Abstract

An inherent polarization sensitivity of a volume grating, in general, can be used to determine all the Stokes parameters of input beams. We demonstrate the polarization-dependent bandgap in a photonic crystal in principle at any wavelength using the finite-difference time-domain method. We show how this bandgap can be used to realize a volume-grating Stokesmeter. We also present an explicit design for a high-speed version of such a Stokesmeter and identify design constraints that arise in this context. Finally, we describe a spectrally resolved volume-grating Stokesmeter based on the tunability of a photonic bandgap material.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. L. Pezzaniti and R. A. Chipman, “Mueller matrix imaging polarimetry,” Opt. Eng. 34, 1558-1568 (1995).
    [CrossRef]
  2. K. P. Bishop, H. D. McIntire, M. P. Fetrow, and L. McMackin, “Multispectral polarimeter imaging in the visible to near IR,” Proc. SPIE 3699, 49-57 (1999).
    [CrossRef]
  3. G. P. Nordin, J. T. Meier, P. C. Deguzman, and M. W. Jones, “Micropolarizer array for infrared imaging polarimetry,” J. Opt. Soc. Am. A 16, 1168-1174 (1999).
    [CrossRef]
  4. L. J. Denes, M. Gottlieb, B. Kaminsky, and D. Huber, “Spectropolarimetric imaging for object recognition,” Proc. SPIE 3240, 8-18 (1998).
    [CrossRef]
  5. A. Gerrard and J. M. Burch, Introduction to Matrix Methods in Optics (Dover, 1974).
  6. L. D. Travis, “Remote sensing of aerosol with earth-observing scanning polarimeter,” Proc. SPIE 1747, 154-164 (1992).
    [CrossRef]
  7. G. L Brun, B. L. Jeune, J. Cariou, and J. Lotrian, “Analysis of polarization signature of immersed target,” Proc. SPIE 1747, 128-139 (1992).
    [CrossRef]
  8. T. Nee and S. F. Nee, “Infrared polarization signature for targets,” Proc. SPIE 2469, 231-241 (1995).
    [CrossRef]
  9. P. J. Curran, “Polarized visible light as an aid to vegetation classification,” Remote Sens. Environ. 12, 491-499(1982).
    [CrossRef]
  10. J. Chen, T. N. Pappas, A. Mojsilovic, and B. E. Rogowitz, “Adaptive perceptual colo-texture image segmentation,” IEEE Trans. Image Process. 14, 1524-1536 (2005).
    [CrossRef]
  11. M. S. Shahriar, J. T. Shen, R. Tripathi, M. Kleinschmitt, T. Nee, and S. F. Nee, “Ultrafast holographic Stokesmeter for polarization imaging in real time,” Opt. Lett. 29, 298-300(2004).
    [CrossRef] [PubMed]
  12. E. Chow, S. Y. Lin, S. G. Johnson, P. R. Villeneuve, J. D. Joannopoulos, J. R. Wendt, G. A. Vawter, W. Zubrzycki, H. Hou, and A. Alleman, “Three dimensional control of light in two dimensional photonic crystalslab,” Nature 407, 983-986 (2000).
    [CrossRef] [PubMed]
  13. J. M. Hickmann, D. Solli, C. F. McCormick, R. Plambeck, and R. Y. Chiao, “Microwave measurement of the photonic band gap in a two dimensional photonic crystal slab,” J. Appl. Phys. 92, 6918-6920 (2002).
    [CrossRef]
  14. D. R. Solli, C. F. McCormick, R. Y. Chiao, and J. M. Hickmann, “Polarization control using photonic crystals,” Opt. Photon. News 14(12), 35 (2003).
    [CrossRef]
  15. M. S. Shahriar, J. T. Shen, M. A. Hall, R. Tripathi, J-.K. Lee, and A. Heifetz, “Highly polarization-sensitive thick gratings for a holographic Stokesmeter,” Opt. Commun. 245, 67-73 (2005).
    [CrossRef]
  16. J.-K. Lee, J. T. Shen, A. Heifetz, R. Tripathi, and M. S. Shahriar, “Demonstration of a thick holographic Stokesmeter,” Opt. Commun. 259, 484-487 (2006).
    [CrossRef]
  17. J.-K. Lee, J. T. Shen, A. Heifetz, and M. S. Shahriar, “Demonstration of a spectrally scanned holographic Stokesmeter,” Opt. Commun. 277, 63-66 (2007).
    [CrossRef]
  18. B. Li, J. Zhou, L. Li, X. J. Wang, X. H. Liu, and J. Zi, “Ferroelectric inverse opal with electrically tunable photonic band gap,” Appl. Phys. Lett. 83, 4704-4706(2003).
    [CrossRef]
  19. M. Golosovsky, Y. Saado, and D. Davidov, “Self-assembly of floating magnetic particles into ordered structures,” Appl. Phys. Lett. 75, 4168-4170 (1999).
    [CrossRef]
  20. S. Kim and V. Gopalan, “Strain-tunable photonic band gap crystals,” Appl. Phys. Lett. 78, 3015-3017 (2001).
    [CrossRef]

2007 (1)

J.-K. Lee, J. T. Shen, A. Heifetz, and M. S. Shahriar, “Demonstration of a spectrally scanned holographic Stokesmeter,” Opt. Commun. 277, 63-66 (2007).
[CrossRef]

2006 (1)

J.-K. Lee, J. T. Shen, A. Heifetz, R. Tripathi, and M. S. Shahriar, “Demonstration of a thick holographic Stokesmeter,” Opt. Commun. 259, 484-487 (2006).
[CrossRef]

2005 (2)

M. S. Shahriar, J. T. Shen, M. A. Hall, R. Tripathi, J-.K. Lee, and A. Heifetz, “Highly polarization-sensitive thick gratings for a holographic Stokesmeter,” Opt. Commun. 245, 67-73 (2005).
[CrossRef]

J. Chen, T. N. Pappas, A. Mojsilovic, and B. E. Rogowitz, “Adaptive perceptual colo-texture image segmentation,” IEEE Trans. Image Process. 14, 1524-1536 (2005).
[CrossRef]

2004 (1)

2003 (2)

D. R. Solli, C. F. McCormick, R. Y. Chiao, and J. M. Hickmann, “Polarization control using photonic crystals,” Opt. Photon. News 14(12), 35 (2003).
[CrossRef]

B. Li, J. Zhou, L. Li, X. J. Wang, X. H. Liu, and J. Zi, “Ferroelectric inverse opal with electrically tunable photonic band gap,” Appl. Phys. Lett. 83, 4704-4706(2003).
[CrossRef]

2002 (1)

J. M. Hickmann, D. Solli, C. F. McCormick, R. Plambeck, and R. Y. Chiao, “Microwave measurement of the photonic band gap in a two dimensional photonic crystal slab,” J. Appl. Phys. 92, 6918-6920 (2002).
[CrossRef]

2001 (1)

S. Kim and V. Gopalan, “Strain-tunable photonic band gap crystals,” Appl. Phys. Lett. 78, 3015-3017 (2001).
[CrossRef]

2000 (1)

E. Chow, S. Y. Lin, S. G. Johnson, P. R. Villeneuve, J. D. Joannopoulos, J. R. Wendt, G. A. Vawter, W. Zubrzycki, H. Hou, and A. Alleman, “Three dimensional control of light in two dimensional photonic crystalslab,” Nature 407, 983-986 (2000).
[CrossRef] [PubMed]

1999 (3)

K. P. Bishop, H. D. McIntire, M. P. Fetrow, and L. McMackin, “Multispectral polarimeter imaging in the visible to near IR,” Proc. SPIE 3699, 49-57 (1999).
[CrossRef]

G. P. Nordin, J. T. Meier, P. C. Deguzman, and M. W. Jones, “Micropolarizer array for infrared imaging polarimetry,” J. Opt. Soc. Am. A 16, 1168-1174 (1999).
[CrossRef]

M. Golosovsky, Y. Saado, and D. Davidov, “Self-assembly of floating magnetic particles into ordered structures,” Appl. Phys. Lett. 75, 4168-4170 (1999).
[CrossRef]

1995 (2)

J. L. Pezzaniti and R. A. Chipman, “Mueller matrix imaging polarimetry,” Opt. Eng. 34, 1558-1568 (1995).
[CrossRef]

T. Nee and S. F. Nee, “Infrared polarization signature for targets,” Proc. SPIE 2469, 231-241 (1995).
[CrossRef]

1992 (2)

L. D. Travis, “Remote sensing of aerosol with earth-observing scanning polarimeter,” Proc. SPIE 1747, 154-164 (1992).
[CrossRef]

G. L Brun, B. L. Jeune, J. Cariou, and J. Lotrian, “Analysis of polarization signature of immersed target,” Proc. SPIE 1747, 128-139 (1992).
[CrossRef]

1982 (1)

P. J. Curran, “Polarized visible light as an aid to vegetation classification,” Remote Sens. Environ. 12, 491-499(1982).
[CrossRef]

Alleman, A.

E. Chow, S. Y. Lin, S. G. Johnson, P. R. Villeneuve, J. D. Joannopoulos, J. R. Wendt, G. A. Vawter, W. Zubrzycki, H. Hou, and A. Alleman, “Three dimensional control of light in two dimensional photonic crystalslab,” Nature 407, 983-986 (2000).
[CrossRef] [PubMed]

Bishop, K. P.

K. P. Bishop, H. D. McIntire, M. P. Fetrow, and L. McMackin, “Multispectral polarimeter imaging in the visible to near IR,” Proc. SPIE 3699, 49-57 (1999).
[CrossRef]

Brun, G. L

G. L Brun, B. L. Jeune, J. Cariou, and J. Lotrian, “Analysis of polarization signature of immersed target,” Proc. SPIE 1747, 128-139 (1992).
[CrossRef]

Burch, J. M.

A. Gerrard and J. M. Burch, Introduction to Matrix Methods in Optics (Dover, 1974).

Cariou, J.

G. L Brun, B. L. Jeune, J. Cariou, and J. Lotrian, “Analysis of polarization signature of immersed target,” Proc. SPIE 1747, 128-139 (1992).
[CrossRef]

Chen, J.

J. Chen, T. N. Pappas, A. Mojsilovic, and B. E. Rogowitz, “Adaptive perceptual colo-texture image segmentation,” IEEE Trans. Image Process. 14, 1524-1536 (2005).
[CrossRef]

Chiao, R. Y.

D. R. Solli, C. F. McCormick, R. Y. Chiao, and J. M. Hickmann, “Polarization control using photonic crystals,” Opt. Photon. News 14(12), 35 (2003).
[CrossRef]

J. M. Hickmann, D. Solli, C. F. McCormick, R. Plambeck, and R. Y. Chiao, “Microwave measurement of the photonic band gap in a two dimensional photonic crystal slab,” J. Appl. Phys. 92, 6918-6920 (2002).
[CrossRef]

Chipman, R. A.

J. L. Pezzaniti and R. A. Chipman, “Mueller matrix imaging polarimetry,” Opt. Eng. 34, 1558-1568 (1995).
[CrossRef]

Chow, E.

E. Chow, S. Y. Lin, S. G. Johnson, P. R. Villeneuve, J. D. Joannopoulos, J. R. Wendt, G. A. Vawter, W. Zubrzycki, H. Hou, and A. Alleman, “Three dimensional control of light in two dimensional photonic crystalslab,” Nature 407, 983-986 (2000).
[CrossRef] [PubMed]

Curran, P. J.

P. J. Curran, “Polarized visible light as an aid to vegetation classification,” Remote Sens. Environ. 12, 491-499(1982).
[CrossRef]

Davidov, D.

M. Golosovsky, Y. Saado, and D. Davidov, “Self-assembly of floating magnetic particles into ordered structures,” Appl. Phys. Lett. 75, 4168-4170 (1999).
[CrossRef]

Deguzman, P. C.

Denes, L. J.

L. J. Denes, M. Gottlieb, B. Kaminsky, and D. Huber, “Spectropolarimetric imaging for object recognition,” Proc. SPIE 3240, 8-18 (1998).
[CrossRef]

Fetrow, M. P.

K. P. Bishop, H. D. McIntire, M. P. Fetrow, and L. McMackin, “Multispectral polarimeter imaging in the visible to near IR,” Proc. SPIE 3699, 49-57 (1999).
[CrossRef]

Gerrard, A.

A. Gerrard and J. M. Burch, Introduction to Matrix Methods in Optics (Dover, 1974).

Golosovsky, M.

M. Golosovsky, Y. Saado, and D. Davidov, “Self-assembly of floating magnetic particles into ordered structures,” Appl. Phys. Lett. 75, 4168-4170 (1999).
[CrossRef]

Gopalan, V.

S. Kim and V. Gopalan, “Strain-tunable photonic band gap crystals,” Appl. Phys. Lett. 78, 3015-3017 (2001).
[CrossRef]

Gottlieb, M.

L. J. Denes, M. Gottlieb, B. Kaminsky, and D. Huber, “Spectropolarimetric imaging for object recognition,” Proc. SPIE 3240, 8-18 (1998).
[CrossRef]

Hall, M. A.

M. S. Shahriar, J. T. Shen, M. A. Hall, R. Tripathi, J-.K. Lee, and A. Heifetz, “Highly polarization-sensitive thick gratings for a holographic Stokesmeter,” Opt. Commun. 245, 67-73 (2005).
[CrossRef]

Heifetz, A.

J.-K. Lee, J. T. Shen, A. Heifetz, and M. S. Shahriar, “Demonstration of a spectrally scanned holographic Stokesmeter,” Opt. Commun. 277, 63-66 (2007).
[CrossRef]

J.-K. Lee, J. T. Shen, A. Heifetz, R. Tripathi, and M. S. Shahriar, “Demonstration of a thick holographic Stokesmeter,” Opt. Commun. 259, 484-487 (2006).
[CrossRef]

M. S. Shahriar, J. T. Shen, M. A. Hall, R. Tripathi, J-.K. Lee, and A. Heifetz, “Highly polarization-sensitive thick gratings for a holographic Stokesmeter,” Opt. Commun. 245, 67-73 (2005).
[CrossRef]

Hickmann, J. M.

D. R. Solli, C. F. McCormick, R. Y. Chiao, and J. M. Hickmann, “Polarization control using photonic crystals,” Opt. Photon. News 14(12), 35 (2003).
[CrossRef]

J. M. Hickmann, D. Solli, C. F. McCormick, R. Plambeck, and R. Y. Chiao, “Microwave measurement of the photonic band gap in a two dimensional photonic crystal slab,” J. Appl. Phys. 92, 6918-6920 (2002).
[CrossRef]

Hou, H.

E. Chow, S. Y. Lin, S. G. Johnson, P. R. Villeneuve, J. D. Joannopoulos, J. R. Wendt, G. A. Vawter, W. Zubrzycki, H. Hou, and A. Alleman, “Three dimensional control of light in two dimensional photonic crystalslab,” Nature 407, 983-986 (2000).
[CrossRef] [PubMed]

Huber, D.

L. J. Denes, M. Gottlieb, B. Kaminsky, and D. Huber, “Spectropolarimetric imaging for object recognition,” Proc. SPIE 3240, 8-18 (1998).
[CrossRef]

J-.K. Lee,

M. S. Shahriar, J. T. Shen, M. A. Hall, R. Tripathi, J-.K. Lee, and A. Heifetz, “Highly polarization-sensitive thick gratings for a holographic Stokesmeter,” Opt. Commun. 245, 67-73 (2005).
[CrossRef]

Jeune, B. L.

G. L Brun, B. L. Jeune, J. Cariou, and J. Lotrian, “Analysis of polarization signature of immersed target,” Proc. SPIE 1747, 128-139 (1992).
[CrossRef]

Joannopoulos, J. D.

E. Chow, S. Y. Lin, S. G. Johnson, P. R. Villeneuve, J. D. Joannopoulos, J. R. Wendt, G. A. Vawter, W. Zubrzycki, H. Hou, and A. Alleman, “Three dimensional control of light in two dimensional photonic crystalslab,” Nature 407, 983-986 (2000).
[CrossRef] [PubMed]

Johnson, S. G.

E. Chow, S. Y. Lin, S. G. Johnson, P. R. Villeneuve, J. D. Joannopoulos, J. R. Wendt, G. A. Vawter, W. Zubrzycki, H. Hou, and A. Alleman, “Three dimensional control of light in two dimensional photonic crystalslab,” Nature 407, 983-986 (2000).
[CrossRef] [PubMed]

Jones, M. W.

Kaminsky, B.

L. J. Denes, M. Gottlieb, B. Kaminsky, and D. Huber, “Spectropolarimetric imaging for object recognition,” Proc. SPIE 3240, 8-18 (1998).
[CrossRef]

Kim, S.

S. Kim and V. Gopalan, “Strain-tunable photonic band gap crystals,” Appl. Phys. Lett. 78, 3015-3017 (2001).
[CrossRef]

Kleinschmitt, M.

Lee, J.-K.

J.-K. Lee, J. T. Shen, A. Heifetz, and M. S. Shahriar, “Demonstration of a spectrally scanned holographic Stokesmeter,” Opt. Commun. 277, 63-66 (2007).
[CrossRef]

J.-K. Lee, J. T. Shen, A. Heifetz, R. Tripathi, and M. S. Shahriar, “Demonstration of a thick holographic Stokesmeter,” Opt. Commun. 259, 484-487 (2006).
[CrossRef]

Li, B.

B. Li, J. Zhou, L. Li, X. J. Wang, X. H. Liu, and J. Zi, “Ferroelectric inverse opal with electrically tunable photonic band gap,” Appl. Phys. Lett. 83, 4704-4706(2003).
[CrossRef]

Li, L.

B. Li, J. Zhou, L. Li, X. J. Wang, X. H. Liu, and J. Zi, “Ferroelectric inverse opal with electrically tunable photonic band gap,” Appl. Phys. Lett. 83, 4704-4706(2003).
[CrossRef]

Lin, S. Y.

E. Chow, S. Y. Lin, S. G. Johnson, P. R. Villeneuve, J. D. Joannopoulos, J. R. Wendt, G. A. Vawter, W. Zubrzycki, H. Hou, and A. Alleman, “Three dimensional control of light in two dimensional photonic crystalslab,” Nature 407, 983-986 (2000).
[CrossRef] [PubMed]

Liu, X. H.

B. Li, J. Zhou, L. Li, X. J. Wang, X. H. Liu, and J. Zi, “Ferroelectric inverse opal with electrically tunable photonic band gap,” Appl. Phys. Lett. 83, 4704-4706(2003).
[CrossRef]

Lotrian, J.

G. L Brun, B. L. Jeune, J. Cariou, and J. Lotrian, “Analysis of polarization signature of immersed target,” Proc. SPIE 1747, 128-139 (1992).
[CrossRef]

McCormick, C. F.

D. R. Solli, C. F. McCormick, R. Y. Chiao, and J. M. Hickmann, “Polarization control using photonic crystals,” Opt. Photon. News 14(12), 35 (2003).
[CrossRef]

J. M. Hickmann, D. Solli, C. F. McCormick, R. Plambeck, and R. Y. Chiao, “Microwave measurement of the photonic band gap in a two dimensional photonic crystal slab,” J. Appl. Phys. 92, 6918-6920 (2002).
[CrossRef]

McIntire, H. D.

K. P. Bishop, H. D. McIntire, M. P. Fetrow, and L. McMackin, “Multispectral polarimeter imaging in the visible to near IR,” Proc. SPIE 3699, 49-57 (1999).
[CrossRef]

McMackin, L.

K. P. Bishop, H. D. McIntire, M. P. Fetrow, and L. McMackin, “Multispectral polarimeter imaging in the visible to near IR,” Proc. SPIE 3699, 49-57 (1999).
[CrossRef]

Meier, J. T.

Mojsilovic, A.

J. Chen, T. N. Pappas, A. Mojsilovic, and B. E. Rogowitz, “Adaptive perceptual colo-texture image segmentation,” IEEE Trans. Image Process. 14, 1524-1536 (2005).
[CrossRef]

Nee, S. F.

Nee, T.

Nordin, G. P.

Pappas, T. N.

J. Chen, T. N. Pappas, A. Mojsilovic, and B. E. Rogowitz, “Adaptive perceptual colo-texture image segmentation,” IEEE Trans. Image Process. 14, 1524-1536 (2005).
[CrossRef]

Pezzaniti, J. L.

J. L. Pezzaniti and R. A. Chipman, “Mueller matrix imaging polarimetry,” Opt. Eng. 34, 1558-1568 (1995).
[CrossRef]

Plambeck, R.

J. M. Hickmann, D. Solli, C. F. McCormick, R. Plambeck, and R. Y. Chiao, “Microwave measurement of the photonic band gap in a two dimensional photonic crystal slab,” J. Appl. Phys. 92, 6918-6920 (2002).
[CrossRef]

Rogowitz, B. E.

J. Chen, T. N. Pappas, A. Mojsilovic, and B. E. Rogowitz, “Adaptive perceptual colo-texture image segmentation,” IEEE Trans. Image Process. 14, 1524-1536 (2005).
[CrossRef]

Saado, Y.

M. Golosovsky, Y. Saado, and D. Davidov, “Self-assembly of floating magnetic particles into ordered structures,” Appl. Phys. Lett. 75, 4168-4170 (1999).
[CrossRef]

Shahriar, M. S.

J.-K. Lee, J. T. Shen, A. Heifetz, and M. S. Shahriar, “Demonstration of a spectrally scanned holographic Stokesmeter,” Opt. Commun. 277, 63-66 (2007).
[CrossRef]

J.-K. Lee, J. T. Shen, A. Heifetz, R. Tripathi, and M. S. Shahriar, “Demonstration of a thick holographic Stokesmeter,” Opt. Commun. 259, 484-487 (2006).
[CrossRef]

M. S. Shahriar, J. T. Shen, M. A. Hall, R. Tripathi, J-.K. Lee, and A. Heifetz, “Highly polarization-sensitive thick gratings for a holographic Stokesmeter,” Opt. Commun. 245, 67-73 (2005).
[CrossRef]

M. S. Shahriar, J. T. Shen, R. Tripathi, M. Kleinschmitt, T. Nee, and S. F. Nee, “Ultrafast holographic Stokesmeter for polarization imaging in real time,” Opt. Lett. 29, 298-300(2004).
[CrossRef] [PubMed]

Shen, J. T.

J.-K. Lee, J. T. Shen, A. Heifetz, and M. S. Shahriar, “Demonstration of a spectrally scanned holographic Stokesmeter,” Opt. Commun. 277, 63-66 (2007).
[CrossRef]

J.-K. Lee, J. T. Shen, A. Heifetz, R. Tripathi, and M. S. Shahriar, “Demonstration of a thick holographic Stokesmeter,” Opt. Commun. 259, 484-487 (2006).
[CrossRef]

M. S. Shahriar, J. T. Shen, M. A. Hall, R. Tripathi, J-.K. Lee, and A. Heifetz, “Highly polarization-sensitive thick gratings for a holographic Stokesmeter,” Opt. Commun. 245, 67-73 (2005).
[CrossRef]

M. S. Shahriar, J. T. Shen, R. Tripathi, M. Kleinschmitt, T. Nee, and S. F. Nee, “Ultrafast holographic Stokesmeter for polarization imaging in real time,” Opt. Lett. 29, 298-300(2004).
[CrossRef] [PubMed]

Solli, D.

J. M. Hickmann, D. Solli, C. F. McCormick, R. Plambeck, and R. Y. Chiao, “Microwave measurement of the photonic band gap in a two dimensional photonic crystal slab,” J. Appl. Phys. 92, 6918-6920 (2002).
[CrossRef]

Solli, D. R.

D. R. Solli, C. F. McCormick, R. Y. Chiao, and J. M. Hickmann, “Polarization control using photonic crystals,” Opt. Photon. News 14(12), 35 (2003).
[CrossRef]

Travis, L. D.

L. D. Travis, “Remote sensing of aerosol with earth-observing scanning polarimeter,” Proc. SPIE 1747, 154-164 (1992).
[CrossRef]

Tripathi, R.

J.-K. Lee, J. T. Shen, A. Heifetz, R. Tripathi, and M. S. Shahriar, “Demonstration of a thick holographic Stokesmeter,” Opt. Commun. 259, 484-487 (2006).
[CrossRef]

M. S. Shahriar, J. T. Shen, M. A. Hall, R. Tripathi, J-.K. Lee, and A. Heifetz, “Highly polarization-sensitive thick gratings for a holographic Stokesmeter,” Opt. Commun. 245, 67-73 (2005).
[CrossRef]

M. S. Shahriar, J. T. Shen, R. Tripathi, M. Kleinschmitt, T. Nee, and S. F. Nee, “Ultrafast holographic Stokesmeter for polarization imaging in real time,” Opt. Lett. 29, 298-300(2004).
[CrossRef] [PubMed]

Vawter, G. A.

E. Chow, S. Y. Lin, S. G. Johnson, P. R. Villeneuve, J. D. Joannopoulos, J. R. Wendt, G. A. Vawter, W. Zubrzycki, H. Hou, and A. Alleman, “Three dimensional control of light in two dimensional photonic crystalslab,” Nature 407, 983-986 (2000).
[CrossRef] [PubMed]

Villeneuve, P. R.

E. Chow, S. Y. Lin, S. G. Johnson, P. R. Villeneuve, J. D. Joannopoulos, J. R. Wendt, G. A. Vawter, W. Zubrzycki, H. Hou, and A. Alleman, “Three dimensional control of light in two dimensional photonic crystalslab,” Nature 407, 983-986 (2000).
[CrossRef] [PubMed]

Wang, X. J.

B. Li, J. Zhou, L. Li, X. J. Wang, X. H. Liu, and J. Zi, “Ferroelectric inverse opal with electrically tunable photonic band gap,” Appl. Phys. Lett. 83, 4704-4706(2003).
[CrossRef]

Wendt, J. R.

E. Chow, S. Y. Lin, S. G. Johnson, P. R. Villeneuve, J. D. Joannopoulos, J. R. Wendt, G. A. Vawter, W. Zubrzycki, H. Hou, and A. Alleman, “Three dimensional control of light in two dimensional photonic crystalslab,” Nature 407, 983-986 (2000).
[CrossRef] [PubMed]

Zhou, J.

B. Li, J. Zhou, L. Li, X. J. Wang, X. H. Liu, and J. Zi, “Ferroelectric inverse opal with electrically tunable photonic band gap,” Appl. Phys. Lett. 83, 4704-4706(2003).
[CrossRef]

Zi, J.

B. Li, J. Zhou, L. Li, X. J. Wang, X. H. Liu, and J. Zi, “Ferroelectric inverse opal with electrically tunable photonic band gap,” Appl. Phys. Lett. 83, 4704-4706(2003).
[CrossRef]

Zubrzycki, W.

E. Chow, S. Y. Lin, S. G. Johnson, P. R. Villeneuve, J. D. Joannopoulos, J. R. Wendt, G. A. Vawter, W. Zubrzycki, H. Hou, and A. Alleman, “Three dimensional control of light in two dimensional photonic crystalslab,” Nature 407, 983-986 (2000).
[CrossRef] [PubMed]

Appl. Phys. Lett. (3)

B. Li, J. Zhou, L. Li, X. J. Wang, X. H. Liu, and J. Zi, “Ferroelectric inverse opal with electrically tunable photonic band gap,” Appl. Phys. Lett. 83, 4704-4706(2003).
[CrossRef]

M. Golosovsky, Y. Saado, and D. Davidov, “Self-assembly of floating magnetic particles into ordered structures,” Appl. Phys. Lett. 75, 4168-4170 (1999).
[CrossRef]

S. Kim and V. Gopalan, “Strain-tunable photonic band gap crystals,” Appl. Phys. Lett. 78, 3015-3017 (2001).
[CrossRef]

IEEE Trans. Image Process. (1)

J. Chen, T. N. Pappas, A. Mojsilovic, and B. E. Rogowitz, “Adaptive perceptual colo-texture image segmentation,” IEEE Trans. Image Process. 14, 1524-1536 (2005).
[CrossRef]

J. Appl. Phys. (1)

J. M. Hickmann, D. Solli, C. F. McCormick, R. Plambeck, and R. Y. Chiao, “Microwave measurement of the photonic band gap in a two dimensional photonic crystal slab,” J. Appl. Phys. 92, 6918-6920 (2002).
[CrossRef]

J. Opt. Soc. Am. A (1)

Nature (1)

E. Chow, S. Y. Lin, S. G. Johnson, P. R. Villeneuve, J. D. Joannopoulos, J. R. Wendt, G. A. Vawter, W. Zubrzycki, H. Hou, and A. Alleman, “Three dimensional control of light in two dimensional photonic crystalslab,” Nature 407, 983-986 (2000).
[CrossRef] [PubMed]

Opt. Commun. (3)

M. S. Shahriar, J. T. Shen, M. A. Hall, R. Tripathi, J-.K. Lee, and A. Heifetz, “Highly polarization-sensitive thick gratings for a holographic Stokesmeter,” Opt. Commun. 245, 67-73 (2005).
[CrossRef]

J.-K. Lee, J. T. Shen, A. Heifetz, R. Tripathi, and M. S. Shahriar, “Demonstration of a thick holographic Stokesmeter,” Opt. Commun. 259, 484-487 (2006).
[CrossRef]

J.-K. Lee, J. T. Shen, A. Heifetz, and M. S. Shahriar, “Demonstration of a spectrally scanned holographic Stokesmeter,” Opt. Commun. 277, 63-66 (2007).
[CrossRef]

Opt. Eng. (1)

J. L. Pezzaniti and R. A. Chipman, “Mueller matrix imaging polarimetry,” Opt. Eng. 34, 1558-1568 (1995).
[CrossRef]

Opt. Lett. (1)

Opt. Photon. News (1)

D. R. Solli, C. F. McCormick, R. Y. Chiao, and J. M. Hickmann, “Polarization control using photonic crystals,” Opt. Photon. News 14(12), 35 (2003).
[CrossRef]

Proc. SPIE (5)

K. P. Bishop, H. D. McIntire, M. P. Fetrow, and L. McMackin, “Multispectral polarimeter imaging in the visible to near IR,” Proc. SPIE 3699, 49-57 (1999).
[CrossRef]

L. J. Denes, M. Gottlieb, B. Kaminsky, and D. Huber, “Spectropolarimetric imaging for object recognition,” Proc. SPIE 3240, 8-18 (1998).
[CrossRef]

L. D. Travis, “Remote sensing of aerosol with earth-observing scanning polarimeter,” Proc. SPIE 1747, 154-164 (1992).
[CrossRef]

G. L Brun, B. L. Jeune, J. Cariou, and J. Lotrian, “Analysis of polarization signature of immersed target,” Proc. SPIE 1747, 128-139 (1992).
[CrossRef]

T. Nee and S. F. Nee, “Infrared polarization signature for targets,” Proc. SPIE 2469, 231-241 (1995).
[CrossRef]

Remote Sens. Environ. (1)

P. J. Curran, “Polarized visible light as an aid to vegetation classification,” Remote Sens. Environ. 12, 491-499(1982).
[CrossRef]

Other (1)

A. Gerrard and J. M. Burch, Introduction to Matrix Methods in Optics (Dover, 1974).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

(a) Two-dimensional photonic crystals that consist of six rows of 4 mm diameter Pyrex rods ( ε r = 4.2 ) on a 9 mm square lattice. The z-polarized and the y-polarized light is incident on the PBG structure along the x axis. (b) Schematic diagram for PBG calculation (TF, total field; SF, scattered field; PBC, periodic boundary condition; ABC, absorbing boundary condition; Source, Gaussian pulse × sinusoidal function)

Fig. 2
Fig. 2

Photonic bandgaps for z-polarized and y-polarized input beams for an array of 4 mm diameter Pyrex rods ( ε r = 4.2 ) on a 9 mm square lattice.

Fig. 3
Fig. 3

Photonic bandgaps for different linear-polarization states with respect to the z-axis for an array of 4 mm diameter Pyrex rods ( ε r = 4.2 ) on a 9 mm square lattice.

Fig. 4
Fig. 4

The transmission of different linear- polarization states for two different frequencies (e.g., 14 and 15 GHz ) in the bandgaps.

Fig. 5
Fig. 5

(a) Proposed architecture for a PC-based volume-grating Stokesmeter. (b) Input voltage signal scheme of two EOMs (EOM, electro-optic modulator; PBS, polarization beam splitter; PBG, photonic bandgap material; M, mirror; L, lens; D, detector; FPGA, field programmable gate array).

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

CR = T max - T min T min ,
[ I t 1 I t 2 I t 3 I t 4 ] = [ A 1 + B 1 ( A 1 - B 1 ) cos ( 2 γ 1 ) ( A 1 - B 1 ) sin ( 2 γ 1 ) 0 A 2 + B 2 ( A 2 - B 2 ) cos ( 2 γ 2 ) ( A 2 - B 2 ) sin ( 2 γ 2 ) 0 A 1 + B 1 - ( A 1 - B 1 ) cos ( 2 γ 1 ) 0 ( A 1 - B 1 ) sin ( 2 γ 1 ) A 2 + B 2 - ( A 2 - B 2 ) cos ( 2 γ 2 ) 0 ( A 2 - B 2 ) sin ( 2 γ 2 ) ] [ I Q U V ] .

Metrics