Abstract

A polarization-controlling device was developed based on the fact that there can be a time delay between the seeder and the pumping beams during the amplification of a stimulated Brillouin scattering signal. The device causes two coaxially transmitted pulsed beams with orthogonal polarizations to have the same polarization in order to implement amplification by the pumping effect. An experiment showed that good pumping amplification can be achieved by using this technique.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. A. Leonard, B. Caputo, and F. E. Hoge, “Remote sensing of subsurface water temperature by Raman scattering,” Appl. Opt. 18, 1732-1745 (1979).
    [CrossRef] [PubMed]
  2. J. L. Guagliardo and H. L. Dufilho, “Range resolved Brillouin scattering using a pulsed laser,” Rev. Sci. Instrum. 51, 79-81(1980).
    [CrossRef]
  3. J. G. Hirschberg, J. D. Byrne, A. W. Wouters, and G. C. Boyton, “Speed of sound and temperature in the ocean by Brillouin scattering,” Appl. Opt. 23, 2624-2628 (1984).
    [CrossRef] [PubMed]
  4. G. D. Hickman, J. M. Harding, M. C. Garnes, A. Pressman, G. W. Kattawar, and E. S. Fry, “Aircraft laser sensing of sound velocity in water: Brillouin scattering,” Remote Sens. Eviron. 36, 165-178 (1991).
    [CrossRef]
  5. D. Liu, J. Xu, R. Li, R. Dai, and W. Gong, “Measurements of sound speed in the water by Brillouin scattering using pulsed Nd:YAG laser,” Opt. Commun. 203, 335-340 (2002).
    [CrossRef]
  6. D. A. Leonard and H. E. Sweeney, “Remote sensing of ocean physical properties: a comparison of Raman and Brillouin techniques,” Proc. SPIE 925, 407-414 (1988).
  7. Y. R. Shen, Principles of Nonlinear Optics (Wiley, 1984), Chap. 11.
  8. B. Y. Zel'dovic, N. F. Pilipetsky, and V. V. Shkunov, Principles of Phase Conjugation (Springer-Verlag, 1985).
  9. M. J. Damzen, V. I. Vlad, V. Babin, and A. Mocofanescu, Stimulated Brillouin Scattering: Fundmentals and Applications (Institute of Physics, 2003), Chap. 4.
    [CrossRef]
  10. D. A. Leonard and H. E. Sweeney, “A comparison of stimulated and spontaneous laser radar methods for the remote sensing of ocean physical properties,” Proc. SPIE 1302, 568-582 (1990).
  11. J. Bai, J. Shi, M. Ouyang, X. Chen, W. G. Hongmei J., J. Liu, and D. Liu, “Method for measuring the threshold value of stimulated Brillouin scattering in water,” Opt. Lett. 33, 1539 (2008).
    [CrossRef] [PubMed]
  12. J. Bai, J. Liu, Y. Huang, Y. Liu, L. Sun, D. Liu, and E. S. Fry, “ Investigations of the attenuation coefficient of a narrow-bandwidth pulsed laser beam in water,” Appl. Opt. 46, 6804-6808 (2007).
    [CrossRef] [PubMed]
  13. J. Shi, M. Ouyang, W. Gong, S. Li, and D. Liu, “A Brillouin lidar system using F-P etalon and ICCD for remote sensing of the ocean,” Appl. Phys. B 90, 569-571 (2008).
    [CrossRef]
  14. J. Shi, G. Li, W. Gong, J. Bai, Y. Huang, Y. Liu, S. Li, and D. Liu, “A lidar system based on stimulated Brillouin scattering,” Appl. Phys. B 86, 177-179 (2007).
    [CrossRef]
  15. M. Ouyang, J. Shi, L. Zhao, X. Chen, H. Jing, and D. Liu, “Real time measurement of attenuation coefficient of water in open ocean based on stimulated Brillouin scattering,” Appl. Phys. B 91, 381-385 (2008).
    [CrossRef]

2008

J. Shi, M. Ouyang, W. Gong, S. Li, and D. Liu, “A Brillouin lidar system using F-P etalon and ICCD for remote sensing of the ocean,” Appl. Phys. B 90, 569-571 (2008).
[CrossRef]

M. Ouyang, J. Shi, L. Zhao, X. Chen, H. Jing, and D. Liu, “Real time measurement of attenuation coefficient of water in open ocean based on stimulated Brillouin scattering,” Appl. Phys. B 91, 381-385 (2008).
[CrossRef]

J. Bai, J. Shi, M. Ouyang, X. Chen, W. G. Hongmei J., J. Liu, and D. Liu, “Method for measuring the threshold value of stimulated Brillouin scattering in water,” Opt. Lett. 33, 1539 (2008).
[CrossRef] [PubMed]

2007

J. Bai, J. Liu, Y. Huang, Y. Liu, L. Sun, D. Liu, and E. S. Fry, “ Investigations of the attenuation coefficient of a narrow-bandwidth pulsed laser beam in water,” Appl. Opt. 46, 6804-6808 (2007).
[CrossRef] [PubMed]

J. Shi, G. Li, W. Gong, J. Bai, Y. Huang, Y. Liu, S. Li, and D. Liu, “A lidar system based on stimulated Brillouin scattering,” Appl. Phys. B 86, 177-179 (2007).
[CrossRef]

2002

D. Liu, J. Xu, R. Li, R. Dai, and W. Gong, “Measurements of sound speed in the water by Brillouin scattering using pulsed Nd:YAG laser,” Opt. Commun. 203, 335-340 (2002).
[CrossRef]

1991

G. D. Hickman, J. M. Harding, M. C. Garnes, A. Pressman, G. W. Kattawar, and E. S. Fry, “Aircraft laser sensing of sound velocity in water: Brillouin scattering,” Remote Sens. Eviron. 36, 165-178 (1991).
[CrossRef]

1990

D. A. Leonard and H. E. Sweeney, “A comparison of stimulated and spontaneous laser radar methods for the remote sensing of ocean physical properties,” Proc. SPIE 1302, 568-582 (1990).

1988

D. A. Leonard and H. E. Sweeney, “Remote sensing of ocean physical properties: a comparison of Raman and Brillouin techniques,” Proc. SPIE 925, 407-414 (1988).

1984

1980

J. L. Guagliardo and H. L. Dufilho, “Range resolved Brillouin scattering using a pulsed laser,” Rev. Sci. Instrum. 51, 79-81(1980).
[CrossRef]

1979

Babin, V.

M. J. Damzen, V. I. Vlad, V. Babin, and A. Mocofanescu, Stimulated Brillouin Scattering: Fundmentals and Applications (Institute of Physics, 2003), Chap. 4.
[CrossRef]

Bai, J.

Boyton, G. C.

Byrne, J. D.

Caputo, B.

Chen, X.

J. Bai, J. Shi, M. Ouyang, X. Chen, W. G. Hongmei J., J. Liu, and D. Liu, “Method for measuring the threshold value of stimulated Brillouin scattering in water,” Opt. Lett. 33, 1539 (2008).
[CrossRef] [PubMed]

M. Ouyang, J. Shi, L. Zhao, X. Chen, H. Jing, and D. Liu, “Real time measurement of attenuation coefficient of water in open ocean based on stimulated Brillouin scattering,” Appl. Phys. B 91, 381-385 (2008).
[CrossRef]

Dai, R.

D. Liu, J. Xu, R. Li, R. Dai, and W. Gong, “Measurements of sound speed in the water by Brillouin scattering using pulsed Nd:YAG laser,” Opt. Commun. 203, 335-340 (2002).
[CrossRef]

Damzen, M. J.

M. J. Damzen, V. I. Vlad, V. Babin, and A. Mocofanescu, Stimulated Brillouin Scattering: Fundmentals and Applications (Institute of Physics, 2003), Chap. 4.
[CrossRef]

Dufilho, H. L.

J. L. Guagliardo and H. L. Dufilho, “Range resolved Brillouin scattering using a pulsed laser,” Rev. Sci. Instrum. 51, 79-81(1980).
[CrossRef]

Fry, E. S.

J. Bai, J. Liu, Y. Huang, Y. Liu, L. Sun, D. Liu, and E. S. Fry, “ Investigations of the attenuation coefficient of a narrow-bandwidth pulsed laser beam in water,” Appl. Opt. 46, 6804-6808 (2007).
[CrossRef] [PubMed]

G. D. Hickman, J. M. Harding, M. C. Garnes, A. Pressman, G. W. Kattawar, and E. S. Fry, “Aircraft laser sensing of sound velocity in water: Brillouin scattering,” Remote Sens. Eviron. 36, 165-178 (1991).
[CrossRef]

Garnes, M. C.

G. D. Hickman, J. M. Harding, M. C. Garnes, A. Pressman, G. W. Kattawar, and E. S. Fry, “Aircraft laser sensing of sound velocity in water: Brillouin scattering,” Remote Sens. Eviron. 36, 165-178 (1991).
[CrossRef]

Gong, W.

J. Shi, M. Ouyang, W. Gong, S. Li, and D. Liu, “A Brillouin lidar system using F-P etalon and ICCD for remote sensing of the ocean,” Appl. Phys. B 90, 569-571 (2008).
[CrossRef]

J. Shi, G. Li, W. Gong, J. Bai, Y. Huang, Y. Liu, S. Li, and D. Liu, “A lidar system based on stimulated Brillouin scattering,” Appl. Phys. B 86, 177-179 (2007).
[CrossRef]

D. Liu, J. Xu, R. Li, R. Dai, and W. Gong, “Measurements of sound speed in the water by Brillouin scattering using pulsed Nd:YAG laser,” Opt. Commun. 203, 335-340 (2002).
[CrossRef]

Guagliardo, J. L.

J. L. Guagliardo and H. L. Dufilho, “Range resolved Brillouin scattering using a pulsed laser,” Rev. Sci. Instrum. 51, 79-81(1980).
[CrossRef]

Harding, J. M.

G. D. Hickman, J. M. Harding, M. C. Garnes, A. Pressman, G. W. Kattawar, and E. S. Fry, “Aircraft laser sensing of sound velocity in water: Brillouin scattering,” Remote Sens. Eviron. 36, 165-178 (1991).
[CrossRef]

Hickman, G. D.

G. D. Hickman, J. M. Harding, M. C. Garnes, A. Pressman, G. W. Kattawar, and E. S. Fry, “Aircraft laser sensing of sound velocity in water: Brillouin scattering,” Remote Sens. Eviron. 36, 165-178 (1991).
[CrossRef]

Hirschberg, J. G.

Hoge, F. E.

Huang, Y.

J. Bai, J. Liu, Y. Huang, Y. Liu, L. Sun, D. Liu, and E. S. Fry, “ Investigations of the attenuation coefficient of a narrow-bandwidth pulsed laser beam in water,” Appl. Opt. 46, 6804-6808 (2007).
[CrossRef] [PubMed]

J. Shi, G. Li, W. Gong, J. Bai, Y. Huang, Y. Liu, S. Li, and D. Liu, “A lidar system based on stimulated Brillouin scattering,” Appl. Phys. B 86, 177-179 (2007).
[CrossRef]

J., W. G. Hongmei

Jing, H.

M. Ouyang, J. Shi, L. Zhao, X. Chen, H. Jing, and D. Liu, “Real time measurement of attenuation coefficient of water in open ocean based on stimulated Brillouin scattering,” Appl. Phys. B 91, 381-385 (2008).
[CrossRef]

Kattawar, G. W.

G. D. Hickman, J. M. Harding, M. C. Garnes, A. Pressman, G. W. Kattawar, and E. S. Fry, “Aircraft laser sensing of sound velocity in water: Brillouin scattering,” Remote Sens. Eviron. 36, 165-178 (1991).
[CrossRef]

Leonard, D. A.

D. A. Leonard and H. E. Sweeney, “A comparison of stimulated and spontaneous laser radar methods for the remote sensing of ocean physical properties,” Proc. SPIE 1302, 568-582 (1990).

D. A. Leonard and H. E. Sweeney, “Remote sensing of ocean physical properties: a comparison of Raman and Brillouin techniques,” Proc. SPIE 925, 407-414 (1988).

D. A. Leonard, B. Caputo, and F. E. Hoge, “Remote sensing of subsurface water temperature by Raman scattering,” Appl. Opt. 18, 1732-1745 (1979).
[CrossRef] [PubMed]

Li, G.

J. Shi, G. Li, W. Gong, J. Bai, Y. Huang, Y. Liu, S. Li, and D. Liu, “A lidar system based on stimulated Brillouin scattering,” Appl. Phys. B 86, 177-179 (2007).
[CrossRef]

Li, R.

D. Liu, J. Xu, R. Li, R. Dai, and W. Gong, “Measurements of sound speed in the water by Brillouin scattering using pulsed Nd:YAG laser,” Opt. Commun. 203, 335-340 (2002).
[CrossRef]

Li, S.

J. Shi, M. Ouyang, W. Gong, S. Li, and D. Liu, “A Brillouin lidar system using F-P etalon and ICCD for remote sensing of the ocean,” Appl. Phys. B 90, 569-571 (2008).
[CrossRef]

J. Shi, G. Li, W. Gong, J. Bai, Y. Huang, Y. Liu, S. Li, and D. Liu, “A lidar system based on stimulated Brillouin scattering,” Appl. Phys. B 86, 177-179 (2007).
[CrossRef]

Liu, D.

J. Shi, M. Ouyang, W. Gong, S. Li, and D. Liu, “A Brillouin lidar system using F-P etalon and ICCD for remote sensing of the ocean,” Appl. Phys. B 90, 569-571 (2008).
[CrossRef]

M. Ouyang, J. Shi, L. Zhao, X. Chen, H. Jing, and D. Liu, “Real time measurement of attenuation coefficient of water in open ocean based on stimulated Brillouin scattering,” Appl. Phys. B 91, 381-385 (2008).
[CrossRef]

J. Bai, J. Shi, M. Ouyang, X. Chen, W. G. Hongmei J., J. Liu, and D. Liu, “Method for measuring the threshold value of stimulated Brillouin scattering in water,” Opt. Lett. 33, 1539 (2008).
[CrossRef] [PubMed]

J. Bai, J. Liu, Y. Huang, Y. Liu, L. Sun, D. Liu, and E. S. Fry, “ Investigations of the attenuation coefficient of a narrow-bandwidth pulsed laser beam in water,” Appl. Opt. 46, 6804-6808 (2007).
[CrossRef] [PubMed]

J. Shi, G. Li, W. Gong, J. Bai, Y. Huang, Y. Liu, S. Li, and D. Liu, “A lidar system based on stimulated Brillouin scattering,” Appl. Phys. B 86, 177-179 (2007).
[CrossRef]

D. Liu, J. Xu, R. Li, R. Dai, and W. Gong, “Measurements of sound speed in the water by Brillouin scattering using pulsed Nd:YAG laser,” Opt. Commun. 203, 335-340 (2002).
[CrossRef]

Liu, J.

Liu, Y.

J. Bai, J. Liu, Y. Huang, Y. Liu, L. Sun, D. Liu, and E. S. Fry, “ Investigations of the attenuation coefficient of a narrow-bandwidth pulsed laser beam in water,” Appl. Opt. 46, 6804-6808 (2007).
[CrossRef] [PubMed]

J. Shi, G. Li, W. Gong, J. Bai, Y. Huang, Y. Liu, S. Li, and D. Liu, “A lidar system based on stimulated Brillouin scattering,” Appl. Phys. B 86, 177-179 (2007).
[CrossRef]

Mocofanescu, A.

M. J. Damzen, V. I. Vlad, V. Babin, and A. Mocofanescu, Stimulated Brillouin Scattering: Fundmentals and Applications (Institute of Physics, 2003), Chap. 4.
[CrossRef]

Ouyang, M.

J. Bai, J. Shi, M. Ouyang, X. Chen, W. G. Hongmei J., J. Liu, and D. Liu, “Method for measuring the threshold value of stimulated Brillouin scattering in water,” Opt. Lett. 33, 1539 (2008).
[CrossRef] [PubMed]

M. Ouyang, J. Shi, L. Zhao, X. Chen, H. Jing, and D. Liu, “Real time measurement of attenuation coefficient of water in open ocean based on stimulated Brillouin scattering,” Appl. Phys. B 91, 381-385 (2008).
[CrossRef]

J. Shi, M. Ouyang, W. Gong, S. Li, and D. Liu, “A Brillouin lidar system using F-P etalon and ICCD for remote sensing of the ocean,” Appl. Phys. B 90, 569-571 (2008).
[CrossRef]

Pilipetsky, N. F.

B. Y. Zel'dovic, N. F. Pilipetsky, and V. V. Shkunov, Principles of Phase Conjugation (Springer-Verlag, 1985).

Pressman, A.

G. D. Hickman, J. M. Harding, M. C. Garnes, A. Pressman, G. W. Kattawar, and E. S. Fry, “Aircraft laser sensing of sound velocity in water: Brillouin scattering,” Remote Sens. Eviron. 36, 165-178 (1991).
[CrossRef]

Shen, Y. R.

Y. R. Shen, Principles of Nonlinear Optics (Wiley, 1984), Chap. 11.

Shi, J.

J. Bai, J. Shi, M. Ouyang, X. Chen, W. G. Hongmei J., J. Liu, and D. Liu, “Method for measuring the threshold value of stimulated Brillouin scattering in water,” Opt. Lett. 33, 1539 (2008).
[CrossRef] [PubMed]

M. Ouyang, J. Shi, L. Zhao, X. Chen, H. Jing, and D. Liu, “Real time measurement of attenuation coefficient of water in open ocean based on stimulated Brillouin scattering,” Appl. Phys. B 91, 381-385 (2008).
[CrossRef]

J. Shi, M. Ouyang, W. Gong, S. Li, and D. Liu, “A Brillouin lidar system using F-P etalon and ICCD for remote sensing of the ocean,” Appl. Phys. B 90, 569-571 (2008).
[CrossRef]

J. Shi, G. Li, W. Gong, J. Bai, Y. Huang, Y. Liu, S. Li, and D. Liu, “A lidar system based on stimulated Brillouin scattering,” Appl. Phys. B 86, 177-179 (2007).
[CrossRef]

Shkunov, V. V.

B. Y. Zel'dovic, N. F. Pilipetsky, and V. V. Shkunov, Principles of Phase Conjugation (Springer-Verlag, 1985).

Sun, L.

Sweeney, H. E.

D. A. Leonard and H. E. Sweeney, “A comparison of stimulated and spontaneous laser radar methods for the remote sensing of ocean physical properties,” Proc. SPIE 1302, 568-582 (1990).

D. A. Leonard and H. E. Sweeney, “Remote sensing of ocean physical properties: a comparison of Raman and Brillouin techniques,” Proc. SPIE 925, 407-414 (1988).

Vlad, V. I.

M. J. Damzen, V. I. Vlad, V. Babin, and A. Mocofanescu, Stimulated Brillouin Scattering: Fundmentals and Applications (Institute of Physics, 2003), Chap. 4.
[CrossRef]

Wouters, A. W.

Xu, J.

D. Liu, J. Xu, R. Li, R. Dai, and W. Gong, “Measurements of sound speed in the water by Brillouin scattering using pulsed Nd:YAG laser,” Opt. Commun. 203, 335-340 (2002).
[CrossRef]

Zel'dovic, B. Y.

B. Y. Zel'dovic, N. F. Pilipetsky, and V. V. Shkunov, Principles of Phase Conjugation (Springer-Verlag, 1985).

Zhao, L.

M. Ouyang, J. Shi, L. Zhao, X. Chen, H. Jing, and D. Liu, “Real time measurement of attenuation coefficient of water in open ocean based on stimulated Brillouin scattering,” Appl. Phys. B 91, 381-385 (2008).
[CrossRef]

Appl. Opt.

Appl. Phys. B

J. Shi, M. Ouyang, W. Gong, S. Li, and D. Liu, “A Brillouin lidar system using F-P etalon and ICCD for remote sensing of the ocean,” Appl. Phys. B 90, 569-571 (2008).
[CrossRef]

J. Shi, G. Li, W. Gong, J. Bai, Y. Huang, Y. Liu, S. Li, and D. Liu, “A lidar system based on stimulated Brillouin scattering,” Appl. Phys. B 86, 177-179 (2007).
[CrossRef]

M. Ouyang, J. Shi, L. Zhao, X. Chen, H. Jing, and D. Liu, “Real time measurement of attenuation coefficient of water in open ocean based on stimulated Brillouin scattering,” Appl. Phys. B 91, 381-385 (2008).
[CrossRef]

Opt. Commun.

D. Liu, J. Xu, R. Li, R. Dai, and W. Gong, “Measurements of sound speed in the water by Brillouin scattering using pulsed Nd:YAG laser,” Opt. Commun. 203, 335-340 (2002).
[CrossRef]

Opt. Lett.

Remote Sens. Eviron.

G. D. Hickman, J. M. Harding, M. C. Garnes, A. Pressman, G. W. Kattawar, and E. S. Fry, “Aircraft laser sensing of sound velocity in water: Brillouin scattering,” Remote Sens. Eviron. 36, 165-178 (1991).
[CrossRef]

Rev. Sci. Instrum.

J. L. Guagliardo and H. L. Dufilho, “Range resolved Brillouin scattering using a pulsed laser,” Rev. Sci. Instrum. 51, 79-81(1980).
[CrossRef]

Other

D. A. Leonard and H. E. Sweeney, “Remote sensing of ocean physical properties: a comparison of Raman and Brillouin techniques,” Proc. SPIE 925, 407-414 (1988).

Y. R. Shen, Principles of Nonlinear Optics (Wiley, 1984), Chap. 11.

B. Y. Zel'dovic, N. F. Pilipetsky, and V. V. Shkunov, Principles of Phase Conjugation (Springer-Verlag, 1985).

M. J. Damzen, V. I. Vlad, V. Babin, and A. Mocofanescu, Stimulated Brillouin Scattering: Fundmentals and Applications (Institute of Physics, 2003), Chap. 4.
[CrossRef]

D. A. Leonard and H. E. Sweeney, “A comparison of stimulated and spontaneous laser radar methods for the remote sensing of ocean physical properties,” Proc. SPIE 1302, 568-582 (1990).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental setup geometry. λ / 2 , half-wave plate; λ / 4 , quarter-wave plate; M, mirror; P, polarization coupler; SH, frequency-doubling crystal; EOC, electro-optic crystal; DR, driver of the crystal. The sign | represents the polarization perpendicular to the incident plane, and the sign • represents the polarization parallel to the incident plane. The incident plane is perpendicular to the paper surface. The solid lines with arrows represent the connections with optical signals. The dashed lines represent the connections with electronic signals.

Fig. 2
Fig. 2

(a) Polarization controller and (b) chronological sequences of laser pulses and the switching on and off of the high voltage. The left and right highest peaks are the pulse pairs of beam 1 and beam 2, respectively. The wide peak of the curve starting at the bottom left is the high voltage pulse generated by the driver. The curve starting above the other two on the left is the trigger signal output by the laser.

Fig. 3
Fig. 3

Control of the polarizations of the two orthogonally polarized coaxial pulses. (a) Without high voltage, the pulse of beam 1 can be detected, the pulse of beam 2 cannot be detected. (b) With high voltage, the pulse of beam 2 can be detected, and the pulse of beam 1 cannot be detected.

Fig. 4
Fig. 4

Measured spectra with and without pumping amplification. (a) Spectrum without amplification by pumping pulse of beam 2. (b) Spectrum with amplification by pumping pulse of beam 2. The signal-to-noise ratio equals 4.7 .

Metrics