Abstract

The performance of single and multielement Geiger-mode avalanche photodiode (GM-APD) devices are investigated as a function of the detector’s reset or dead time. The theoretical results, developed herein, capture the effects of both quantum fluctuations and speckle noise and are shown to agree with Monte Carlo simulation measurements. First, a theory for the mean response or count rate to an arbitrary input flux is developed. The probability that the GM-APD is armed is shown to be the ratio of this mean response to the input flux. This arm probability, PA, is then utilized to derive the signal photon detection efficiency (SPDE), which is the fraction of signal photons that are detected. The SPDE is a function of the input flux, the arm probability, and the dead time. When the dead time is zero, GM-APDs behave linearly, PA is unity, and the SPDE theory is simplified to the detector’s effective quantum efficiency. When the dead time is long compared to the acquisition gate time, the theory converges to previously published “infinite” dead-time theories. The SPDE theory is then applied to develop other key ladar performance metrics, e.g., signal-to-noise ratio and detection statistics. The GM-APD detection statistics are shown to converge to that of a linear photon counting device when the combined signal and noise flux is much less than the reset rate. For higher flux levels, the SPDE degrades, due to a decreased arm probability, and the detection probability degrades relative to that of a linear device.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. F. Aull, A. H. Loomis, D. J. Young, R. M. Heinrichs, B. J. Felton, P. J. Daniels, and D. J. Landers, “Geiger-mode avalanche photodiodes for three-dimensional imaging,” Lincoln Lab. J. 13, 335-350 (2002).
  2. M. A. Albota, B. F. Aull, D. G. Fouche, R. M. Heinrichs, D. G. Kocher, R. M. Marino, J. G. Mooney, N. R. Newbury, M. E. O'Brien, B. E. Player, B. C. Willard, and J. J. Zayhowski, “Three-dimensional imaging laser radars with Geiger-mode avalanche photodiode arrays,” Lincoln Lab. J. 13, 351-370 (2002).
  3. M. A. Albota, B. F. Aull, D. G. Fouche, R. M. Heinrichs, D. G. Kocher, R. M. Marino, J. G. Mooney, N. R. Newbury, M. E. O'Brien, B. E. Player, B. C. Willard, and J. J. Zayhowski, “Three-dimensional imaging laser radar with a photon-counting avalanche photodiode array and microchip laser,” Appl. Opt. 41, 7671-7678 (2002).
    [CrossRef]
  4. R. M. Marino and W. R. Davis, “Jigsaw: a foliage-penetrating 3D imaging laser radar system,” Lincoln Lab. J. 15, 23-36 (2005).
  5. J. P. Donnelly, E. K. Duerr, K. A. Mcintosh, E. A. Dauler, D. C. Oakley, S. H. Groves, C. J. Vineis, L. J. Mahoney, K. M. Molvar, P. I. Hopman, K. E. Jensen, G. M. Smith, S. Verghese, and D. C. Shaver, “Design considerations for 1.06 μm InGaAsP-InP Geiger-mode avalanche photodiodes,” IEEE J. Quantum Electron. 42, 797-809 (2006).
    [CrossRef]
  6. P. A. Hiskett, J. M. Smith, G. S. Buller, and P. D. Townsend, “Low-noise single-photon detection at wavelength 1.55 μm,” Electron. Lett. 37, 1081-1082 (2001).
    [CrossRef]
  7. K. A. McIntosh, J. P. Donnelly, D. C. Oakley, A. Napoleone, S. D. Calawa, L. J. Mahoney, K. M. Molvar, E. K. Duerr, S. H. Groves, and D. C. Shaver, “InGaAsP/InP avalanche photodiodes for photon counting at 1.06 μm,” Appl. Phys. Lett. 81, 2505-2507 (2002).
    [CrossRef]
  8. D. G. Fouche, “Detection and false-alarm probabilities for laser radars that use Geiger-mode detectors,” Appl. Opt. 42, 5388-5398 (2003).
    [CrossRef] [PubMed]
  9. G. M. Williams and A. S. Huntington, “Probabilistic analysis of linear mode versus Geiger mode APD FPAs for advanced LADAR enabled interceptors,” Proc. SPIE 6220, 622008 (2006).
    [CrossRef]
  10. M. E. O'Brien and D. G. Fouche, “Simulation of 3D laser radar systems,” Lincoln Lab. J. 15, 37-60 (2005).
  11. S. Verghese, J. P. Donnelly, E. K. Duerr, K. A. McIntosh, D. C. Chapman, C. J. Vineis, G. M. Smith, J. E. Funk, K. E. Jensen, P. I. Hopman, D. C. Shaver, B. F. Aull, J. C. Aversa, J. P. Frechette, J. B. Glettler, L. L. Zong, J. M. Mahan, L. J. Mahoney, K. M. Molvar, F. J. ODonnell, D. C. Oakley, E. J. Ouellette, M. J. Renzi, and B. M. Tyrrell, “Arrays of InP-based avalanche photodiodes for photon counting,” IEEE J. Sel. Top. Quantum Electron. 13, 870-886 (2007).
    [CrossRef]
  12. S. E. Johnson, P. Gatt, and T. L. Nichols, “Analysis of Geiger-mode APD laser radars,” Proc. SPIE 5086, 359-368(2003).
    [CrossRef]
  13. R. McIntyre, “The distribution of gains in uniformly multiplying avalanche photodiodes: theory,” IEEE Trans. Electron. Devices 19, 703-713 (1972).
    [CrossRef]
  14. R. M. Marino, T. Stephens, R. E. Hatch, J. L. McLaughlin, J. G. Mooney, M. E. O'Brien, G. S. Rowe, J. S. Adams, L. Skelly, R. C. Knowlton, S. E. Forman, and W. R. Davis, “A compact 3D imaging laser radar system using Geiger-mode APD arrays: system and measurements,” Proc. SPIE 5086, 1-15 (2003).
    [CrossRef]
  15. R. Brown, K. Ridley, and J. Rarity, “Characterization of silicon avalanche photodiodes for photon correlation measurements. 2: Active quenching,” Appl. Opt. 26, 2383-2389 (1987).
    [CrossRef] [PubMed]
  16. H. Dautet, P. Deschamps, M. Dion, A. D. MacGregor, D. MacSween, R. J. McIntyre, C. Trottier, and P. P. Webb, “Photon counting techniques with silicon avalanche photodiodes,” Appl. Opt. 32, 3894-3900 (1993).
    [PubMed]
  17. R. Ben-Michael, M. A. Itzler, and B. Nyman, “Afterpulsing in Geiger-mode avalanche photodiodes for 1.06 um wavelength,” Appl. Phys. Lett. . 88, 783-784 (2006).
  18. H. L. Van Trees, Detection, Estimation, and Modulation Theory: Part I. (Wiley Interscience, 2001).
  19. M. Teich and B. Saleh, “Effects of random deletion and additive noise on bunched and antibunched photon-counting statistics,” Opt. Lett. 7, 365-367 (1982).
    [CrossRef] [PubMed]
  20. J. Goodman, Statistical Optics (Wiley Interscience, 1985).
  21. B. Saleh and M. Teich, Photoelectron Statistics (Springer-Verlag, 1978).
  22. J. W. Goodman, “Some effects of target-induced scintillation on optical radar performance,” Proc. IEEE 53, 1688-1700 (1965).
    [CrossRef]
  23. G. Casella and R. Berger, Statistical Inference (Duxbury, 2002).
  24. A. Papoulis, Probability, Random Variables, and Stochastic Processes (McGraw-Hill, 1984).
  25. A. Leon-Garcia, Probability and Random Processes for Electrical Engineering (Addison-Wesley, 1994).
  26. P. Gatt and S. W. Henderson, “Laser radar detection statistics: a comparison of coherent and direct detection receivers,” Proc. SPIE 4377, 251-262 (2001).
    [CrossRef]
  27. J. R. Buck, “Effects of dead-time in Geiger-mode APD arrays for CW and pulsed configurations,” Aerospace Company Report (Aerospace, 2005).
  28. J. X. Luu and L. A. Jiang, “Saturation effects in heterodyne detection with Geiger-mode InGaAs avalanche photodiode detector arrays,” Appl. Opt. 45, 3798-3804 (2006).
    [CrossRef] [PubMed]

2007 (1)

S. Verghese, J. P. Donnelly, E. K. Duerr, K. A. McIntosh, D. C. Chapman, C. J. Vineis, G. M. Smith, J. E. Funk, K. E. Jensen, P. I. Hopman, D. C. Shaver, B. F. Aull, J. C. Aversa, J. P. Frechette, J. B. Glettler, L. L. Zong, J. M. Mahan, L. J. Mahoney, K. M. Molvar, F. J. ODonnell, D. C. Oakley, E. J. Ouellette, M. J. Renzi, and B. M. Tyrrell, “Arrays of InP-based avalanche photodiodes for photon counting,” IEEE J. Sel. Top. Quantum Electron. 13, 870-886 (2007).
[CrossRef]

2006 (4)

R. Ben-Michael, M. A. Itzler, and B. Nyman, “Afterpulsing in Geiger-mode avalanche photodiodes for 1.06 um wavelength,” Appl. Phys. Lett. . 88, 783-784 (2006).

J. P. Donnelly, E. K. Duerr, K. A. Mcintosh, E. A. Dauler, D. C. Oakley, S. H. Groves, C. J. Vineis, L. J. Mahoney, K. M. Molvar, P. I. Hopman, K. E. Jensen, G. M. Smith, S. Verghese, and D. C. Shaver, “Design considerations for 1.06 μm InGaAsP-InP Geiger-mode avalanche photodiodes,” IEEE J. Quantum Electron. 42, 797-809 (2006).
[CrossRef]

G. M. Williams and A. S. Huntington, “Probabilistic analysis of linear mode versus Geiger mode APD FPAs for advanced LADAR enabled interceptors,” Proc. SPIE 6220, 622008 (2006).
[CrossRef]

J. X. Luu and L. A. Jiang, “Saturation effects in heterodyne detection with Geiger-mode InGaAs avalanche photodiode detector arrays,” Appl. Opt. 45, 3798-3804 (2006).
[CrossRef] [PubMed]

2005 (2)

M. E. O'Brien and D. G. Fouche, “Simulation of 3D laser radar systems,” Lincoln Lab. J. 15, 37-60 (2005).

R. M. Marino and W. R. Davis, “Jigsaw: a foliage-penetrating 3D imaging laser radar system,” Lincoln Lab. J. 15, 23-36 (2005).

2003 (3)

D. G. Fouche, “Detection and false-alarm probabilities for laser radars that use Geiger-mode detectors,” Appl. Opt. 42, 5388-5398 (2003).
[CrossRef] [PubMed]

S. E. Johnson, P. Gatt, and T. L. Nichols, “Analysis of Geiger-mode APD laser radars,” Proc. SPIE 5086, 359-368(2003).
[CrossRef]

R. M. Marino, T. Stephens, R. E. Hatch, J. L. McLaughlin, J. G. Mooney, M. E. O'Brien, G. S. Rowe, J. S. Adams, L. Skelly, R. C. Knowlton, S. E. Forman, and W. R. Davis, “A compact 3D imaging laser radar system using Geiger-mode APD arrays: system and measurements,” Proc. SPIE 5086, 1-15 (2003).
[CrossRef]

2002 (4)

K. A. McIntosh, J. P. Donnelly, D. C. Oakley, A. Napoleone, S. D. Calawa, L. J. Mahoney, K. M. Molvar, E. K. Duerr, S. H. Groves, and D. C. Shaver, “InGaAsP/InP avalanche photodiodes for photon counting at 1.06 μm,” Appl. Phys. Lett. 81, 2505-2507 (2002).
[CrossRef]

B. F. Aull, A. H. Loomis, D. J. Young, R. M. Heinrichs, B. J. Felton, P. J. Daniels, and D. J. Landers, “Geiger-mode avalanche photodiodes for three-dimensional imaging,” Lincoln Lab. J. 13, 335-350 (2002).

M. A. Albota, B. F. Aull, D. G. Fouche, R. M. Heinrichs, D. G. Kocher, R. M. Marino, J. G. Mooney, N. R. Newbury, M. E. O'Brien, B. E. Player, B. C. Willard, and J. J. Zayhowski, “Three-dimensional imaging laser radars with Geiger-mode avalanche photodiode arrays,” Lincoln Lab. J. 13, 351-370 (2002).

M. A. Albota, B. F. Aull, D. G. Fouche, R. M. Heinrichs, D. G. Kocher, R. M. Marino, J. G. Mooney, N. R. Newbury, M. E. O'Brien, B. E. Player, B. C. Willard, and J. J. Zayhowski, “Three-dimensional imaging laser radar with a photon-counting avalanche photodiode array and microchip laser,” Appl. Opt. 41, 7671-7678 (2002).
[CrossRef]

2001 (2)

P. A. Hiskett, J. M. Smith, G. S. Buller, and P. D. Townsend, “Low-noise single-photon detection at wavelength 1.55 μm,” Electron. Lett. 37, 1081-1082 (2001).
[CrossRef]

P. Gatt and S. W. Henderson, “Laser radar detection statistics: a comparison of coherent and direct detection receivers,” Proc. SPIE 4377, 251-262 (2001).
[CrossRef]

1993 (1)

1987 (1)

1982 (1)

1972 (1)

R. McIntyre, “The distribution of gains in uniformly multiplying avalanche photodiodes: theory,” IEEE Trans. Electron. Devices 19, 703-713 (1972).
[CrossRef]

1965 (1)

J. W. Goodman, “Some effects of target-induced scintillation on optical radar performance,” Proc. IEEE 53, 1688-1700 (1965).
[CrossRef]

Adams, J. S.

R. M. Marino, T. Stephens, R. E. Hatch, J. L. McLaughlin, J. G. Mooney, M. E. O'Brien, G. S. Rowe, J. S. Adams, L. Skelly, R. C. Knowlton, S. E. Forman, and W. R. Davis, “A compact 3D imaging laser radar system using Geiger-mode APD arrays: system and measurements,” Proc. SPIE 5086, 1-15 (2003).
[CrossRef]

Albota, M. A.

M. A. Albota, B. F. Aull, D. G. Fouche, R. M. Heinrichs, D. G. Kocher, R. M. Marino, J. G. Mooney, N. R. Newbury, M. E. O'Brien, B. E. Player, B. C. Willard, and J. J. Zayhowski, “Three-dimensional imaging laser radars with Geiger-mode avalanche photodiode arrays,” Lincoln Lab. J. 13, 351-370 (2002).

M. A. Albota, B. F. Aull, D. G. Fouche, R. M. Heinrichs, D. G. Kocher, R. M. Marino, J. G. Mooney, N. R. Newbury, M. E. O'Brien, B. E. Player, B. C. Willard, and J. J. Zayhowski, “Three-dimensional imaging laser radar with a photon-counting avalanche photodiode array and microchip laser,” Appl. Opt. 41, 7671-7678 (2002).
[CrossRef]

Aull, B. F.

S. Verghese, J. P. Donnelly, E. K. Duerr, K. A. McIntosh, D. C. Chapman, C. J. Vineis, G. M. Smith, J. E. Funk, K. E. Jensen, P. I. Hopman, D. C. Shaver, B. F. Aull, J. C. Aversa, J. P. Frechette, J. B. Glettler, L. L. Zong, J. M. Mahan, L. J. Mahoney, K. M. Molvar, F. J. ODonnell, D. C. Oakley, E. J. Ouellette, M. J. Renzi, and B. M. Tyrrell, “Arrays of InP-based avalanche photodiodes for photon counting,” IEEE J. Sel. Top. Quantum Electron. 13, 870-886 (2007).
[CrossRef]

M. A. Albota, B. F. Aull, D. G. Fouche, R. M. Heinrichs, D. G. Kocher, R. M. Marino, J. G. Mooney, N. R. Newbury, M. E. O'Brien, B. E. Player, B. C. Willard, and J. J. Zayhowski, “Three-dimensional imaging laser radar with a photon-counting avalanche photodiode array and microchip laser,” Appl. Opt. 41, 7671-7678 (2002).
[CrossRef]

M. A. Albota, B. F. Aull, D. G. Fouche, R. M. Heinrichs, D. G. Kocher, R. M. Marino, J. G. Mooney, N. R. Newbury, M. E. O'Brien, B. E. Player, B. C. Willard, and J. J. Zayhowski, “Three-dimensional imaging laser radars with Geiger-mode avalanche photodiode arrays,” Lincoln Lab. J. 13, 351-370 (2002).

B. F. Aull, A. H. Loomis, D. J. Young, R. M. Heinrichs, B. J. Felton, P. J. Daniels, and D. J. Landers, “Geiger-mode avalanche photodiodes for three-dimensional imaging,” Lincoln Lab. J. 13, 335-350 (2002).

Aversa, J. C.

S. Verghese, J. P. Donnelly, E. K. Duerr, K. A. McIntosh, D. C. Chapman, C. J. Vineis, G. M. Smith, J. E. Funk, K. E. Jensen, P. I. Hopman, D. C. Shaver, B. F. Aull, J. C. Aversa, J. P. Frechette, J. B. Glettler, L. L. Zong, J. M. Mahan, L. J. Mahoney, K. M. Molvar, F. J. ODonnell, D. C. Oakley, E. J. Ouellette, M. J. Renzi, and B. M. Tyrrell, “Arrays of InP-based avalanche photodiodes for photon counting,” IEEE J. Sel. Top. Quantum Electron. 13, 870-886 (2007).
[CrossRef]

Ben-Michael, R.

R. Ben-Michael, M. A. Itzler, and B. Nyman, “Afterpulsing in Geiger-mode avalanche photodiodes for 1.06 um wavelength,” Appl. Phys. Lett. . 88, 783-784 (2006).

Berger, R.

G. Casella and R. Berger, Statistical Inference (Duxbury, 2002).

Brown, R.

Buck, J. R.

J. R. Buck, “Effects of dead-time in Geiger-mode APD arrays for CW and pulsed configurations,” Aerospace Company Report (Aerospace, 2005).

Buller, G. S.

P. A. Hiskett, J. M. Smith, G. S. Buller, and P. D. Townsend, “Low-noise single-photon detection at wavelength 1.55 μm,” Electron. Lett. 37, 1081-1082 (2001).
[CrossRef]

Calawa, S. D.

K. A. McIntosh, J. P. Donnelly, D. C. Oakley, A. Napoleone, S. D. Calawa, L. J. Mahoney, K. M. Molvar, E. K. Duerr, S. H. Groves, and D. C. Shaver, “InGaAsP/InP avalanche photodiodes for photon counting at 1.06 μm,” Appl. Phys. Lett. 81, 2505-2507 (2002).
[CrossRef]

Casella, G.

G. Casella and R. Berger, Statistical Inference (Duxbury, 2002).

Chapman, D. C.

S. Verghese, J. P. Donnelly, E. K. Duerr, K. A. McIntosh, D. C. Chapman, C. J. Vineis, G. M. Smith, J. E. Funk, K. E. Jensen, P. I. Hopman, D. C. Shaver, B. F. Aull, J. C. Aversa, J. P. Frechette, J. B. Glettler, L. L. Zong, J. M. Mahan, L. J. Mahoney, K. M. Molvar, F. J. ODonnell, D. C. Oakley, E. J. Ouellette, M. J. Renzi, and B. M. Tyrrell, “Arrays of InP-based avalanche photodiodes for photon counting,” IEEE J. Sel. Top. Quantum Electron. 13, 870-886 (2007).
[CrossRef]

Daniels, P. J.

B. F. Aull, A. H. Loomis, D. J. Young, R. M. Heinrichs, B. J. Felton, P. J. Daniels, and D. J. Landers, “Geiger-mode avalanche photodiodes for three-dimensional imaging,” Lincoln Lab. J. 13, 335-350 (2002).

Dauler, E. A.

J. P. Donnelly, E. K. Duerr, K. A. Mcintosh, E. A. Dauler, D. C. Oakley, S. H. Groves, C. J. Vineis, L. J. Mahoney, K. M. Molvar, P. I. Hopman, K. E. Jensen, G. M. Smith, S. Verghese, and D. C. Shaver, “Design considerations for 1.06 μm InGaAsP-InP Geiger-mode avalanche photodiodes,” IEEE J. Quantum Electron. 42, 797-809 (2006).
[CrossRef]

Dautet, H.

Davis, W. R.

R. M. Marino and W. R. Davis, “Jigsaw: a foliage-penetrating 3D imaging laser radar system,” Lincoln Lab. J. 15, 23-36 (2005).

R. M. Marino, T. Stephens, R. E. Hatch, J. L. McLaughlin, J. G. Mooney, M. E. O'Brien, G. S. Rowe, J. S. Adams, L. Skelly, R. C. Knowlton, S. E. Forman, and W. R. Davis, “A compact 3D imaging laser radar system using Geiger-mode APD arrays: system and measurements,” Proc. SPIE 5086, 1-15 (2003).
[CrossRef]

Deschamps, P.

Dion, M.

Donnelly, J. P.

S. Verghese, J. P. Donnelly, E. K. Duerr, K. A. McIntosh, D. C. Chapman, C. J. Vineis, G. M. Smith, J. E. Funk, K. E. Jensen, P. I. Hopman, D. C. Shaver, B. F. Aull, J. C. Aversa, J. P. Frechette, J. B. Glettler, L. L. Zong, J. M. Mahan, L. J. Mahoney, K. M. Molvar, F. J. ODonnell, D. C. Oakley, E. J. Ouellette, M. J. Renzi, and B. M. Tyrrell, “Arrays of InP-based avalanche photodiodes for photon counting,” IEEE J. Sel. Top. Quantum Electron. 13, 870-886 (2007).
[CrossRef]

J. P. Donnelly, E. K. Duerr, K. A. Mcintosh, E. A. Dauler, D. C. Oakley, S. H. Groves, C. J. Vineis, L. J. Mahoney, K. M. Molvar, P. I. Hopman, K. E. Jensen, G. M. Smith, S. Verghese, and D. C. Shaver, “Design considerations for 1.06 μm InGaAsP-InP Geiger-mode avalanche photodiodes,” IEEE J. Quantum Electron. 42, 797-809 (2006).
[CrossRef]

K. A. McIntosh, J. P. Donnelly, D. C. Oakley, A. Napoleone, S. D. Calawa, L. J. Mahoney, K. M. Molvar, E. K. Duerr, S. H. Groves, and D. C. Shaver, “InGaAsP/InP avalanche photodiodes for photon counting at 1.06 μm,” Appl. Phys. Lett. 81, 2505-2507 (2002).
[CrossRef]

Duerr, E. K.

S. Verghese, J. P. Donnelly, E. K. Duerr, K. A. McIntosh, D. C. Chapman, C. J. Vineis, G. M. Smith, J. E. Funk, K. E. Jensen, P. I. Hopman, D. C. Shaver, B. F. Aull, J. C. Aversa, J. P. Frechette, J. B. Glettler, L. L. Zong, J. M. Mahan, L. J. Mahoney, K. M. Molvar, F. J. ODonnell, D. C. Oakley, E. J. Ouellette, M. J. Renzi, and B. M. Tyrrell, “Arrays of InP-based avalanche photodiodes for photon counting,” IEEE J. Sel. Top. Quantum Electron. 13, 870-886 (2007).
[CrossRef]

J. P. Donnelly, E. K. Duerr, K. A. Mcintosh, E. A. Dauler, D. C. Oakley, S. H. Groves, C. J. Vineis, L. J. Mahoney, K. M. Molvar, P. I. Hopman, K. E. Jensen, G. M. Smith, S. Verghese, and D. C. Shaver, “Design considerations for 1.06 μm InGaAsP-InP Geiger-mode avalanche photodiodes,” IEEE J. Quantum Electron. 42, 797-809 (2006).
[CrossRef]

K. A. McIntosh, J. P. Donnelly, D. C. Oakley, A. Napoleone, S. D. Calawa, L. J. Mahoney, K. M. Molvar, E. K. Duerr, S. H. Groves, and D. C. Shaver, “InGaAsP/InP avalanche photodiodes for photon counting at 1.06 μm,” Appl. Phys. Lett. 81, 2505-2507 (2002).
[CrossRef]

Felton, B. J.

B. F. Aull, A. H. Loomis, D. J. Young, R. M. Heinrichs, B. J. Felton, P. J. Daniels, and D. J. Landers, “Geiger-mode avalanche photodiodes for three-dimensional imaging,” Lincoln Lab. J. 13, 335-350 (2002).

Forman, S. E.

R. M. Marino, T. Stephens, R. E. Hatch, J. L. McLaughlin, J. G. Mooney, M. E. O'Brien, G. S. Rowe, J. S. Adams, L. Skelly, R. C. Knowlton, S. E. Forman, and W. R. Davis, “A compact 3D imaging laser radar system using Geiger-mode APD arrays: system and measurements,” Proc. SPIE 5086, 1-15 (2003).
[CrossRef]

Fouche, D. G.

M. E. O'Brien and D. G. Fouche, “Simulation of 3D laser radar systems,” Lincoln Lab. J. 15, 37-60 (2005).

D. G. Fouche, “Detection and false-alarm probabilities for laser radars that use Geiger-mode detectors,” Appl. Opt. 42, 5388-5398 (2003).
[CrossRef] [PubMed]

M. A. Albota, B. F. Aull, D. G. Fouche, R. M. Heinrichs, D. G. Kocher, R. M. Marino, J. G. Mooney, N. R. Newbury, M. E. O'Brien, B. E. Player, B. C. Willard, and J. J. Zayhowski, “Three-dimensional imaging laser radars with Geiger-mode avalanche photodiode arrays,” Lincoln Lab. J. 13, 351-370 (2002).

M. A. Albota, B. F. Aull, D. G. Fouche, R. M. Heinrichs, D. G. Kocher, R. M. Marino, J. G. Mooney, N. R. Newbury, M. E. O'Brien, B. E. Player, B. C. Willard, and J. J. Zayhowski, “Three-dimensional imaging laser radar with a photon-counting avalanche photodiode array and microchip laser,” Appl. Opt. 41, 7671-7678 (2002).
[CrossRef]

Frechette, J. P.

S. Verghese, J. P. Donnelly, E. K. Duerr, K. A. McIntosh, D. C. Chapman, C. J. Vineis, G. M. Smith, J. E. Funk, K. E. Jensen, P. I. Hopman, D. C. Shaver, B. F. Aull, J. C. Aversa, J. P. Frechette, J. B. Glettler, L. L. Zong, J. M. Mahan, L. J. Mahoney, K. M. Molvar, F. J. ODonnell, D. C. Oakley, E. J. Ouellette, M. J. Renzi, and B. M. Tyrrell, “Arrays of InP-based avalanche photodiodes for photon counting,” IEEE J. Sel. Top. Quantum Electron. 13, 870-886 (2007).
[CrossRef]

Funk, J. E.

S. Verghese, J. P. Donnelly, E. K. Duerr, K. A. McIntosh, D. C. Chapman, C. J. Vineis, G. M. Smith, J. E. Funk, K. E. Jensen, P. I. Hopman, D. C. Shaver, B. F. Aull, J. C. Aversa, J. P. Frechette, J. B. Glettler, L. L. Zong, J. M. Mahan, L. J. Mahoney, K. M. Molvar, F. J. ODonnell, D. C. Oakley, E. J. Ouellette, M. J. Renzi, and B. M. Tyrrell, “Arrays of InP-based avalanche photodiodes for photon counting,” IEEE J. Sel. Top. Quantum Electron. 13, 870-886 (2007).
[CrossRef]

Gatt, P.

S. E. Johnson, P. Gatt, and T. L. Nichols, “Analysis of Geiger-mode APD laser radars,” Proc. SPIE 5086, 359-368(2003).
[CrossRef]

P. Gatt and S. W. Henderson, “Laser radar detection statistics: a comparison of coherent and direct detection receivers,” Proc. SPIE 4377, 251-262 (2001).
[CrossRef]

Glettler, J. B.

S. Verghese, J. P. Donnelly, E. K. Duerr, K. A. McIntosh, D. C. Chapman, C. J. Vineis, G. M. Smith, J. E. Funk, K. E. Jensen, P. I. Hopman, D. C. Shaver, B. F. Aull, J. C. Aversa, J. P. Frechette, J. B. Glettler, L. L. Zong, J. M. Mahan, L. J. Mahoney, K. M. Molvar, F. J. ODonnell, D. C. Oakley, E. J. Ouellette, M. J. Renzi, and B. M. Tyrrell, “Arrays of InP-based avalanche photodiodes for photon counting,” IEEE J. Sel. Top. Quantum Electron. 13, 870-886 (2007).
[CrossRef]

Goodman, J.

J. Goodman, Statistical Optics (Wiley Interscience, 1985).

Goodman, J. W.

J. W. Goodman, “Some effects of target-induced scintillation on optical radar performance,” Proc. IEEE 53, 1688-1700 (1965).
[CrossRef]

Groves, S. H.

J. P. Donnelly, E. K. Duerr, K. A. Mcintosh, E. A. Dauler, D. C. Oakley, S. H. Groves, C. J. Vineis, L. J. Mahoney, K. M. Molvar, P. I. Hopman, K. E. Jensen, G. M. Smith, S. Verghese, and D. C. Shaver, “Design considerations for 1.06 μm InGaAsP-InP Geiger-mode avalanche photodiodes,” IEEE J. Quantum Electron. 42, 797-809 (2006).
[CrossRef]

K. A. McIntosh, J. P. Donnelly, D. C. Oakley, A. Napoleone, S. D. Calawa, L. J. Mahoney, K. M. Molvar, E. K. Duerr, S. H. Groves, and D. C. Shaver, “InGaAsP/InP avalanche photodiodes for photon counting at 1.06 μm,” Appl. Phys. Lett. 81, 2505-2507 (2002).
[CrossRef]

Hatch, R. E.

R. M. Marino, T. Stephens, R. E. Hatch, J. L. McLaughlin, J. G. Mooney, M. E. O'Brien, G. S. Rowe, J. S. Adams, L. Skelly, R. C. Knowlton, S. E. Forman, and W. R. Davis, “A compact 3D imaging laser radar system using Geiger-mode APD arrays: system and measurements,” Proc. SPIE 5086, 1-15 (2003).
[CrossRef]

Heinrichs, R. M.

B. F. Aull, A. H. Loomis, D. J. Young, R. M. Heinrichs, B. J. Felton, P. J. Daniels, and D. J. Landers, “Geiger-mode avalanche photodiodes for three-dimensional imaging,” Lincoln Lab. J. 13, 335-350 (2002).

M. A. Albota, B. F. Aull, D. G. Fouche, R. M. Heinrichs, D. G. Kocher, R. M. Marino, J. G. Mooney, N. R. Newbury, M. E. O'Brien, B. E. Player, B. C. Willard, and J. J. Zayhowski, “Three-dimensional imaging laser radar with a photon-counting avalanche photodiode array and microchip laser,” Appl. Opt. 41, 7671-7678 (2002).
[CrossRef]

M. A. Albota, B. F. Aull, D. G. Fouche, R. M. Heinrichs, D. G. Kocher, R. M. Marino, J. G. Mooney, N. R. Newbury, M. E. O'Brien, B. E. Player, B. C. Willard, and J. J. Zayhowski, “Three-dimensional imaging laser radars with Geiger-mode avalanche photodiode arrays,” Lincoln Lab. J. 13, 351-370 (2002).

Henderson, S. W.

P. Gatt and S. W. Henderson, “Laser radar detection statistics: a comparison of coherent and direct detection receivers,” Proc. SPIE 4377, 251-262 (2001).
[CrossRef]

Hiskett, P. A.

P. A. Hiskett, J. M. Smith, G. S. Buller, and P. D. Townsend, “Low-noise single-photon detection at wavelength 1.55 μm,” Electron. Lett. 37, 1081-1082 (2001).
[CrossRef]

Hopman, P. I.

S. Verghese, J. P. Donnelly, E. K. Duerr, K. A. McIntosh, D. C. Chapman, C. J. Vineis, G. M. Smith, J. E. Funk, K. E. Jensen, P. I. Hopman, D. C. Shaver, B. F. Aull, J. C. Aversa, J. P. Frechette, J. B. Glettler, L. L. Zong, J. M. Mahan, L. J. Mahoney, K. M. Molvar, F. J. ODonnell, D. C. Oakley, E. J. Ouellette, M. J. Renzi, and B. M. Tyrrell, “Arrays of InP-based avalanche photodiodes for photon counting,” IEEE J. Sel. Top. Quantum Electron. 13, 870-886 (2007).
[CrossRef]

J. P. Donnelly, E. K. Duerr, K. A. Mcintosh, E. A. Dauler, D. C. Oakley, S. H. Groves, C. J. Vineis, L. J. Mahoney, K. M. Molvar, P. I. Hopman, K. E. Jensen, G. M. Smith, S. Verghese, and D. C. Shaver, “Design considerations for 1.06 μm InGaAsP-InP Geiger-mode avalanche photodiodes,” IEEE J. Quantum Electron. 42, 797-809 (2006).
[CrossRef]

Huntington, A. S.

G. M. Williams and A. S. Huntington, “Probabilistic analysis of linear mode versus Geiger mode APD FPAs for advanced LADAR enabled interceptors,” Proc. SPIE 6220, 622008 (2006).
[CrossRef]

Itzler, M. A.

R. Ben-Michael, M. A. Itzler, and B. Nyman, “Afterpulsing in Geiger-mode avalanche photodiodes for 1.06 um wavelength,” Appl. Phys. Lett. . 88, 783-784 (2006).

Jensen, K. E.

S. Verghese, J. P. Donnelly, E. K. Duerr, K. A. McIntosh, D. C. Chapman, C. J. Vineis, G. M. Smith, J. E. Funk, K. E. Jensen, P. I. Hopman, D. C. Shaver, B. F. Aull, J. C. Aversa, J. P. Frechette, J. B. Glettler, L. L. Zong, J. M. Mahan, L. J. Mahoney, K. M. Molvar, F. J. ODonnell, D. C. Oakley, E. J. Ouellette, M. J. Renzi, and B. M. Tyrrell, “Arrays of InP-based avalanche photodiodes for photon counting,” IEEE J. Sel. Top. Quantum Electron. 13, 870-886 (2007).
[CrossRef]

J. P. Donnelly, E. K. Duerr, K. A. Mcintosh, E. A. Dauler, D. C. Oakley, S. H. Groves, C. J. Vineis, L. J. Mahoney, K. M. Molvar, P. I. Hopman, K. E. Jensen, G. M. Smith, S. Verghese, and D. C. Shaver, “Design considerations for 1.06 μm InGaAsP-InP Geiger-mode avalanche photodiodes,” IEEE J. Quantum Electron. 42, 797-809 (2006).
[CrossRef]

Jiang, L. A.

Johnson, S. E.

S. E. Johnson, P. Gatt, and T. L. Nichols, “Analysis of Geiger-mode APD laser radars,” Proc. SPIE 5086, 359-368(2003).
[CrossRef]

Knowlton, R. C.

R. M. Marino, T. Stephens, R. E. Hatch, J. L. McLaughlin, J. G. Mooney, M. E. O'Brien, G. S. Rowe, J. S. Adams, L. Skelly, R. C. Knowlton, S. E. Forman, and W. R. Davis, “A compact 3D imaging laser radar system using Geiger-mode APD arrays: system and measurements,” Proc. SPIE 5086, 1-15 (2003).
[CrossRef]

Kocher, D. G.

M. A. Albota, B. F. Aull, D. G. Fouche, R. M. Heinrichs, D. G. Kocher, R. M. Marino, J. G. Mooney, N. R. Newbury, M. E. O'Brien, B. E. Player, B. C. Willard, and J. J. Zayhowski, “Three-dimensional imaging laser radars with Geiger-mode avalanche photodiode arrays,” Lincoln Lab. J. 13, 351-370 (2002).

M. A. Albota, B. F. Aull, D. G. Fouche, R. M. Heinrichs, D. G. Kocher, R. M. Marino, J. G. Mooney, N. R. Newbury, M. E. O'Brien, B. E. Player, B. C. Willard, and J. J. Zayhowski, “Three-dimensional imaging laser radar with a photon-counting avalanche photodiode array and microchip laser,” Appl. Opt. 41, 7671-7678 (2002).
[CrossRef]

Landers, D. J.

B. F. Aull, A. H. Loomis, D. J. Young, R. M. Heinrichs, B. J. Felton, P. J. Daniels, and D. J. Landers, “Geiger-mode avalanche photodiodes for three-dimensional imaging,” Lincoln Lab. J. 13, 335-350 (2002).

Leon-Garcia, A.

A. Leon-Garcia, Probability and Random Processes for Electrical Engineering (Addison-Wesley, 1994).

Loomis, A. H.

B. F. Aull, A. H. Loomis, D. J. Young, R. M. Heinrichs, B. J. Felton, P. J. Daniels, and D. J. Landers, “Geiger-mode avalanche photodiodes for three-dimensional imaging,” Lincoln Lab. J. 13, 335-350 (2002).

Luu, J. X.

MacGregor, A. D.

MacSween, D.

Mahan, J. M.

S. Verghese, J. P. Donnelly, E. K. Duerr, K. A. McIntosh, D. C. Chapman, C. J. Vineis, G. M. Smith, J. E. Funk, K. E. Jensen, P. I. Hopman, D. C. Shaver, B. F. Aull, J. C. Aversa, J. P. Frechette, J. B. Glettler, L. L. Zong, J. M. Mahan, L. J. Mahoney, K. M. Molvar, F. J. ODonnell, D. C. Oakley, E. J. Ouellette, M. J. Renzi, and B. M. Tyrrell, “Arrays of InP-based avalanche photodiodes for photon counting,” IEEE J. Sel. Top. Quantum Electron. 13, 870-886 (2007).
[CrossRef]

Mahoney, L. J.

S. Verghese, J. P. Donnelly, E. K. Duerr, K. A. McIntosh, D. C. Chapman, C. J. Vineis, G. M. Smith, J. E. Funk, K. E. Jensen, P. I. Hopman, D. C. Shaver, B. F. Aull, J. C. Aversa, J. P. Frechette, J. B. Glettler, L. L. Zong, J. M. Mahan, L. J. Mahoney, K. M. Molvar, F. J. ODonnell, D. C. Oakley, E. J. Ouellette, M. J. Renzi, and B. M. Tyrrell, “Arrays of InP-based avalanche photodiodes for photon counting,” IEEE J. Sel. Top. Quantum Electron. 13, 870-886 (2007).
[CrossRef]

J. P. Donnelly, E. K. Duerr, K. A. Mcintosh, E. A. Dauler, D. C. Oakley, S. H. Groves, C. J. Vineis, L. J. Mahoney, K. M. Molvar, P. I. Hopman, K. E. Jensen, G. M. Smith, S. Verghese, and D. C. Shaver, “Design considerations for 1.06 μm InGaAsP-InP Geiger-mode avalanche photodiodes,” IEEE J. Quantum Electron. 42, 797-809 (2006).
[CrossRef]

K. A. McIntosh, J. P. Donnelly, D. C. Oakley, A. Napoleone, S. D. Calawa, L. J. Mahoney, K. M. Molvar, E. K. Duerr, S. H. Groves, and D. C. Shaver, “InGaAsP/InP avalanche photodiodes for photon counting at 1.06 μm,” Appl. Phys. Lett. 81, 2505-2507 (2002).
[CrossRef]

Marino, R. M.

R. M. Marino and W. R. Davis, “Jigsaw: a foliage-penetrating 3D imaging laser radar system,” Lincoln Lab. J. 15, 23-36 (2005).

R. M. Marino, T. Stephens, R. E. Hatch, J. L. McLaughlin, J. G. Mooney, M. E. O'Brien, G. S. Rowe, J. S. Adams, L. Skelly, R. C. Knowlton, S. E. Forman, and W. R. Davis, “A compact 3D imaging laser radar system using Geiger-mode APD arrays: system and measurements,” Proc. SPIE 5086, 1-15 (2003).
[CrossRef]

M. A. Albota, B. F. Aull, D. G. Fouche, R. M. Heinrichs, D. G. Kocher, R. M. Marino, J. G. Mooney, N. R. Newbury, M. E. O'Brien, B. E. Player, B. C. Willard, and J. J. Zayhowski, “Three-dimensional imaging laser radar with a photon-counting avalanche photodiode array and microchip laser,” Appl. Opt. 41, 7671-7678 (2002).
[CrossRef]

M. A. Albota, B. F. Aull, D. G. Fouche, R. M. Heinrichs, D. G. Kocher, R. M. Marino, J. G. Mooney, N. R. Newbury, M. E. O'Brien, B. E. Player, B. C. Willard, and J. J. Zayhowski, “Three-dimensional imaging laser radars with Geiger-mode avalanche photodiode arrays,” Lincoln Lab. J. 13, 351-370 (2002).

McIntosh, K. A.

S. Verghese, J. P. Donnelly, E. K. Duerr, K. A. McIntosh, D. C. Chapman, C. J. Vineis, G. M. Smith, J. E. Funk, K. E. Jensen, P. I. Hopman, D. C. Shaver, B. F. Aull, J. C. Aversa, J. P. Frechette, J. B. Glettler, L. L. Zong, J. M. Mahan, L. J. Mahoney, K. M. Molvar, F. J. ODonnell, D. C. Oakley, E. J. Ouellette, M. J. Renzi, and B. M. Tyrrell, “Arrays of InP-based avalanche photodiodes for photon counting,” IEEE J. Sel. Top. Quantum Electron. 13, 870-886 (2007).
[CrossRef]

J. P. Donnelly, E. K. Duerr, K. A. Mcintosh, E. A. Dauler, D. C. Oakley, S. H. Groves, C. J. Vineis, L. J. Mahoney, K. M. Molvar, P. I. Hopman, K. E. Jensen, G. M. Smith, S. Verghese, and D. C. Shaver, “Design considerations for 1.06 μm InGaAsP-InP Geiger-mode avalanche photodiodes,” IEEE J. Quantum Electron. 42, 797-809 (2006).
[CrossRef]

K. A. McIntosh, J. P. Donnelly, D. C. Oakley, A. Napoleone, S. D. Calawa, L. J. Mahoney, K. M. Molvar, E. K. Duerr, S. H. Groves, and D. C. Shaver, “InGaAsP/InP avalanche photodiodes for photon counting at 1.06 μm,” Appl. Phys. Lett. 81, 2505-2507 (2002).
[CrossRef]

McIntyre, R.

R. McIntyre, “The distribution of gains in uniformly multiplying avalanche photodiodes: theory,” IEEE Trans. Electron. Devices 19, 703-713 (1972).
[CrossRef]

McIntyre, R. J.

McLaughlin, J. L.

R. M. Marino, T. Stephens, R. E. Hatch, J. L. McLaughlin, J. G. Mooney, M. E. O'Brien, G. S. Rowe, J. S. Adams, L. Skelly, R. C. Knowlton, S. E. Forman, and W. R. Davis, “A compact 3D imaging laser radar system using Geiger-mode APD arrays: system and measurements,” Proc. SPIE 5086, 1-15 (2003).
[CrossRef]

Molvar, K. M.

S. Verghese, J. P. Donnelly, E. K. Duerr, K. A. McIntosh, D. C. Chapman, C. J. Vineis, G. M. Smith, J. E. Funk, K. E. Jensen, P. I. Hopman, D. C. Shaver, B. F. Aull, J. C. Aversa, J. P. Frechette, J. B. Glettler, L. L. Zong, J. M. Mahan, L. J. Mahoney, K. M. Molvar, F. J. ODonnell, D. C. Oakley, E. J. Ouellette, M. J. Renzi, and B. M. Tyrrell, “Arrays of InP-based avalanche photodiodes for photon counting,” IEEE J. Sel. Top. Quantum Electron. 13, 870-886 (2007).
[CrossRef]

J. P. Donnelly, E. K. Duerr, K. A. Mcintosh, E. A. Dauler, D. C. Oakley, S. H. Groves, C. J. Vineis, L. J. Mahoney, K. M. Molvar, P. I. Hopman, K. E. Jensen, G. M. Smith, S. Verghese, and D. C. Shaver, “Design considerations for 1.06 μm InGaAsP-InP Geiger-mode avalanche photodiodes,” IEEE J. Quantum Electron. 42, 797-809 (2006).
[CrossRef]

K. A. McIntosh, J. P. Donnelly, D. C. Oakley, A. Napoleone, S. D. Calawa, L. J. Mahoney, K. M. Molvar, E. K. Duerr, S. H. Groves, and D. C. Shaver, “InGaAsP/InP avalanche photodiodes for photon counting at 1.06 μm,” Appl. Phys. Lett. 81, 2505-2507 (2002).
[CrossRef]

Mooney, J. G.

R. M. Marino, T. Stephens, R. E. Hatch, J. L. McLaughlin, J. G. Mooney, M. E. O'Brien, G. S. Rowe, J. S. Adams, L. Skelly, R. C. Knowlton, S. E. Forman, and W. R. Davis, “A compact 3D imaging laser radar system using Geiger-mode APD arrays: system and measurements,” Proc. SPIE 5086, 1-15 (2003).
[CrossRef]

M. A. Albota, B. F. Aull, D. G. Fouche, R. M. Heinrichs, D. G. Kocher, R. M. Marino, J. G. Mooney, N. R. Newbury, M. E. O'Brien, B. E. Player, B. C. Willard, and J. J. Zayhowski, “Three-dimensional imaging laser radars with Geiger-mode avalanche photodiode arrays,” Lincoln Lab. J. 13, 351-370 (2002).

M. A. Albota, B. F. Aull, D. G. Fouche, R. M. Heinrichs, D. G. Kocher, R. M. Marino, J. G. Mooney, N. R. Newbury, M. E. O'Brien, B. E. Player, B. C. Willard, and J. J. Zayhowski, “Three-dimensional imaging laser radar with a photon-counting avalanche photodiode array and microchip laser,” Appl. Opt. 41, 7671-7678 (2002).
[CrossRef]

Napoleone, A.

K. A. McIntosh, J. P. Donnelly, D. C. Oakley, A. Napoleone, S. D. Calawa, L. J. Mahoney, K. M. Molvar, E. K. Duerr, S. H. Groves, and D. C. Shaver, “InGaAsP/InP avalanche photodiodes for photon counting at 1.06 μm,” Appl. Phys. Lett. 81, 2505-2507 (2002).
[CrossRef]

Newbury, N. R.

M. A. Albota, B. F. Aull, D. G. Fouche, R. M. Heinrichs, D. G. Kocher, R. M. Marino, J. G. Mooney, N. R. Newbury, M. E. O'Brien, B. E. Player, B. C. Willard, and J. J. Zayhowski, “Three-dimensional imaging laser radar with a photon-counting avalanche photodiode array and microchip laser,” Appl. Opt. 41, 7671-7678 (2002).
[CrossRef]

M. A. Albota, B. F. Aull, D. G. Fouche, R. M. Heinrichs, D. G. Kocher, R. M. Marino, J. G. Mooney, N. R. Newbury, M. E. O'Brien, B. E. Player, B. C. Willard, and J. J. Zayhowski, “Three-dimensional imaging laser radars with Geiger-mode avalanche photodiode arrays,” Lincoln Lab. J. 13, 351-370 (2002).

Nichols, T. L.

S. E. Johnson, P. Gatt, and T. L. Nichols, “Analysis of Geiger-mode APD laser radars,” Proc. SPIE 5086, 359-368(2003).
[CrossRef]

Nyman, B.

R. Ben-Michael, M. A. Itzler, and B. Nyman, “Afterpulsing in Geiger-mode avalanche photodiodes for 1.06 um wavelength,” Appl. Phys. Lett. . 88, 783-784 (2006).

Oakley, D. C.

S. Verghese, J. P. Donnelly, E. K. Duerr, K. A. McIntosh, D. C. Chapman, C. J. Vineis, G. M. Smith, J. E. Funk, K. E. Jensen, P. I. Hopman, D. C. Shaver, B. F. Aull, J. C. Aversa, J. P. Frechette, J. B. Glettler, L. L. Zong, J. M. Mahan, L. J. Mahoney, K. M. Molvar, F. J. ODonnell, D. C. Oakley, E. J. Ouellette, M. J. Renzi, and B. M. Tyrrell, “Arrays of InP-based avalanche photodiodes for photon counting,” IEEE J. Sel. Top. Quantum Electron. 13, 870-886 (2007).
[CrossRef]

J. P. Donnelly, E. K. Duerr, K. A. Mcintosh, E. A. Dauler, D. C. Oakley, S. H. Groves, C. J. Vineis, L. J. Mahoney, K. M. Molvar, P. I. Hopman, K. E. Jensen, G. M. Smith, S. Verghese, and D. C. Shaver, “Design considerations for 1.06 μm InGaAsP-InP Geiger-mode avalanche photodiodes,” IEEE J. Quantum Electron. 42, 797-809 (2006).
[CrossRef]

K. A. McIntosh, J. P. Donnelly, D. C. Oakley, A. Napoleone, S. D. Calawa, L. J. Mahoney, K. M. Molvar, E. K. Duerr, S. H. Groves, and D. C. Shaver, “InGaAsP/InP avalanche photodiodes for photon counting at 1.06 μm,” Appl. Phys. Lett. 81, 2505-2507 (2002).
[CrossRef]

O'Brien, M. E.

M. E. O'Brien and D. G. Fouche, “Simulation of 3D laser radar systems,” Lincoln Lab. J. 15, 37-60 (2005).

R. M. Marino, T. Stephens, R. E. Hatch, J. L. McLaughlin, J. G. Mooney, M. E. O'Brien, G. S. Rowe, J. S. Adams, L. Skelly, R. C. Knowlton, S. E. Forman, and W. R. Davis, “A compact 3D imaging laser radar system using Geiger-mode APD arrays: system and measurements,” Proc. SPIE 5086, 1-15 (2003).
[CrossRef]

M. A. Albota, B. F. Aull, D. G. Fouche, R. M. Heinrichs, D. G. Kocher, R. M. Marino, J. G. Mooney, N. R. Newbury, M. E. O'Brien, B. E. Player, B. C. Willard, and J. J. Zayhowski, “Three-dimensional imaging laser radars with Geiger-mode avalanche photodiode arrays,” Lincoln Lab. J. 13, 351-370 (2002).

M. A. Albota, B. F. Aull, D. G. Fouche, R. M. Heinrichs, D. G. Kocher, R. M. Marino, J. G. Mooney, N. R. Newbury, M. E. O'Brien, B. E. Player, B. C. Willard, and J. J. Zayhowski, “Three-dimensional imaging laser radar with a photon-counting avalanche photodiode array and microchip laser,” Appl. Opt. 41, 7671-7678 (2002).
[CrossRef]

ODonnell, F. J.

S. Verghese, J. P. Donnelly, E. K. Duerr, K. A. McIntosh, D. C. Chapman, C. J. Vineis, G. M. Smith, J. E. Funk, K. E. Jensen, P. I. Hopman, D. C. Shaver, B. F. Aull, J. C. Aversa, J. P. Frechette, J. B. Glettler, L. L. Zong, J. M. Mahan, L. J. Mahoney, K. M. Molvar, F. J. ODonnell, D. C. Oakley, E. J. Ouellette, M. J. Renzi, and B. M. Tyrrell, “Arrays of InP-based avalanche photodiodes for photon counting,” IEEE J. Sel. Top. Quantum Electron. 13, 870-886 (2007).
[CrossRef]

Ouellette, E. J.

S. Verghese, J. P. Donnelly, E. K. Duerr, K. A. McIntosh, D. C. Chapman, C. J. Vineis, G. M. Smith, J. E. Funk, K. E. Jensen, P. I. Hopman, D. C. Shaver, B. F. Aull, J. C. Aversa, J. P. Frechette, J. B. Glettler, L. L. Zong, J. M. Mahan, L. J. Mahoney, K. M. Molvar, F. J. ODonnell, D. C. Oakley, E. J. Ouellette, M. J. Renzi, and B. M. Tyrrell, “Arrays of InP-based avalanche photodiodes for photon counting,” IEEE J. Sel. Top. Quantum Electron. 13, 870-886 (2007).
[CrossRef]

Papoulis, A.

A. Papoulis, Probability, Random Variables, and Stochastic Processes (McGraw-Hill, 1984).

Player, B. E.

M. A. Albota, B. F. Aull, D. G. Fouche, R. M. Heinrichs, D. G. Kocher, R. M. Marino, J. G. Mooney, N. R. Newbury, M. E. O'Brien, B. E. Player, B. C. Willard, and J. J. Zayhowski, “Three-dimensional imaging laser radar with a photon-counting avalanche photodiode array and microchip laser,” Appl. Opt. 41, 7671-7678 (2002).
[CrossRef]

M. A. Albota, B. F. Aull, D. G. Fouche, R. M. Heinrichs, D. G. Kocher, R. M. Marino, J. G. Mooney, N. R. Newbury, M. E. O'Brien, B. E. Player, B. C. Willard, and J. J. Zayhowski, “Three-dimensional imaging laser radars with Geiger-mode avalanche photodiode arrays,” Lincoln Lab. J. 13, 351-370 (2002).

Rarity, J.

Renzi, M. J.

S. Verghese, J. P. Donnelly, E. K. Duerr, K. A. McIntosh, D. C. Chapman, C. J. Vineis, G. M. Smith, J. E. Funk, K. E. Jensen, P. I. Hopman, D. C. Shaver, B. F. Aull, J. C. Aversa, J. P. Frechette, J. B. Glettler, L. L. Zong, J. M. Mahan, L. J. Mahoney, K. M. Molvar, F. J. ODonnell, D. C. Oakley, E. J. Ouellette, M. J. Renzi, and B. M. Tyrrell, “Arrays of InP-based avalanche photodiodes for photon counting,” IEEE J. Sel. Top. Quantum Electron. 13, 870-886 (2007).
[CrossRef]

Ridley, K.

Rowe, G. S.

R. M. Marino, T. Stephens, R. E. Hatch, J. L. McLaughlin, J. G. Mooney, M. E. O'Brien, G. S. Rowe, J. S. Adams, L. Skelly, R. C. Knowlton, S. E. Forman, and W. R. Davis, “A compact 3D imaging laser radar system using Geiger-mode APD arrays: system and measurements,” Proc. SPIE 5086, 1-15 (2003).
[CrossRef]

Saleh, B.

Shaver, D. C.

S. Verghese, J. P. Donnelly, E. K. Duerr, K. A. McIntosh, D. C. Chapman, C. J. Vineis, G. M. Smith, J. E. Funk, K. E. Jensen, P. I. Hopman, D. C. Shaver, B. F. Aull, J. C. Aversa, J. P. Frechette, J. B. Glettler, L. L. Zong, J. M. Mahan, L. J. Mahoney, K. M. Molvar, F. J. ODonnell, D. C. Oakley, E. J. Ouellette, M. J. Renzi, and B. M. Tyrrell, “Arrays of InP-based avalanche photodiodes for photon counting,” IEEE J. Sel. Top. Quantum Electron. 13, 870-886 (2007).
[CrossRef]

J. P. Donnelly, E. K. Duerr, K. A. Mcintosh, E. A. Dauler, D. C. Oakley, S. H. Groves, C. J. Vineis, L. J. Mahoney, K. M. Molvar, P. I. Hopman, K. E. Jensen, G. M. Smith, S. Verghese, and D. C. Shaver, “Design considerations for 1.06 μm InGaAsP-InP Geiger-mode avalanche photodiodes,” IEEE J. Quantum Electron. 42, 797-809 (2006).
[CrossRef]

K. A. McIntosh, J. P. Donnelly, D. C. Oakley, A. Napoleone, S. D. Calawa, L. J. Mahoney, K. M. Molvar, E. K. Duerr, S. H. Groves, and D. C. Shaver, “InGaAsP/InP avalanche photodiodes for photon counting at 1.06 μm,” Appl. Phys. Lett. 81, 2505-2507 (2002).
[CrossRef]

Skelly, L.

R. M. Marino, T. Stephens, R. E. Hatch, J. L. McLaughlin, J. G. Mooney, M. E. O'Brien, G. S. Rowe, J. S. Adams, L. Skelly, R. C. Knowlton, S. E. Forman, and W. R. Davis, “A compact 3D imaging laser radar system using Geiger-mode APD arrays: system and measurements,” Proc. SPIE 5086, 1-15 (2003).
[CrossRef]

Smith, G. M.

S. Verghese, J. P. Donnelly, E. K. Duerr, K. A. McIntosh, D. C. Chapman, C. J. Vineis, G. M. Smith, J. E. Funk, K. E. Jensen, P. I. Hopman, D. C. Shaver, B. F. Aull, J. C. Aversa, J. P. Frechette, J. B. Glettler, L. L. Zong, J. M. Mahan, L. J. Mahoney, K. M. Molvar, F. J. ODonnell, D. C. Oakley, E. J. Ouellette, M. J. Renzi, and B. M. Tyrrell, “Arrays of InP-based avalanche photodiodes for photon counting,” IEEE J. Sel. Top. Quantum Electron. 13, 870-886 (2007).
[CrossRef]

J. P. Donnelly, E. K. Duerr, K. A. Mcintosh, E. A. Dauler, D. C. Oakley, S. H. Groves, C. J. Vineis, L. J. Mahoney, K. M. Molvar, P. I. Hopman, K. E. Jensen, G. M. Smith, S. Verghese, and D. C. Shaver, “Design considerations for 1.06 μm InGaAsP-InP Geiger-mode avalanche photodiodes,” IEEE J. Quantum Electron. 42, 797-809 (2006).
[CrossRef]

Smith, J. M.

P. A. Hiskett, J. M. Smith, G. S. Buller, and P. D. Townsend, “Low-noise single-photon detection at wavelength 1.55 μm,” Electron. Lett. 37, 1081-1082 (2001).
[CrossRef]

Stephens, T.

R. M. Marino, T. Stephens, R. E. Hatch, J. L. McLaughlin, J. G. Mooney, M. E. O'Brien, G. S. Rowe, J. S. Adams, L. Skelly, R. C. Knowlton, S. E. Forman, and W. R. Davis, “A compact 3D imaging laser radar system using Geiger-mode APD arrays: system and measurements,” Proc. SPIE 5086, 1-15 (2003).
[CrossRef]

Teich, M.

Townsend, P. D.

P. A. Hiskett, J. M. Smith, G. S. Buller, and P. D. Townsend, “Low-noise single-photon detection at wavelength 1.55 μm,” Electron. Lett. 37, 1081-1082 (2001).
[CrossRef]

Trottier, C.

Tyrrell, B. M.

S. Verghese, J. P. Donnelly, E. K. Duerr, K. A. McIntosh, D. C. Chapman, C. J. Vineis, G. M. Smith, J. E. Funk, K. E. Jensen, P. I. Hopman, D. C. Shaver, B. F. Aull, J. C. Aversa, J. P. Frechette, J. B. Glettler, L. L. Zong, J. M. Mahan, L. J. Mahoney, K. M. Molvar, F. J. ODonnell, D. C. Oakley, E. J. Ouellette, M. J. Renzi, and B. M. Tyrrell, “Arrays of InP-based avalanche photodiodes for photon counting,” IEEE J. Sel. Top. Quantum Electron. 13, 870-886 (2007).
[CrossRef]

Van Trees, H. L.

H. L. Van Trees, Detection, Estimation, and Modulation Theory: Part I. (Wiley Interscience, 2001).

Verghese, S.

S. Verghese, J. P. Donnelly, E. K. Duerr, K. A. McIntosh, D. C. Chapman, C. J. Vineis, G. M. Smith, J. E. Funk, K. E. Jensen, P. I. Hopman, D. C. Shaver, B. F. Aull, J. C. Aversa, J. P. Frechette, J. B. Glettler, L. L. Zong, J. M. Mahan, L. J. Mahoney, K. M. Molvar, F. J. ODonnell, D. C. Oakley, E. J. Ouellette, M. J. Renzi, and B. M. Tyrrell, “Arrays of InP-based avalanche photodiodes for photon counting,” IEEE J. Sel. Top. Quantum Electron. 13, 870-886 (2007).
[CrossRef]

J. P. Donnelly, E. K. Duerr, K. A. Mcintosh, E. A. Dauler, D. C. Oakley, S. H. Groves, C. J. Vineis, L. J. Mahoney, K. M. Molvar, P. I. Hopman, K. E. Jensen, G. M. Smith, S. Verghese, and D. C. Shaver, “Design considerations for 1.06 μm InGaAsP-InP Geiger-mode avalanche photodiodes,” IEEE J. Quantum Electron. 42, 797-809 (2006).
[CrossRef]

Vineis, C. J.

S. Verghese, J. P. Donnelly, E. K. Duerr, K. A. McIntosh, D. C. Chapman, C. J. Vineis, G. M. Smith, J. E. Funk, K. E. Jensen, P. I. Hopman, D. C. Shaver, B. F. Aull, J. C. Aversa, J. P. Frechette, J. B. Glettler, L. L. Zong, J. M. Mahan, L. J. Mahoney, K. M. Molvar, F. J. ODonnell, D. C. Oakley, E. J. Ouellette, M. J. Renzi, and B. M. Tyrrell, “Arrays of InP-based avalanche photodiodes for photon counting,” IEEE J. Sel. Top. Quantum Electron. 13, 870-886 (2007).
[CrossRef]

J. P. Donnelly, E. K. Duerr, K. A. Mcintosh, E. A. Dauler, D. C. Oakley, S. H. Groves, C. J. Vineis, L. J. Mahoney, K. M. Molvar, P. I. Hopman, K. E. Jensen, G. M. Smith, S. Verghese, and D. C. Shaver, “Design considerations for 1.06 μm InGaAsP-InP Geiger-mode avalanche photodiodes,” IEEE J. Quantum Electron. 42, 797-809 (2006).
[CrossRef]

Webb, P. P.

Willard, B. C.

M. A. Albota, B. F. Aull, D. G. Fouche, R. M. Heinrichs, D. G. Kocher, R. M. Marino, J. G. Mooney, N. R. Newbury, M. E. O'Brien, B. E. Player, B. C. Willard, and J. J. Zayhowski, “Three-dimensional imaging laser radars with Geiger-mode avalanche photodiode arrays,” Lincoln Lab. J. 13, 351-370 (2002).

M. A. Albota, B. F. Aull, D. G. Fouche, R. M. Heinrichs, D. G. Kocher, R. M. Marino, J. G. Mooney, N. R. Newbury, M. E. O'Brien, B. E. Player, B. C. Willard, and J. J. Zayhowski, “Three-dimensional imaging laser radar with a photon-counting avalanche photodiode array and microchip laser,” Appl. Opt. 41, 7671-7678 (2002).
[CrossRef]

Williams, G. M.

G. M. Williams and A. S. Huntington, “Probabilistic analysis of linear mode versus Geiger mode APD FPAs for advanced LADAR enabled interceptors,” Proc. SPIE 6220, 622008 (2006).
[CrossRef]

Young, D. J.

B. F. Aull, A. H. Loomis, D. J. Young, R. M. Heinrichs, B. J. Felton, P. J. Daniels, and D. J. Landers, “Geiger-mode avalanche photodiodes for three-dimensional imaging,” Lincoln Lab. J. 13, 335-350 (2002).

Zayhowski, J. J.

M. A. Albota, B. F. Aull, D. G. Fouche, R. M. Heinrichs, D. G. Kocher, R. M. Marino, J. G. Mooney, N. R. Newbury, M. E. O'Brien, B. E. Player, B. C. Willard, and J. J. Zayhowski, “Three-dimensional imaging laser radar with a photon-counting avalanche photodiode array and microchip laser,” Appl. Opt. 41, 7671-7678 (2002).
[CrossRef]

M. A. Albota, B. F. Aull, D. G. Fouche, R. M. Heinrichs, D. G. Kocher, R. M. Marino, J. G. Mooney, N. R. Newbury, M. E. O'Brien, B. E. Player, B. C. Willard, and J. J. Zayhowski, “Three-dimensional imaging laser radars with Geiger-mode avalanche photodiode arrays,” Lincoln Lab. J. 13, 351-370 (2002).

Zong, L. L.

S. Verghese, J. P. Donnelly, E. K. Duerr, K. A. McIntosh, D. C. Chapman, C. J. Vineis, G. M. Smith, J. E. Funk, K. E. Jensen, P. I. Hopman, D. C. Shaver, B. F. Aull, J. C. Aversa, J. P. Frechette, J. B. Glettler, L. L. Zong, J. M. Mahan, L. J. Mahoney, K. M. Molvar, F. J. ODonnell, D. C. Oakley, E. J. Ouellette, M. J. Renzi, and B. M. Tyrrell, “Arrays of InP-based avalanche photodiodes for photon counting,” IEEE J. Sel. Top. Quantum Electron. 13, 870-886 (2007).
[CrossRef]

Appl. Opt. (5)

Appl. Phys. Lett. (2)

R. Ben-Michael, M. A. Itzler, and B. Nyman, “Afterpulsing in Geiger-mode avalanche photodiodes for 1.06 um wavelength,” Appl. Phys. Lett. . 88, 783-784 (2006).

K. A. McIntosh, J. P. Donnelly, D. C. Oakley, A. Napoleone, S. D. Calawa, L. J. Mahoney, K. M. Molvar, E. K. Duerr, S. H. Groves, and D. C. Shaver, “InGaAsP/InP avalanche photodiodes for photon counting at 1.06 μm,” Appl. Phys. Lett. 81, 2505-2507 (2002).
[CrossRef]

Electron. Lett. (1)

P. A. Hiskett, J. M. Smith, G. S. Buller, and P. D. Townsend, “Low-noise single-photon detection at wavelength 1.55 μm,” Electron. Lett. 37, 1081-1082 (2001).
[CrossRef]

IEEE J. Quantum Electron. (1)

J. P. Donnelly, E. K. Duerr, K. A. Mcintosh, E. A. Dauler, D. C. Oakley, S. H. Groves, C. J. Vineis, L. J. Mahoney, K. M. Molvar, P. I. Hopman, K. E. Jensen, G. M. Smith, S. Verghese, and D. C. Shaver, “Design considerations for 1.06 μm InGaAsP-InP Geiger-mode avalanche photodiodes,” IEEE J. Quantum Electron. 42, 797-809 (2006).
[CrossRef]

IEEE J. Sel. Top. Quantum Electron. (1)

S. Verghese, J. P. Donnelly, E. K. Duerr, K. A. McIntosh, D. C. Chapman, C. J. Vineis, G. M. Smith, J. E. Funk, K. E. Jensen, P. I. Hopman, D. C. Shaver, B. F. Aull, J. C. Aversa, J. P. Frechette, J. B. Glettler, L. L. Zong, J. M. Mahan, L. J. Mahoney, K. M. Molvar, F. J. ODonnell, D. C. Oakley, E. J. Ouellette, M. J. Renzi, and B. M. Tyrrell, “Arrays of InP-based avalanche photodiodes for photon counting,” IEEE J. Sel. Top. Quantum Electron. 13, 870-886 (2007).
[CrossRef]

IEEE Trans. Electron. Devices (1)

R. McIntyre, “The distribution of gains in uniformly multiplying avalanche photodiodes: theory,” IEEE Trans. Electron. Devices 19, 703-713 (1972).
[CrossRef]

Lincoln Lab. J. (4)

M. E. O'Brien and D. G. Fouche, “Simulation of 3D laser radar systems,” Lincoln Lab. J. 15, 37-60 (2005).

R. M. Marino and W. R. Davis, “Jigsaw: a foliage-penetrating 3D imaging laser radar system,” Lincoln Lab. J. 15, 23-36 (2005).

B. F. Aull, A. H. Loomis, D. J. Young, R. M. Heinrichs, B. J. Felton, P. J. Daniels, and D. J. Landers, “Geiger-mode avalanche photodiodes for three-dimensional imaging,” Lincoln Lab. J. 13, 335-350 (2002).

M. A. Albota, B. F. Aull, D. G. Fouche, R. M. Heinrichs, D. G. Kocher, R. M. Marino, J. G. Mooney, N. R. Newbury, M. E. O'Brien, B. E. Player, B. C. Willard, and J. J. Zayhowski, “Three-dimensional imaging laser radars with Geiger-mode avalanche photodiode arrays,” Lincoln Lab. J. 13, 351-370 (2002).

Opt. Lett. (1)

Proc. IEEE (1)

J. W. Goodman, “Some effects of target-induced scintillation on optical radar performance,” Proc. IEEE 53, 1688-1700 (1965).
[CrossRef]

Proc. SPIE (4)

R. M. Marino, T. Stephens, R. E. Hatch, J. L. McLaughlin, J. G. Mooney, M. E. O'Brien, G. S. Rowe, J. S. Adams, L. Skelly, R. C. Knowlton, S. E. Forman, and W. R. Davis, “A compact 3D imaging laser radar system using Geiger-mode APD arrays: system and measurements,” Proc. SPIE 5086, 1-15 (2003).
[CrossRef]

P. Gatt and S. W. Henderson, “Laser radar detection statistics: a comparison of coherent and direct detection receivers,” Proc. SPIE 4377, 251-262 (2001).
[CrossRef]

G. M. Williams and A. S. Huntington, “Probabilistic analysis of linear mode versus Geiger mode APD FPAs for advanced LADAR enabled interceptors,” Proc. SPIE 6220, 622008 (2006).
[CrossRef]

S. E. Johnson, P. Gatt, and T. L. Nichols, “Analysis of Geiger-mode APD laser radars,” Proc. SPIE 5086, 359-368(2003).
[CrossRef]

Other (7)

H. L. Van Trees, Detection, Estimation, and Modulation Theory: Part I. (Wiley Interscience, 2001).

J. R. Buck, “Effects of dead-time in Geiger-mode APD arrays for CW and pulsed configurations,” Aerospace Company Report (Aerospace, 2005).

J. Goodman, Statistical Optics (Wiley Interscience, 1985).

B. Saleh and M. Teich, Photoelectron Statistics (Springer-Verlag, 1978).

G. Casella and R. Berger, Statistical Inference (Duxbury, 2002).

A. Papoulis, Probability, Random Variables, and Stochastic Processes (McGraw-Hill, 1984).

A. Leon-Garcia, Probability and Random Processes for Electrical Engineering (Addison-Wesley, 1994).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Mean GM-APD detection rate. Illustration of GM-APD mean response to a constant 200 kHz noise flux with a 50 kHz , 5 μs target echo near t = 35 μs . The dash-dot line represents the input flux ψ ( t ) . The solid oscillatory line corresponds to the theoretical mean GM-APD response, ξ, derived in Subsection 3C. The circles correspond to the results of a 10 6 trial Monte Carlo (MC) simulation described in Section 5.

Fig. 2
Fig. 2

Mean GM-APD detection rate. Shown in the figure are the nth event detection rates ξ n ( t ) (dot-dash), their sum ξ ( t ) (solid), and the steady-state model ξ S S (horizontal dashed line) for a constant 100 kHz Poissonian input flux and a fixed 10 μs dead time.

Fig. 3
Fig. 3

Mean GM-APD detection rate. Total mean response for a constant 100 kHz Poissonian input flux parametric in the dead time between 0 and 100 μs .

Fig. 4
Fig. 4

Signal photon detection efficiency. SPDE versus m ¯ s with η q e = 100 % : (a) for an infinite dead time and parametric in the noise flux between 0 to 200 kHz and (b) for a fixed 200 kHz noise flux, parametric in the dead time between 0 and infinity.

Fig. 5
Fig. 5

GM-APD and linear detector signal-to-noise ratio. SNR versus m ¯ s with η q e = 100 % and E [ M s ] = 100 : (a) parametric in the noise flux between 0 to 200 kHz for an infinite dead time and (b) parametric in the dead time between 0 and infinity for a fixed 200 kHz noise flux rate.

Fig. 6
Fig. 6

Noiseless detection probability ROC curves. Probability of detection for (a) a linear photon counting receiver and (b) a GM-APD receiver, with m ¯ n = 0 and P F A < 10 5 , parametric in the number of pulse echoes accumulated, N = [ 1 , 3 , 10 , 30 , and 100 ] . The solid lines represent unit diversity, and the dashed lines represent infinite diversity signals. The horizontal dot-dash lines on the GM-APD ROC curves correspond to the maximum possible detection probability presented in Eq. (54).

Fig. 7
Fig. 7

Noisy detection probability ROC curves. Same as Fig. 6 but with small, yet nonzero, noise level, with m ¯ n = 0.5 × 10 3 , resulting in m ¯ d = 0.05 and P A = 95 % . Note, it is impossible for the GM-APD to achieve a detection with only one pulse accumulated since the threshold is higher than one for this noise level and P F A requirement.

Fig. 8
Fig. 8

Noisy detection probability ROC curves. Same as Fig. 7 but with higher noise flux, m ¯ n = 1.0 × 10 3 , resulting in m ¯ d = 0.1 and P A = 91 % .

Fig. 9
Fig. 9

Noisy detection probability ROC curves. Same as Fig. 7 but with higher noise flux, m ¯ n = 2.0 × 10 3 , resulting in m ¯ d = 0.2 and P A = 83 % .

Fig. 10
Fig. 10

Number of required signal PEs for a single-element GM-APD. Mean number of total accumulated signal primary electrons required to achieve P F A < 1 × 10 5 and P D = 95 % , versus the number of pulses accumulated for a linear detector (solid) and a GM-APD (symbol). The GM-APD is assumed to be in steady state with a dead time corresponding to 100 matched filter bins. Performance degrades as the noise increases m ¯ n = 0 , 10 4 , 10 3 and 10 2 . The vertical dashed lines correspond to the minimum level of pulse accumulation required for the GM-APD to achieve the detection statistics.

Fig. 11
Fig. 11

Number of required signal PEs for a multielement GM-APD. Mean number of total accumulated signal primary electrons required to achieve P F A < 1 × 10 5 and P D = 95 % versus the number of pulses accumulated for a linear detector (solid) and a multielement GM-APD (symbol). The GM-APD array is assumed to be in steady state with a dead time corresponding to 100 matched filter bins. A fixed noise level of m ¯ n = 10 2 (a) and 10 1 (b) was assumed, and 3 arrays are considered with 1, 10, and 100 subelements. The vertical dashed lines correspond to the minimum level of pulse accumulation required for the GM-APD to achieve the detection statistics.

Equations (56)

Equations on this page are rendered with MathJax. Learn more.

P = P s + P c + P b g + P d ,
ψ ( t ) = ψ s ( t ) + ψ c ( t ) + ψ b g ( t ) + ψ d ( t ) = η q e ( P s ( t ) + P c ( t ) + P ( t ) + b g P ( t ) ) d / h ν ,
m ¯ ( t 1 , t 2 ) = t 1 t 2 ψ ( t ) d t .
m ¯ = η q e ( n ¯ s + n ¯ n ) = m ¯ s + m ¯ n ,
p n ( k ) = e m ¯ n m ¯ n k / k ! .
Pr ( K n > 0 ) = 1 e m ¯ n .
p s ( k ) = Γ ( k + M ) k ! Γ ( M ) ( m ¯ s M + m ¯ s ) k ( M M + m ¯ s ) M ,
Pr ( K s > 0 ) = 1 ( M M + m ¯ s ) M .
p s n ( k ) = e m ¯ n Γ ( M ) ( M M + m ¯ s ) M j = 0 k Γ ( M + k j ) j ! ( k j ) ! m ¯ n j ( m ¯ s m ¯ s + M ) k j .
p s n ( k ) = e N m ¯ n Γ ( N M ) ( M M + m ¯ s ) N M Σ j = 0 k Γ ( N M + k j ) j ! ( k j ) ! ( N m ¯ n ) j ( m ¯ s m ¯ s + M ) k j .
Pr ( K s n > 0 ) = 1 e N m ¯ n ( M M + m ¯ s ) N M .
ξ ( t ) = n = 1 N d ξ n ( t ) .
P A ( t ) = ξ ( t ) / ψ ( t ) .
ξ S S = ψ 0 1 + ψ 0 t d = ψ 0 1 + m ¯ d ,
P A s s = 1 / ( 1 + m ¯ d ) .
ξ 1 ( t ) = d d t Pr ( K > 0 ; 0 , t ) ,
Pr ( K s n > 0 ; 0 , t ) = 1 e m ¯ n ( 0 , t ) ( M M + m ¯ s ( 0 , t ) ) M ,
ξ 1 ( t ) = e m ¯ n ( 0 , t ) ( M M + m ¯ s ( 0 , t ) ) M ( ψ n ( t ) + M M + m ¯ s ( 0 , t ) ψ s ( t ) ) U ( t ) ,
ξ 1 ( t ) | M = = ψ ( t ) e m ¯ ( 0 , t ) U ( t ) = ψ ( t ) e 0 t ψ ( τ ) d τ U ( t ) ,
M lim ( M M + m ¯ s ) M = e m ¯ s .
ξ 2 ( t ) = ( 0 t - t d ξ 1 ( τ ) ξ 2 ( t | τ ) d τ ) U ( t t d ) .
ξ 2 ( t | t 1 ) = e m ¯ n ( t 1 + t d , t ) ( M M + m ¯ s ( t 1 + t d , t ) ) M ( ψ n ( t ) + M M + m ¯ s ( t 1 + t d , t ) ψ s ( t ) ) U ( t t 1 t d ) .
ξ 2 ( t ) = U ( t - t d ) [ ψ n ( t ) 0 t - t d ξ 1 ( τ ) e m ¯ n ( τ + t d , t ) ( M M + m ¯ s ( τ + t d , t ) ) M d τ + ψ s ( t ) 0 t - t d ξ 1 ( τ ) e m ¯ n ( τ + t d , t ) ( M M + m ¯ s ( τ + t d , t ) ) M + 1 d τ ] .
ξ n + 1 ( t ) = t d ( n - 1 ) t - t d ξ n ( τ ) ξ n + 1 ( t | τ ) d τ U ( t - n t d ) ,
ξ n + 1 ( t ) = U ( t - n t d ) [ ψ n ( t ) t d ( n - 1 ) t - t d ξ n ( τ ) e - m ¯ n ( τ + t d , t ) ( M M + m ¯ s ( τ + t d , t ) ) M d τ + ψ s ( t ) t d ( n - 1 ) t - t d ξ n ( τ ) e - m ¯ n ( τ + t d , t ) ( M M + m ¯ s ( τ + t d , t ) ) M + 1 d τ ] .
ξ n + 1 | M = = ψ ( t ) t d ( n - 1 ) t - t d ξ n ( τ ) e - m ¯ ( τ + t d , t ) d τ U ( t - n t d ) .
ψ ( t ) = ψ 0 U ( t ) .
ξ 1 ( t ) = ψ 0 e ψ 0 t U ( t ) ,
ξ n + 1 ( t ) = 1 n ! ψ 0 n + 1 ( t n t d ) n e ψ 0 ( t n t d ) U ( t n t d ) .
η s = P D s / n ¯ s .
P D s = P A m ¯ s m ¯ s + m ¯ n [ 1 e - m ¯ n ( M M + m ¯ s ) M ] .
P D s | M = = P A m ¯ s m ¯ s + m ¯ n [ 1 - e - ( m ¯ s + m ¯ n ) ] .
P D s | M = P A m ¯ s for     ( m ¯ n + m ¯ s ) 1 ,
η s | M = P A m ¯ s / n ¯ s = P A η q e for     ( m ¯ n + m ¯ s ) 1.
η s | M = P A n ¯ s m ¯ s m ¯ s + m ¯ n = P A η q e m ¯ s m ¯ s + m ¯ n for     ( m ¯ n 1 ) .
SNR = E [ M s ] 2 var [ M s + M n ] ,
SNR l i n | M = = η q N n ¯ s 2 n ¯ s + n ¯ n = N m ¯ s 2 m ¯ s + m ¯ n .
SNR GAPD P = η s N n ¯ s 2 n ¯ s + n ¯ n = P A [ 1 e ( m ¯ s + m ¯ n ) ] N m ¯ s 2 m ¯ s + m ¯ n .
E [ M s ] = N P A [ 1 ( M M + m ¯ s ) M ] .
var [ M s + M n ] = N P A [ 1 e - m ¯ n ( M M + m ¯ s ) M ] [ 1 P A [ 1 e m ¯ n ( M M + m ¯ s ) M ] ] .
SNR GAPD = N P A [ 1 - ( M M + m ¯ s ) M ] 2 [ 1 - e - m ¯ n ( M M + m ¯ s ) M ] [ 1 - P A [ 1 - e - m ¯ n ( M M + m ¯ s ) M ] ] .
SNR GAPD | M = = N P A [ 1 e - m ¯ s ] 2 [ 1 - e - ( m ¯ n + m ¯ s ) ] [ 1 - P A [ 1 - e - ( m ¯ n + m ¯ s ) ] ] .
p ( k ; N ) = ( N k ) p k ( 1 p ) N k ,     ( N k ) = N ! k ! ( N k ) ! , for     k = 0 , 1 , , N ,  and 0 otherwise.
P F A = k = k t h N ( N k ) P n k ( 1 P n ) N k ,
P D = k = k th N ( N k ) P s n k ( 1 P s n ) N k ,
P F A | k t h = 1 = 1 - [ 1 - P A ( 1 - e - m ¯ n ) ] N ,
P D | k t h = 1 = 1 - [ 1 - P A ( 1 e - m ¯ n ( M M + m ¯ s ) M ) ] N .
P F A | k t h = 1 ; m ¯ n 1 P A N m ¯ n ,
P D | k t h = 1 ; m ¯ n + m ¯ s 1 ; M m ¯ s P A N ( m ¯ s + m ¯ n ) ,
P F A = 1 k = 0 k t h - 1 p n ( k ) = 1 - Γ ( k t h , N m ¯ n ) / ( k t h - 1 ) ! ,
P F A | k t h = 1 = 1 e N m ¯ n .
P D = 1 k = 0 k t h - 1 p s n ( k ) .
P D | k t h = 1 = 1 e - N m ¯ n ( M M + m ¯ s ) N M .
max [ P D ] = k = k t h N ( N k ) P A k ( 1 P A ) N k .
η s = i = 1 N d w i η s i = 1 n ¯ s i = 1 N d n ¯ s i η s i .
η s = η s i .

Metrics