009).
[CrossRef]

Goldberg, K.

P. Naulleau, C. Anderson, J. Chiu, P. Denham, S. George, K. Goldberg, M. Goldstein, B. Hoef, R. Hudyma, G. Jones, C. Koh, B. La Fontaine, A. Ma, W. Montgomery, D. Niakoula, J. Park, T. Wallow, and S. Wurm, “22-nm half-pitch extreme ultraviolet node development at the SEMATECH Berkeley microfield exposure tool,” Microelectron. Eng. 86, 448-455 (2009).
[CrossRef]

P. Naulleau, K. Goldberg, E. Anderson, K. Bradley, R. Delano, P. Denham, B. Gunion, B. Harteneck, B. Hoef, H. Huang, K. Jackson, G. Jones, D. Kemp, A. Liddle, R. Oort, A. Rawlins, S. Rekawa, F. Salmassi, R. Tackaberry, C. Chung, L. Hale, D. Phillion, G. Sommargren, and J. Taylor, “Status of EUV microexposure capabilities at the ALS using the 0.3-NA MET optic,” Proc. SPIE 5374, 881-891 (2004).
[CrossRef]

Goldstein, M.

P. Naulleau, C. Anderson, J. Chiu, P. Denham, S. George, K. Goldberg, M. Goldstein, B. Hoef, R. Hudyma, G. Jones, C. Koh, B. La Fontaine, A. Ma, W. Montgomery, D. Niakoula, J. Park, T. Wallow, and S. Wurm, “22-nm half-pitch extreme ultraviolet node development at the SEMATECH Berkeley microfield exposure tool,” Microelectron. Eng. 86, 448-455 (2009).
[CrossRef]

Gunion, B.

P. Naulleau, K. Goldberg, E. Anderson, K. Bradley, R. Delano, P. Denham, B. Gunion, B. Harteneck, B. Hoef, H. Huang, K. Jackson, G. Jones, D. Kemp, A. Liddle, R. Oort, A. Rawlins, S. Rekawa, F. Salmassi, R. Tackaberry, C. Chung, L. Hale, D. Phillion, G. Sommargren, and J. Taylor, “Status of EUV microexposure capabilities at the ALS using the 0.3-NA MET optic,” Proc. SPIE 5374, 881-891 (2004).
[CrossRef]

Hale, L.

P. Naulleau, K. Goldberg, E. Anderson, K. Bradley, R. Delano, P. Denham, B. Gunion, B. Harteneck, B. Hoef, H. Huang, K. Jackson, G. Jones, D. Kemp, A. Liddle, R. Oort, A. Rawlins, S. Rekawa, F. Salmassi, R. Tackaberry, C. Chung, L. Hale, D. Phillion, G. Sommargren, and J. Taylor, “Status of EUV microexposure capabilities at the ALS using the 0.3-NA MET optic,” Proc. SPIE 5374, 881-891 (2004).
[CrossRef]

Harteneck, B.

P. Naulleau, K. Goldberg, E. Anderson, K. Bradley, R. Delano, P. Denham, B. Gunion, B. Harteneck, B. Hoef, H. Huang, K. Jackson, G. Jones, D. Kemp, A. Liddle, R. Oort, A. Rawlins, S. Rekawa, F. Salmassi, R. Tackaberry, C. Chung, L. Hale, D. Phillion, G. Sommargren, and J. Taylor, “Status of EUV microexposure capabilities at the ALS using the 0.3-NA MET optic,” Proc. SPIE 5374, 881-891 (2004).
[CrossRef]

Hoef, B.

P. Naulleau, C. Anderson, J. Chiu, P. Denham, S. George, K. Goldberg, M. Goldstein, B. Hoef, R. Hudyma, G. Jones, C. Koh, B. La Fontaine, A. Ma, W. Montgomery, D. Niakoula, J. Park, T. Wallow, and S. Wurm, “22-nm half-pitch extreme ultraviolet node development at the SEMATECH Berkeley microfield exposure tool,” Microelectron. Eng. 86, 448-455 (2009).
[CrossRef]

P. Naulleau, K. Goldberg, E. Anderson, K. Bradley, R. Delano, P. Denham, B. Gunion, B. Harteneck, B. Hoef, H. Huang, K. Jackson, G. Jones, D. Kemp, A. Liddle, R. Oort, A. Rawlins, S. Rekawa, F. Salmassi, R. Tackaberry, C. Chung, L. Hale, D. Phillion, G. Sommargren, and J. Taylor, “Status of EUV microexposure capabilities at the ALS using the 0.3-NA MET optic,” Proc. SPIE 5374, 881-891 (2004).
[CrossRef]

Huang, H.

P. Naulleau, K. Goldberg, E. Anderson, K. Bradley, R. Delano, P. Denham, B. Gunion, B. Harteneck, B. Hoef, H. Huang, K. Jackson, G. Jones, D. Kemp, A. Liddle, R. Oort, A. Rawlins, S. Rekawa, F. Salmassi, R. Tackaberry, C. Chung, L. Hale, D. Phillion, G. Sommargren, and J. Taylor, “Status of EUV microexposure capabilities at the ALS using the 0.3-NA MET optic,” Proc. SPIE 5374, 881-891 (2004).
[CrossRef]

Hudyma, R.

P. Naulleau, C. Anderson, J. Chiu, P. Denham, S. George, K. Goldberg, M. Goldstein, B. Hoef, R. Hudyma, G. Jones, C. Koh, B. La Fontaine, A. Ma, W. Montgomery, D. Niakoula, J. Park, T. Wallow, and S. Wurm, “22-nm half-pitch extreme ultraviolet node development at the SEMATECH Berkeley microfield exposure tool,” Microelectron. Eng. 86, 448-455 (2009).
[CrossRef]

Jackson, K.

P. Naulleau, K. Goldberg, E. Anderson, K. Bradley, R. Delano, P. Denham, B. Gunion, B. Harteneck, B. Hoef, H. Huang, K. Jackson, G. Jones, D. Kemp, A. Liddle, R. Oort, A. Rawlins, S. Rekawa, F. Salmassi, R. Tackaberry, C. Chung, L. Hale, D. Phillion, G. Sommargren, and J. Taylor, “Status of EUV microexposure capabilities at the ALS using the 0.3-NA MET optic,” Proc. SPIE 5374, 881-891 (2004).
[CrossRef]

Jones, G.

P. Naulleau, C. Anderson, J. Chiu, P. Denham, S. George, K. Goldberg, M. Goldstein, B. Hoef, R. Hudyma, G. Jones, C. Koh, B. La Fontaine, A. Ma, W. Montgomery, D. Niakoula, J. Park, T. Wallow, and S. Wurm, “22-nm half-pitch extreme ultraviolet node development at the SEMATECH Berkeley microfield exposure tool,” Microelectron. Eng. 86, 448-455 (2009).
[CrossRef]

P. Naulleau, K. Goldberg, E. Anderson, K. Bradley, R. Delano, P. Denham, B. Gunion, B. Harteneck, B. Hoef, H. Huang, K. Jackson, G. Jones, D. Kemp, A. Liddle, R. Oort, A. Rawlins, S. Rekawa, F. Salmassi, R. Tackaberry, C. Chung, L. Hale, D. Phillion, G. Sommargren, and J. Taylor, “Status of EUV microexposure capabilities at the ALS using the 0.3-NA MET optic,” Proc. SPIE 5374, 881-891 (2004).
[CrossRef]

Kemp, D.

P. Naulleau, K. Goldberg, E. Anderson, K. Bradley, R. Delano, P. Denham, B. Gunion, B. Harteneck, B. Hoef, H. Huang, K. Jackson, G. Jones, D. Kemp, A. Liddle, R. Oort, A. Rawlins, S. Rekawa, F. Salmassi, R. Tackaberry, C. Chung, L. Hale, D. Phillion, G. Sommargren, and J. Taylor, “Status of EUV microexposure capabilities at the ALS using the 0.3-NA MET optic,” Proc. SPIE 5374, 881-891 (2004).
[CrossRef]

Koh, C.

P. Naulleau, C. Anderson, J. Chiu, P. Denham, S. George, K. Goldberg, M. Goldstein, B. Hoef, R. Hudyma, G. Jones, C. Koh, B. La Fontaine, A. Ma, W. Montgomery, D. Niakoula, J. Park, T. Wallow, and S. Wurm, “22-nm half-pitch extreme ultraviolet node development at the SEMATECH Berkeley microfield exposure tool,” Microelectron. Eng. 86, 448-455 (2009).
[CrossRef]

La Fontaine, B.

P. Naulleau, C. Anderson, J. Chiu, P. Denham, S. George, K. Goldberg, M. Goldstein, B. Hoef, R. Hudyma, G. Jones, C. Koh, B. La Fontaine, A. Ma, W. Montgomery, D. Niakoula, J. Park, T. Wallow, and S. Wurm, “22-nm half-pitch extreme ultraviolet node development at the SEMATECH Berkeley microfield exposure tool,” Microelectron. Eng. 86, 448-455 (2009).
[CrossRef]

Liddle, A.

P. Naulleau, K. Goldberg, E. Anderson, K. Bradley, R. Delano, P. Denham, B. Gunion, B. Harteneck, B. Hoef, H. Huang, K. Jackson, G. Jones, D. Kemp, A. Liddle, R. Oort, A. Rawlins, S. Rekawa, F. Salmassi, R. Tackaberry, C. Chung, L. Hale, D. Phillion, G. Sommargren, and J. Taylor, “Status of EUV microexposure capabilities at the ALS using the 0.3-NA MET optic,” Proc. SPIE 5374, 881-891 (2004).
[CrossRef]

Ma, A.

P. Naulleau, C. Anderson, J. Chiu, P. Denham, S. George, K. Goldberg, M. Goldstein, B. Hoef, R. Hudyma, G. Jones, C. Koh, B. La Fontaine, A. Ma, W. Montgomery, D. Niakoula, J. Park, T. Wallow, and S. Wurm, “22-nm half-pitch extreme ultraviolet node development at the SEMATECH Berkeley microfield exposure tool,” Microelectron. Eng. 86, 448-455 (2009).
[CrossRef]

Milster, T.

N. Beaudry and T. Milster, “Effects of mask roughness and condenser scattering in EUVL systems,” Proc. SPIE 3676, 653-662 (1999).
[CrossRef]

Montgomery, W.

P. Naulleau, C. Anderson, J. Chiu, P. Denham, S. George, K. Goldberg, M. Goldstein, B. Hoef, R. Hudyma, G. Jones, C. Koh, B. La Fontaine, A. Ma, W. Montgomery, D. Niakoula, J. Park, T. Wallow, and S. Wurm, “22-nm half-pitch extreme ultraviolet node development at the SEMATECH Berkeley microfield exposure tool,” Microelectron. Eng. 86, 448-455 (2009).
[CrossRef]

Naulleau, P.

P. Naulleau, C. Anderson, J. Chiu, P. Denham, S. George, K. Goldberg, M. Goldstein, B. Hoef, R. Hudyma, G. Jones, C. Koh, B. La Fontaine, A. Ma, W. Montgomery, D. Niakoula, J. Park, T. Wallow, and S. Wurm, “22-nm half-pitch extreme ultraviolet node development at the SEMATECH Berkeley microfield exposure tool,” Microelectron. Eng. 86, 448-455 (2009).
[CrossRef]

P. Naulleau, D. Niakoula, and G. Zhang, “System-level line-edge roughness limits in extreme ultraviolet lithography,” J. Vac. Sci. Technol. B 26, 1289-1293 (2008).
[CrossRef]

P. Naulleau and G. Gallatin, “Spatial scaling metrics of mask-induced induced line-edge roughness,” J. Vac. Sci. Technol. B 26, 1903-1910 (2008).
[CrossRef]

P. Naulleau, K. Goldberg, E. Anderson, K. Bradley, R. Delano, P. Denham, B. Gunion, B. Harteneck, B. Hoef, H. Huang, K. Jackson, G. Jones, D. Kemp, A. Liddle, R. Oort, A. Rawlins, S. Rekawa, F. Salmassi, R. Tackaberry, C. Chung, L. Hale, D. Phillion, G. Sommargren, and J. Taylor, “Status of EUV microexposure capabilities at the ALS using the 0.3-NA MET optic,” Proc. SPIE 5374, 881-891 (2004).
[CrossRef]

P. Naulleau, “The relevance of mask-roughness-induced printed line-edge roughness in recent and future EUV lithography tests,” Appl. Opt. 43, 4025-4032 (2004).
[CrossRef] [PubMed]

P. Naulleau and G. Gallatin, “The line-edge roughness transfer function and its application to determining mask effects in EUV resist characterization,” Appl. Opt. 42, 3390-3397 (2003).
[CrossRef] [PubMed]

Niakoula, D.

P. Naulleau, C. Anderson, J. Chiu, P. Denham, S. George, K. Goldberg, M. Goldstein, B. Hoef, R. Hudyma, G. Jones, C. Koh, B. La Fontaine, A. Ma, W. Montgomery, D. Niakoula, J. Park, T. Wallow, and S. Wurm, “22-nm half-pitch extreme ultraviolet node development at the SEMATECH Berkeley microfield exposure tool,” Microelectron. Eng. 86, 448-455 (2009).
[CrossRef]

P. Naulleau, D. Niakoula, and G. Zhang, “System-level line-edge roughness limits in extreme ultraviolet lithography,” J. Vac. Sci. Technol. B 26, 1289-1293 (2008).
[CrossRef]

Oort, R.

P. Naulleau, K. Goldberg, E. Anderson, K. Bradley, R. Delano, P. Denham, B. Gunion, B. Harteneck, B. Hoef, H. Huang, K. Jackson, G. Jones, D. Kemp, A. Liddle, R. Oort, A. Rawlins, S. Rekawa, F. Salmassi, R. Tackaberry, C. Chung, L. Hale, D. Phillion, G. Sommargren, and J. Taylor, “Status of EUV microexposure capabilities at the ALS using the 0.3-NA MET optic,” Proc. SPIE 5374, 881-891 (2004).
[CrossRef]

Park, J.

P. Naulleau, C. Anderson, J. Chiu, P. Denham, S. George, K. Goldberg, M. Goldstein, B. Hoef, R. Hudyma, G. Jones, C. Koh, B. La Fontaine, A. Ma, W. Montgomery, D. Niakoula, J. Park, T. Wallow, and S. Wurm, “22-nm half-pitch extreme ultraviolet node development at the SEMATECH Berkeley microfield exposure tool,” Microelectron. Eng. 86, 448-455 (2009).
[CrossRef]

Phillion, D.

P. Naulleau, K. Goldberg, E. Anderson, K. Bradley, R. Delano, P. Denham, B. Gunion, B. Harteneck, B. Hoef, H. Huang, K. Jackson, G. Jones, D. Kemp, A. Liddle, R. Oort, A. Rawlins, S. Rekawa, F. Salmassi, R. Tackaberry, C. Chung, L. Hale, D. Phillion, G. Sommargren, and J. Taylor, “Status of EUV microexposure capabilities at the ALS using the 0.3-NA MET optic,” Proc. SPIE 5374, 881-891 (2004).
[CrossRef]

Rawlins, A.

P. Naulleau, K. Goldberg, E. Anderson, K. Bradley, R. Delano, P. Denham, B. Gunion, B. Harteneck, B. Hoef, H. Huang, K. Jackson, G. Jones, D. Kemp, A. Liddle, R. Oort, A. Rawlins, S. Rekawa, F. Salmassi, R. Tackaberry, C. Chung, L. Hale, D. Phillion, G. Sommargren, and J. Taylor, “Status of EUV microexposure capabilities at the ALS using the 0.3-NA MET optic,” Proc. SPIE 5374, 881-891 (2004).
[CrossRef]

Rekawa, S.

P. Naulleau, K. Goldberg, E. Anderson, K. Bradley, R. Delano, P. Denham, B. Gunion, B. Harteneck, B. Hoef, H. Huang, K. Jackson, G. Jones, D. Kemp, A. Liddle, R. Oort, A. Rawlins, S. Rekawa, F. Salmassi, R. Tackaberry, C. Chung, L. Hale, D. Phillion, G. Sommargren, and J. Taylor, “Status of EUV microexposure capabilities at the ALS using the 0.3-NA MET optic,” Proc. SPIE 5374, 881-891 (2004).
[CrossRef]

Salmassi, F.

P. Naulleau, K. Goldberg, E. Anderson, K. Bradley, R. Delano, P. Denham, B. Gunion, B. Harteneck, B. Hoef, H. Huang, K. Jackson, G. Jones, D. Kemp, A. Liddle, R. Oort, A. Rawlins, S. Rekawa, F. Salmassi, R. Tackaberry, C. Chung, L. Hale, D. Phillion, G. Sommargren, and J. Taylor, “Status of EUV microexposure capabilities at the ALS using the 0.3-NA MET optic,” Proc. SPIE 5374, 881-891 (2004).
[CrossRef]

Sommargren, G.

P. Naulleau, K. Goldberg, E. Anderson, K. Bradley, R. Delano, P. Denham, B. Gunion, B. Harteneck, B. Hoef, H. Huang, K. Jackson, G. Jones, D. Kemp, A. Liddle, R. Oort, A. Rawlins, S. Rekawa, F. Salmassi, R. Tackaberry, C. Chung, L. Hale, D. Phillion, G. Sommargren, and J. Taylor, “Status of EUV microexposure capabilities at the ALS using the 0.3-NA MET optic,” Proc. SPIE 5374, 881-891 (2004).
[CrossRef]

Tackaberry, R.

P. Naulleau, K. Goldberg, E. Anderson, K. Bradley, R. Delano, P. Denham, B. Gunion, B. Harteneck, B. Hoef, H. Huang, K. Jackson, G. Jones, D. Kemp, A. Liddle, R. Oort, A. Rawlins, S. Rekawa, F. Salmassi, R. Tackaberry, C. Chung, L. Hale, D. Phillion, G. Sommargren, and J. Taylor, “Status of EUV microexposure capabilities at the ALS using the 0.3-NA MET optic,” Proc. SPIE 5374, 881-891 (2004).
[CrossRef]

Taylor, J.

P. Naulleau, K. Goldberg, E. Anderson, K. Bradley, R. Delano, P. Denham, B. Gunion, B. Harteneck, B. Hoef, H. Huang, K. Jackson, G. Jones, D. Kemp, A. Liddle, R. Oort, A. Rawlins, S. Rekawa, F. Salmassi, R. Tackaberry, C. Chung, L. Hale, D. Phillion, G. Sommargren, and J. Taylor, “Status of EUV microexposure capabilities at the ALS using the 0.3-NA MET optic,” Proc. SPIE 5374, 881-891 (2004).
[CrossRef]

Wallow, T.

P. Naulleau, C. Anderson, J. Chiu, P. Denham, S. George, K. Goldberg, M. Goldstein, B. Hoef, R. Hudyma, G. Jones, C. Koh, B. La Fontaine, A. Ma, W. Montgomery, D. Niakoula, J. Park, T. Wallow, and S. Wurm, “22-nm half-pitch extreme ultraviolet node development at the SEMATECH Berkeley microfield exposure tool,” Microelectron. Eng. 86, 448-455 (2009).
[CrossRef]

Wurm, S.

P. Naulleau, C. Anderson, J. Chiu, P. Denham, S. George, K. Goldberg, M. Goldstein, B. Hoef, R. Hudyma, G. Jones, C. Koh, B. La Fontaine, A. Ma, W. Montgomery, D. Niakoula, J. Park, T. Wallow, and S. Wurm, “22-nm half-pitch extreme ultraviolet node development at the SEMATECH Berkeley microfield exposure tool,” Microelectron. Eng. 86, 448-455 (2009).
[CrossRef]

Zhang, G.

P. Naulleau, D. Niakoula, and G. Zhang, “System-level line-edge roughness limits in extreme ultraviolet lithography,” J. Vac. Sci. Technol. B 26, 1289-1293 (2008).
[CrossRef]

Appl. Opt.

J. Vac. Sci. Technol. B

P. Naulleau, D. Niakoula, and G. Zhang, “System-level line-edge roughness limits in extreme ultraviolet lithography,” J. Vac. Sci. Technol. B 26, 1289-1293 (2008).
[CrossRef]

P. Naulleau and G. Gallatin, “Spatial scaling metrics of mask-induced induced line-edge roughness,” J. Vac. Sci. Technol. B 26, 1903-1910 (2008).
[CrossRef]

Microelectron. Eng.

P. Naulleau, C. Anderson, J. Chiu, P. Denham, S. George, K. Goldberg, M. Goldstein, B. Hoef, R. Hudyma, G. Jones, C. Koh, B. La Fontaine, A. Ma, W. Montgomery, D. Niakoula, J. Park, T. Wallow, and S. Wurm, “22-nm half-pitch extreme ultraviolet node development at the SEMATECH Berkeley microfield exposure tool,” Microelectron. Eng. 86, 448-455 (2009).
[CrossRef]

Proc. SPIE

P. Naulleau, K. Goldberg, E. Anderson, K. Bradley, R. Delano, P. Denham, B. Gunion, B. Harteneck, B. Hoef, H. Huang, K. Jackson, G. Jones, D. Kemp, A. Liddle, R. Oort, A. Rawlins, S. Rekawa, F. Salmassi, R. Tackaberry, C. Chung, L. Hale, D. Phillion, G. Sommargren, and J. Taylor, “Status of EUV microexposure capabilities at the ALS using the 0.3-NA MET optic,” Proc. SPIE 5374, 881-891 (2004).
[CrossRef]

N. Beaudry and T. Milster, “Effects of mask roughness and condenser scattering in EUVL systems,” Proc. SPIE 3676, 653-662 (1999).
[CrossRef]

Other

SuMMIT.

International Technology Roadmap for Semiconductors, “2006 update,” http://www.itrs.net/Links/2008ITRS/Home2008.htm.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Scanning electron micrographs (SEMs) of three independent exposures of the same 50 nm line on the mask using off-axis 0.5 σ illumination and 100 nm image-plane defocus.

Fig. 2
Fig. 2

Extracted line edge data from the three independent exposures from Fig. 1 plotted on the same axis.

Fig. 3
Fig. 3

Power spectral density of the modeled mask-induced LER demonstrating the effect of low-pass filtering caused by the projection optics: (a) mask absorber LER and (b) mask multilayer roughness.

Fig. 4
Fig. 4

Filtered line edge data where a top-hat filter is used and the cutoff frequency is set to 1 / ( target pitch ) , which for this case is 10 μm 1 .

Fig. 5
Fig. 5

Modeled binarized aerial image of 50 - nm lines and spaces under modeling conditions set to match the exposure conditions used in Fig. 1. Modeling results yield an average LER of 3.0 over the 12 edges and a 1 σ variation for the LER measured on a single edge of 0.7 nm .

Fig. 6
Fig. 6

Line edge roughness data for three independent exposures of a single edge using annular illumination and 100 - nm defocus. Extracted edge overlay plots for both full bandwidth and band limited cases ( max   frequency = 10 μm 1 ).

Fig. 7
Fig. 7

Modeling results for the annular illumination 100 - nm defocus case. Analysis yields a predicted mask-induced LER of 2.5 ± 0.3 nm for a single edge.

Fig. 8
Fig. 8

Line edge roughness data for three independent exposures of a single edge using annular illumination and 0 - nm defocus. Extracted edge overlay plots for both full bandwidth and band limited cases ( max   frequency = 10 μm 1 ).

Fig. 9
Fig. 9

Modeling results for the annular illumination 100 nm defocus case. Analysis yields a predicted mask-induced LER of 1.4 ± 0.3 nm for a single edge.

Fig. 10
Fig. 10

Modeled sensitivity of the process to defocus. Plotted is the modeled mask-induced LER for the conditions in Fig. 9 but for variable focus.

Tables (2)

Tables Icon

Table 1 Modeled Mask-Induced LER as a Function of Coherence and Defocus a

Tables Icon

Table 2 Direct Comparison of Uncorrelated LER ( LER R ¯ ) and Modeled Image Log Slope

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

L i = M i + R i .
L 1 = M + R 1 , L 2 = M + R 2 .
ρ = E [ L 1 L 2 ] σ L 1 σ L 2 ,
ρ = E [ ( M + R 1 ) ( M + R 2 ) ] σ L 2 ,
ρ = E [ M 2 + R 1 R 2 + M 1 R 2 + M 2 R 1 ] σ L 2 ,
ρ = E [ M 2 ] + E [ R 1 R 2 ] + E [ M R 2 ] + E [ M R 1 ] σ L 2 .
ρ = σ M 2 σ L 2 .
LER M = LER L ρ ,
ρ ¯ = ( ρ 1 , 2 + ρ 1 , 3 + ρ 2 , 3 ) / 3.
LER R = LER L 1 ρ ,

Metrics