Abstract

Controlled injection of fluid into a flexible lens chamber has previously produced tunable spherical lenses with spherical aberration problems. This paper presents a novel fluidic-controlled meniscus/biconvex lens system with relatively low distortion. The lens fabrication method is described and manufactured lenses are characterized for different processing parameters. Images captured through one of our lenses for a range of different pressures are presented. A change in focal length of five times (19.180.8cm) is demonstrated. The focal length shows a quadratic relation to the applied pressure (05kPa). For the simple prototype lens, distortion is less than 5% and relative illumination is above 0.74 by ZEMAX analysis.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G.-H. Feng and Y.-C. Chou, “An eyeball-like biconvex/meniscus lens optical system with fluidic-controlled focus for tunable lens applications,” Proceedings of the 15th International Conference on Solid-State Sensors, Actuators and Microsystems (North-Holland, to be published).
  2. M. Hatcher, “Liquid lenses eye commercial breakthrough,” Opto Laser Eur. 111, 16-17 (2003).
  3. E. C. Tam, “Smart electro-optical zoom lens,” Opt. Lett. 17, 369-72 (1992).
    [CrossRef] [PubMed]
  4. K. Florian, M. Wolfgang, and Z. Hans, “Tunable Liquid micro-lens system,” Proceeding of the 13th Internal Conference on Solid-State Sensors, Actuators and Microsystems (North-Holland Publishing, 2005), pp. 1014-1017.
  5. T. Krupenkin, S. Yang, and P. Mach, “Tunable liquid microlens,” Appl. Phys. Lett. 82, 316-318 (2003).
    [CrossRef]
  6. A. M. Leshansky, A. Bransky, N. Korin, and U. Dinnar, “Tunable nonlinear viscoelastic “focusing” in a microluidic device,” Phys. Rev. Lett. 98, 234501 (2007).
    [CrossRef] [PubMed]
  7. N. Chronis, G. L. Liu, K. H. Jecong, and L. P. Lee, “Tunable liquid-filled microlens array integrated with microfluidic network,” Opt. Express 11, 2370-2378 (2003).
    [CrossRef] [PubMed]
  8. D. Y. Zhang, N. Justis, and Y. H. Lo, “Fluidic adaptive zoom lens with high zoom ratio and widely tunable field of view,” Opt. Commun. 249, 175-182 (2005).
    [CrossRef]
  9. Y. H. Fan, H. Ren, X. Liang, H. Wang, and S. T. Wu, “Liquid crystal microlens arrays with switchable positive and negative focal lengths,” J. Display Technol. 1, 151-156 (2005).
    [CrossRef]
  10. H. Ren, Y. H. Fan, and S. T. Wu, “Liquid-crystal microlens arrays using patterned polymer networks,” Opt. Lett. 29, 1608-1610 (2004).
    [CrossRef] [PubMed]
  11. D. Y. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y. H. Lo, “Fluidic adaptive lens with high focal length tunability,” Appl. Phys. Lett. 82, 3171-3172 (2003).
    [CrossRef]
  12. M. Agarwal, R. A. Gunasekaran, P. Coane, and K. Varahramyan, “Polymer-based variable focal length microlens system,” J. Micromech. Microeng. 14, 1665-1673 (2004).
    [CrossRef]
  13. K. S. Hong, J. Wang, A. Sharonov, D. Chandra, J. Aizenberg, and S. Yang, “Tunable microfluidic optical devices with an integrated microlens array,” J. Micromech. Microeng. 16, 1660-1666 (2006).
    [CrossRef]
  14. S. W. Lee and S. S. Lee, “Focal tunable liquid lens integrated with an electromagnetic actuator,” Appl. Phys. Lett. 90, 121129 (2007).
    [CrossRef]
  15. H. W. Ren and S. T. Wu, “Variable-focus liquid lens,” Opt. Express 15, 5931-5936 (2007).
    [CrossRef] [PubMed]

2007 (3)

A. M. Leshansky, A. Bransky, N. Korin, and U. Dinnar, “Tunable nonlinear viscoelastic “focusing” in a microluidic device,” Phys. Rev. Lett. 98, 234501 (2007).
[CrossRef] [PubMed]

S. W. Lee and S. S. Lee, “Focal tunable liquid lens integrated with an electromagnetic actuator,” Appl. Phys. Lett. 90, 121129 (2007).
[CrossRef]

H. W. Ren and S. T. Wu, “Variable-focus liquid lens,” Opt. Express 15, 5931-5936 (2007).
[CrossRef] [PubMed]

2006 (1)

K. S. Hong, J. Wang, A. Sharonov, D. Chandra, J. Aizenberg, and S. Yang, “Tunable microfluidic optical devices with an integrated microlens array,” J. Micromech. Microeng. 16, 1660-1666 (2006).
[CrossRef]

2005 (2)

D. Y. Zhang, N. Justis, and Y. H. Lo, “Fluidic adaptive zoom lens with high zoom ratio and widely tunable field of view,” Opt. Commun. 249, 175-182 (2005).
[CrossRef]

Y. H. Fan, H. Ren, X. Liang, H. Wang, and S. T. Wu, “Liquid crystal microlens arrays with switchable positive and negative focal lengths,” J. Display Technol. 1, 151-156 (2005).
[CrossRef]

2004 (2)

H. Ren, Y. H. Fan, and S. T. Wu, “Liquid-crystal microlens arrays using patterned polymer networks,” Opt. Lett. 29, 1608-1610 (2004).
[CrossRef] [PubMed]

M. Agarwal, R. A. Gunasekaran, P. Coane, and K. Varahramyan, “Polymer-based variable focal length microlens system,” J. Micromech. Microeng. 14, 1665-1673 (2004).
[CrossRef]

2003 (4)

D. Y. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y. H. Lo, “Fluidic adaptive lens with high focal length tunability,” Appl. Phys. Lett. 82, 3171-3172 (2003).
[CrossRef]

M. Hatcher, “Liquid lenses eye commercial breakthrough,” Opto Laser Eur. 111, 16-17 (2003).

T. Krupenkin, S. Yang, and P. Mach, “Tunable liquid microlens,” Appl. Phys. Lett. 82, 316-318 (2003).
[CrossRef]

N. Chronis, G. L. Liu, K. H. Jecong, and L. P. Lee, “Tunable liquid-filled microlens array integrated with microfluidic network,” Opt. Express 11, 2370-2378 (2003).
[CrossRef] [PubMed]

1992 (1)

Agarwal, M.

M. Agarwal, R. A. Gunasekaran, P. Coane, and K. Varahramyan, “Polymer-based variable focal length microlens system,” J. Micromech. Microeng. 14, 1665-1673 (2004).
[CrossRef]

Aizenberg, J.

K. S. Hong, J. Wang, A. Sharonov, D. Chandra, J. Aizenberg, and S. Yang, “Tunable microfluidic optical devices with an integrated microlens array,” J. Micromech. Microeng. 16, 1660-1666 (2006).
[CrossRef]

Berdichevsky, Y.

D. Y. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y. H. Lo, “Fluidic adaptive lens with high focal length tunability,” Appl. Phys. Lett. 82, 3171-3172 (2003).
[CrossRef]

Bransky, A.

A. M. Leshansky, A. Bransky, N. Korin, and U. Dinnar, “Tunable nonlinear viscoelastic “focusing” in a microluidic device,” Phys. Rev. Lett. 98, 234501 (2007).
[CrossRef] [PubMed]

Chandra, D.

K. S. Hong, J. Wang, A. Sharonov, D. Chandra, J. Aizenberg, and S. Yang, “Tunable microfluidic optical devices with an integrated microlens array,” J. Micromech. Microeng. 16, 1660-1666 (2006).
[CrossRef]

Choi, J.

D. Y. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y. H. Lo, “Fluidic adaptive lens with high focal length tunability,” Appl. Phys. Lett. 82, 3171-3172 (2003).
[CrossRef]

Chou, Y.-C.

G.-H. Feng and Y.-C. Chou, “An eyeball-like biconvex/meniscus lens optical system with fluidic-controlled focus for tunable lens applications,” Proceedings of the 15th International Conference on Solid-State Sensors, Actuators and Microsystems (North-Holland, to be published).

Chronis, N.

Coane, P.

M. Agarwal, R. A. Gunasekaran, P. Coane, and K. Varahramyan, “Polymer-based variable focal length microlens system,” J. Micromech. Microeng. 14, 1665-1673 (2004).
[CrossRef]

Dinnar, U.

A. M. Leshansky, A. Bransky, N. Korin, and U. Dinnar, “Tunable nonlinear viscoelastic “focusing” in a microluidic device,” Phys. Rev. Lett. 98, 234501 (2007).
[CrossRef] [PubMed]

Fan, Y. H.

Feng, G.-H.

G.-H. Feng and Y.-C. Chou, “An eyeball-like biconvex/meniscus lens optical system with fluidic-controlled focus for tunable lens applications,” Proceedings of the 15th International Conference on Solid-State Sensors, Actuators and Microsystems (North-Holland, to be published).

Florian, K.

K. Florian, M. Wolfgang, and Z. Hans, “Tunable Liquid micro-lens system,” Proceeding of the 13th Internal Conference on Solid-State Sensors, Actuators and Microsystems (North-Holland Publishing, 2005), pp. 1014-1017.

Gunasekaran, R. A.

M. Agarwal, R. A. Gunasekaran, P. Coane, and K. Varahramyan, “Polymer-based variable focal length microlens system,” J. Micromech. Microeng. 14, 1665-1673 (2004).
[CrossRef]

Hans, Z.

K. Florian, M. Wolfgang, and Z. Hans, “Tunable Liquid micro-lens system,” Proceeding of the 13th Internal Conference on Solid-State Sensors, Actuators and Microsystems (North-Holland Publishing, 2005), pp. 1014-1017.

Hatcher, M.

M. Hatcher, “Liquid lenses eye commercial breakthrough,” Opto Laser Eur. 111, 16-17 (2003).

Hong, K. S.

K. S. Hong, J. Wang, A. Sharonov, D. Chandra, J. Aizenberg, and S. Yang, “Tunable microfluidic optical devices with an integrated microlens array,” J. Micromech. Microeng. 16, 1660-1666 (2006).
[CrossRef]

Jecong, K. H.

Justis, N.

D. Y. Zhang, N. Justis, and Y. H. Lo, “Fluidic adaptive zoom lens with high zoom ratio and widely tunable field of view,” Opt. Commun. 249, 175-182 (2005).
[CrossRef]

Korin, N.

A. M. Leshansky, A. Bransky, N. Korin, and U. Dinnar, “Tunable nonlinear viscoelastic “focusing” in a microluidic device,” Phys. Rev. Lett. 98, 234501 (2007).
[CrossRef] [PubMed]

Krupenkin, T.

T. Krupenkin, S. Yang, and P. Mach, “Tunable liquid microlens,” Appl. Phys. Lett. 82, 316-318 (2003).
[CrossRef]

Lee, L. P.

Lee, S. S.

S. W. Lee and S. S. Lee, “Focal tunable liquid lens integrated with an electromagnetic actuator,” Appl. Phys. Lett. 90, 121129 (2007).
[CrossRef]

Lee, S. W.

S. W. Lee and S. S. Lee, “Focal tunable liquid lens integrated with an electromagnetic actuator,” Appl. Phys. Lett. 90, 121129 (2007).
[CrossRef]

Leshansky, A. M.

A. M. Leshansky, A. Bransky, N. Korin, and U. Dinnar, “Tunable nonlinear viscoelastic “focusing” in a microluidic device,” Phys. Rev. Lett. 98, 234501 (2007).
[CrossRef] [PubMed]

Liang, X.

Lien, V.

D. Y. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y. H. Lo, “Fluidic adaptive lens with high focal length tunability,” Appl. Phys. Lett. 82, 3171-3172 (2003).
[CrossRef]

Liu, G. L.

Lo, Y. H.

D. Y. Zhang, N. Justis, and Y. H. Lo, “Fluidic adaptive zoom lens with high zoom ratio and widely tunable field of view,” Opt. Commun. 249, 175-182 (2005).
[CrossRef]

D. Y. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y. H. Lo, “Fluidic adaptive lens with high focal length tunability,” Appl. Phys. Lett. 82, 3171-3172 (2003).
[CrossRef]

Mach, P.

T. Krupenkin, S. Yang, and P. Mach, “Tunable liquid microlens,” Appl. Phys. Lett. 82, 316-318 (2003).
[CrossRef]

Ren, H.

Ren, H. W.

Sharonov, A.

K. S. Hong, J. Wang, A. Sharonov, D. Chandra, J. Aizenberg, and S. Yang, “Tunable microfluidic optical devices with an integrated microlens array,” J. Micromech. Microeng. 16, 1660-1666 (2006).
[CrossRef]

Tam, E. C.

Varahramyan, K.

M. Agarwal, R. A. Gunasekaran, P. Coane, and K. Varahramyan, “Polymer-based variable focal length microlens system,” J. Micromech. Microeng. 14, 1665-1673 (2004).
[CrossRef]

Wang, H.

Wang, J.

K. S. Hong, J. Wang, A. Sharonov, D. Chandra, J. Aizenberg, and S. Yang, “Tunable microfluidic optical devices with an integrated microlens array,” J. Micromech. Microeng. 16, 1660-1666 (2006).
[CrossRef]

Wolfgang, M.

K. Florian, M. Wolfgang, and Z. Hans, “Tunable Liquid micro-lens system,” Proceeding of the 13th Internal Conference on Solid-State Sensors, Actuators and Microsystems (North-Holland Publishing, 2005), pp. 1014-1017.

Wu, S. T.

Yang, S.

K. S. Hong, J. Wang, A. Sharonov, D. Chandra, J. Aizenberg, and S. Yang, “Tunable microfluidic optical devices with an integrated microlens array,” J. Micromech. Microeng. 16, 1660-1666 (2006).
[CrossRef]

T. Krupenkin, S. Yang, and P. Mach, “Tunable liquid microlens,” Appl. Phys. Lett. 82, 316-318 (2003).
[CrossRef]

Zhang, D. Y.

D. Y. Zhang, N. Justis, and Y. H. Lo, “Fluidic adaptive zoom lens with high zoom ratio and widely tunable field of view,” Opt. Commun. 249, 175-182 (2005).
[CrossRef]

D. Y. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y. H. Lo, “Fluidic adaptive lens with high focal length tunability,” Appl. Phys. Lett. 82, 3171-3172 (2003).
[CrossRef]

Appl. Phys. Lett. (3)

T. Krupenkin, S. Yang, and P. Mach, “Tunable liquid microlens,” Appl. Phys. Lett. 82, 316-318 (2003).
[CrossRef]

D. Y. Zhang, V. Lien, Y. Berdichevsky, J. Choi, and Y. H. Lo, “Fluidic adaptive lens with high focal length tunability,” Appl. Phys. Lett. 82, 3171-3172 (2003).
[CrossRef]

S. W. Lee and S. S. Lee, “Focal tunable liquid lens integrated with an electromagnetic actuator,” Appl. Phys. Lett. 90, 121129 (2007).
[CrossRef]

J. Display Technol. (1)

J. Micromech. Microeng. (2)

M. Agarwal, R. A. Gunasekaran, P. Coane, and K. Varahramyan, “Polymer-based variable focal length microlens system,” J. Micromech. Microeng. 14, 1665-1673 (2004).
[CrossRef]

K. S. Hong, J. Wang, A. Sharonov, D. Chandra, J. Aizenberg, and S. Yang, “Tunable microfluidic optical devices with an integrated microlens array,” J. Micromech. Microeng. 16, 1660-1666 (2006).
[CrossRef]

Opt. Commun. (1)

D. Y. Zhang, N. Justis, and Y. H. Lo, “Fluidic adaptive zoom lens with high zoom ratio and widely tunable field of view,” Opt. Commun. 249, 175-182 (2005).
[CrossRef]

Opt. Express (2)

Opt. Lett. (2)

Opto Laser Eur. (1)

M. Hatcher, “Liquid lenses eye commercial breakthrough,” Opto Laser Eur. 111, 16-17 (2003).

Phys. Rev. Lett. (1)

A. M. Leshansky, A. Bransky, N. Korin, and U. Dinnar, “Tunable nonlinear viscoelastic “focusing” in a microluidic device,” Phys. Rev. Lett. 98, 234501 (2007).
[CrossRef] [PubMed]

Other (2)

G.-H. Feng and Y.-C. Chou, “An eyeball-like biconvex/meniscus lens optical system with fluidic-controlled focus for tunable lens applications,” Proceedings of the 15th International Conference on Solid-State Sensors, Actuators and Microsystems (North-Holland, to be published).

K. Florian, M. Wolfgang, and Z. Hans, “Tunable Liquid micro-lens system,” Proceeding of the 13th Internal Conference on Solid-State Sensors, Actuators and Microsystems (North-Holland Publishing, 2005), pp. 1014-1017.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Conceptual diagram of the developed meniscus/biconvex lens optical system with fluid-controlled tunable-focus functions.

Fig. 2
Fig. 2

Fabrication of flexible convex/meniscus lens.

Fig. 3
Fig. 3

(a) Meniscus and (b) convex fabricated lens. Left, top view; right, cross-sectional view (marked with ink).

Fig. 4
Fig. 4

Curve fitting results of eight different lens profiles obtained from the fabricated lens. Pipetting 50 250 μL (top) and 300 800 μL (bottom) liquid PDMS. The letters “U” and “L” inside parentheses represent “upper surface” and “lower surface,” respectively.

Fig. 5
Fig. 5

Left: top view of lens module. Right: side view of lens deformed under 3000 Pa liquid pressure.

Fig. 6
Fig. 6

Experimental setup of the lens optical system with fluidic-controlled focus for tunable lens.

Fig. 7
Fig. 7

Experimental results confirm tunable-focus function by adjusting liquid pressure [(a):  0 Pa ; (b):  1000 Pa ; (c)  2000 Pa ; (d)  3000 Pa ; (e)  4000 Pa ; (f)  5000 Pa ] in the lens module.

Fig. 8
Fig. 8

Relationship of internal lens pressure versus focal distance and field of view (FOV) values. The numbers inside the parentheses represent the magnification and lateral resolution, respectively.

Fig. 9
Fig. 9

ZEMAX simulation results for (a) field curvature/distortion, (b) relative illumination, (c) spot diagram, (d) longitudinal spherical aberration.

Tables (1)

Tables Icon

Table 1 Coefficients of the Eighth-Order Polynomial Fitting Curves for the Fabricated Flexible Lenses a and Corresponding Fitting Errors

Metrics