Abstract

Remote sensing of coastal and inland waters requires sensors to have a high spatial resolution to cover the spatial variation of biogeochemical properties in fine scales. High spatial-resolution sensors, however, are usually equipped with spectral bands that are wide in bandwidth (50nm or wider). In this study, based on numerical simulations of hyperspectral remote-sensing reflectance of optically-deep waters, and using Landsat band specifics as an example, the impact of a wide spectral channel on remote sensing is analyzed. It is found that simple adoption of a narrowband model may result in >20% underestimation in calculated remote-sensing reflectance, and inversely may result in >20% overestimation in inverted absorption coefficients even under perfect conditions, although smaller (5%) uncertainties are found for higher absorbing waters. These results provide a cautious note, but also a justification for turbid coastal waters, on applying narrowband models to wideband data.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. IOCCG, “Remote sensing of ocean colour in coastal, and other optically-complex, waters,” in Reports of the International Ocean-Colour Coordinating Group, No.3, S. Sathyendranath, ed. (IOCCG, 2000).
  2. IOCCG, “Why ocean colour? The societal benefits of ocean-colour technology,” in Reports of the International Ocean-Colour Coordinating Group, No. 7, T. Platt, N. Hoepffner, V. Stuart, and C. Brown, eds. (IOCCG, 2008).
  3. URL: http://modis.gsfc.nasa.gov/about/specifications.php
  4. URL: http://Landsat.usgs.gov/
  5. URL: http://www.geoeye.com
  6. URL: http://www.digitalglobe.com
  7. URL: http://www.eorc.jaxa.jp/ALOS/en
  8. IOCCG, “Status and plans for satellite ocean-color missions: considerations for complementary missions,” in Reports of the International Ocean-Colour Coordinating Group, No. 2, J. A. Yoder, ed. (IOCCG, 1998).
  9. URL: http://eros.usgs.gov/products/satellite/eo1.php
  10. Z. P. Lee, B. Casey, R. Arnone, A. Weidemann, R. Parsons, M. J. Montes, B.-C. Gao, W. Goode, C. O. Davis, and J. Dye, “Water and bottom properties of a coastal environment derived from Hyperion data measured from the EO-1 spacecraft platform,” J. Appl. Remote Sens. 1, 011502 (2007).
    [CrossRef]
  11. V. E. Brando and A. G. Dekker, “Satellite hyperspectral remote sensing for estimating estuarine and coastal water quality,” IEEE Trans. Geosci. Remote Sens. 41, 1378-1387 (2003).
    [CrossRef]
  12. A. G. Dekker, R. J. Vos, and S. W. M. Peters, “Analytical algorithms for lake water TSM estimation for retrospective analyses of TM and SPOT sensor data,” Int. J. Remote Sensing 23, 15-35 (2002).
    [CrossRef]
  13. F. L. Hellweger, P. Schlosser, U. Lall, and J. K. Weissel, “Use of satellite imagery for water quality studies in New York Harbor,” Remote Sens. Environ. 61, 437-448 (2004).
  14. R. K. Vincent, X. Qin, R. M. L. McKay, J. Miner, K. Czajkowski, J. Savino, and T. Bridgeman, “Phycocyanin detection from LANDSAT TM data for mapping cyanobacterial blooms in Lake Erie,” Remote Sens. Environ. 89, 381-392 (2004).
    [CrossRef]
  15. Y. Zhang, J. T. Pulliainen, S. S. Koponen, and M. T. Hallikaine, “Water quality retrievals from combined Landsat TM data and ERS-2 SAR data in the Gulf of Finland,” IEEE Trans. Geosci. Remote Sens. 41, 622-629 (2003).
    [CrossRef]
  16. R. P. Stumpf, K. Holderied, and M. Sinclair, “Determination of water depth with high-resolution satellite imagery over variable bottom types,” Limnol. Oceanogr. 48, 547-556 (2003).
    [CrossRef]
  17. D. Doxaran, J.-M. Froidefond, S. Lavender, and P. Castaing, “Spectral signature of highly turbid waters: application with SPOT data to quantify suspended particulate matter concentrations,” Remote Sens. Environ. 81, 149-161 (2002).
    [CrossRef]
  18. A. W.-C. Heng, S. C. Liew, and C. W. Chang, “Retrieval of inherent optical properties from Landsat ETM+data: possibilities and limitations,” in Proceedings of 2004 IEEE International Geoscience and Remote Sensing Symposium (IEEE, 2004), pp. 3487-3488.
  19. H. R. Gordon and A. Morel, Remote Assessment of Ocean Color for Interpretation of Satellite Visible Imagery: A Review (Springer-Verlag, 1983).
  20. H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res. 93, 10,909-10,924(1988).
    [CrossRef]
  21. Z. P. Lee, K. L. Carder, and K. P. Du, “Effects of molecular and particle scatterings on model parameters for remote-sensing reflectance,” Appl. Opt. 43, 4957-4964 (2004).
    [CrossRef] [PubMed]
  22. R. W. Preisendorfer, Hydrologic Optics Vol. 1: Introduction (National Technical Information Service, 1976).
  23. Z. P. Lee, K. L. Carder, and R. Arnone, “Deriving inherent optical properties from water color: a multi-band quasi-analytical algorithm for optically deep waters,” Appl. Opt. 41, 5755-5772 (2002).
    [CrossRef] [PubMed]
  24. S. Maritorena, D. A. Siegel, and A. R. Peterson, “Optimization of a semianalytical ocean color model for global-scale applications,” Appl. Opt. 41, 2705-2714 (2002).
    [CrossRef] [PubMed]
  25. K. L. Carder, F. R. Chen, Z. P. Lee, S. K. Hawes, and D. Kamykowski, “Semianalytic moderate-resolution imaging spectrometer algorithms for chlorophyll-a and absorption with bio-optical domains based on nitrate-depletion temperatures,” J. Geophys. Res. 104, 5403-5421 (1999).
    [CrossRef]
  26. C. D. Mobley, Light and Water: Radiative Transfer in Natural Waters (Academic, 1994).
  27. R. Pope and E. Fry, “Absorption spectrum (380-700 nm) of pure waters: II. Integrating cavity measurements,” Appl. Opt. 36, 8710-8723 (1997).
    [CrossRef]
  28. G. M. Hale and M. R. Querry, “Optical constants of water in the 200 nm to 200 μm wavelength region,” Appl. Opt. 12, 555-563 (1973).
    [CrossRef] [PubMed]
  29. A. Morel, “Optical properties of pure water and pure sea water,” in Optical Aspects of Oceanography, N. G. Jerlov and E. S. Nielsen, ed. (Academic, 1974), pp. 1-24.
  30. Z. P. Lee, K. L. Carder, C. D. Mobley, R. G. Steward, and J. S. Patch, “Hyperspectral remote sensing for shallow waters. 1. A semianalytical model,” Appl. Opt. 37, 6329-6338 (1998).
    [CrossRef]
  31. A. Bricaud, A. Morel, and L. Prieur, “Absorption by dissolved organic matter of the sea (yellow substance) in the UV and visible domains,” Limnol. Oceanogr. 26, 43-53 (1981).
    [CrossRef]
  32. J. T. O. Kirk, Light and Photosynthesis in Aquatic Ecosystems (Cambridge University, 1994).
    [CrossRef]
  33. URL: http://Landsathandbook.gsfc.nasa.gov/
  34. R. P. Bukata, J. H. Jerome, K. Y. Kondratyev, and D. V. Pozdnyakov, Optical Properties and Remote Sensing of Inland and Coastal Waters (CRC Press, 1995).
  35. A. G. Dekker, T. J. Malthus, M. M. Wijnen, and E. Seyhan, “The effect of spectral bandwidth and positioning on the spectral signature analysis of inland waters,” Remote Sens. Environ. 41, 211-225 (1992).
    [CrossRef]
  36. Z. P. Lee, A. Weidemann, J. Kindle, R. Arnone, K. L. Carder, and C. Davis, “Euphotic zone depth: Its derivation and implication to ocean-color remote sensing,” J. Geophys. Res. 112, C03009 (2007).
    [CrossRef]
  37. IOCCG, “Remote sensing of inherent optical properties: fundamentals, tests of algorithms, and applications,” in Reports of the International Ocean-Colour Coordinating Group, No. 5, Z. -P. Lee, ed. (IOCCG, 2006), p. 126.
  38. C. Hu, F. E. Muller-Karger, S. Andrefouet, and K. L. Carder, “Atmospheric correction and cross-calibration of LANDSAT-7/ETM+imagery over aquatic environments: a multiplatform approach using SeaWiFS/MODIS,” Remote Sens. Environ. 78, 99-107 (2001).
    [CrossRef]
  39. S. Liang, H. Fang, and M. Chen, “Atmospheric correction of Landsat ETM+Land surface imagery--part I: methods,” IEEE Trans. Geosci. Remote Sens. 39, 2490-2498 (2001).
    [CrossRef]
  40. S. Maritorena, A. Morel, and B. Gentili, “Diffuse reflectance of oceanic shallow waters: influence of water depth and bottom albedo,” Limnol. Oceanogr. 39, 1689-1703 (1994).
    [CrossRef]
  41. Z. P. Lee, K. L. Carder, C. D. Mobley, R. G. Steward, and J. S. Patch, “Hyperspectral remote sensing for shallow waters: 2. Deriving bottom depths and water properties by optimization,” Appl. Opt. 38, 3831-3843 (1999).
    [CrossRef]
  42. Z. P. Lee and K. L. Carder, “Effect of spectral band numbers on the retrieval of water column and bottom properties from ocean color data,” Appl. Opt. 41, 2191-2201 (2002).
    [CrossRef] [PubMed]
  43. R. E. Eplee, W. D. Robinson, S. W. Bailey, D. K. Clark, P. J. Werdell, M. Wang, R. A. Barnes, and C. R. McClain, “Calibration of SeaWiFS. II. Vicarious techniques,” Appl. Opt. 40, 6701-6718 (2001).
    [CrossRef]

2007

Z. P. Lee, A. Weidemann, J. Kindle, R. Arnone, K. L. Carder, and C. Davis, “Euphotic zone depth: Its derivation and implication to ocean-color remote sensing,” J. Geophys. Res. 112, C03009 (2007).
[CrossRef]

Z. P. Lee, B. Casey, R. Arnone, A. Weidemann, R. Parsons, M. J. Montes, B.-C. Gao, W. Goode, C. O. Davis, and J. Dye, “Water and bottom properties of a coastal environment derived from Hyperion data measured from the EO-1 spacecraft platform,” J. Appl. Remote Sens. 1, 011502 (2007).
[CrossRef]

2004

F. L. Hellweger, P. Schlosser, U. Lall, and J. K. Weissel, “Use of satellite imagery for water quality studies in New York Harbor,” Remote Sens. Environ. 61, 437-448 (2004).

R. K. Vincent, X. Qin, R. M. L. McKay, J. Miner, K. Czajkowski, J. Savino, and T. Bridgeman, “Phycocyanin detection from LANDSAT TM data for mapping cyanobacterial blooms in Lake Erie,” Remote Sens. Environ. 89, 381-392 (2004).
[CrossRef]

Z. P. Lee, K. L. Carder, and K. P. Du, “Effects of molecular and particle scatterings on model parameters for remote-sensing reflectance,” Appl. Opt. 43, 4957-4964 (2004).
[CrossRef] [PubMed]

2003

Y. Zhang, J. T. Pulliainen, S. S. Koponen, and M. T. Hallikaine, “Water quality retrievals from combined Landsat TM data and ERS-2 SAR data in the Gulf of Finland,” IEEE Trans. Geosci. Remote Sens. 41, 622-629 (2003).
[CrossRef]

R. P. Stumpf, K. Holderied, and M. Sinclair, “Determination of water depth with high-resolution satellite imagery over variable bottom types,” Limnol. Oceanogr. 48, 547-556 (2003).
[CrossRef]

V. E. Brando and A. G. Dekker, “Satellite hyperspectral remote sensing for estimating estuarine and coastal water quality,” IEEE Trans. Geosci. Remote Sens. 41, 1378-1387 (2003).
[CrossRef]

2002

A. G. Dekker, R. J. Vos, and S. W. M. Peters, “Analytical algorithms for lake water TSM estimation for retrospective analyses of TM and SPOT sensor data,” Int. J. Remote Sensing 23, 15-35 (2002).
[CrossRef]

D. Doxaran, J.-M. Froidefond, S. Lavender, and P. Castaing, “Spectral signature of highly turbid waters: application with SPOT data to quantify suspended particulate matter concentrations,” Remote Sens. Environ. 81, 149-161 (2002).
[CrossRef]

Z. P. Lee and K. L. Carder, “Effect of spectral band numbers on the retrieval of water column and bottom properties from ocean color data,” Appl. Opt. 41, 2191-2201 (2002).
[CrossRef] [PubMed]

S. Maritorena, D. A. Siegel, and A. R. Peterson, “Optimization of a semianalytical ocean color model for global-scale applications,” Appl. Opt. 41, 2705-2714 (2002).
[CrossRef] [PubMed]

Z. P. Lee, K. L. Carder, and R. Arnone, “Deriving inherent optical properties from water color: a multi-band quasi-analytical algorithm for optically deep waters,” Appl. Opt. 41, 5755-5772 (2002).
[CrossRef] [PubMed]

2001

R. E. Eplee, W. D. Robinson, S. W. Bailey, D. K. Clark, P. J. Werdell, M. Wang, R. A. Barnes, and C. R. McClain, “Calibration of SeaWiFS. II. Vicarious techniques,” Appl. Opt. 40, 6701-6718 (2001).
[CrossRef]

C. Hu, F. E. Muller-Karger, S. Andrefouet, and K. L. Carder, “Atmospheric correction and cross-calibration of LANDSAT-7/ETM+imagery over aquatic environments: a multiplatform approach using SeaWiFS/MODIS,” Remote Sens. Environ. 78, 99-107 (2001).
[CrossRef]

S. Liang, H. Fang, and M. Chen, “Atmospheric correction of Landsat ETM+Land surface imagery--part I: methods,” IEEE Trans. Geosci. Remote Sens. 39, 2490-2498 (2001).
[CrossRef]

1999

K. L. Carder, F. R. Chen, Z. P. Lee, S. K. Hawes, and D. Kamykowski, “Semianalytic moderate-resolution imaging spectrometer algorithms for chlorophyll-a and absorption with bio-optical domains based on nitrate-depletion temperatures,” J. Geophys. Res. 104, 5403-5421 (1999).
[CrossRef]

Z. P. Lee, K. L. Carder, C. D. Mobley, R. G. Steward, and J. S. Patch, “Hyperspectral remote sensing for shallow waters: 2. Deriving bottom depths and water properties by optimization,” Appl. Opt. 38, 3831-3843 (1999).
[CrossRef]

1998

1997

1994

S. Maritorena, A. Morel, and B. Gentili, “Diffuse reflectance of oceanic shallow waters: influence of water depth and bottom albedo,” Limnol. Oceanogr. 39, 1689-1703 (1994).
[CrossRef]

1992

A. G. Dekker, T. J. Malthus, M. M. Wijnen, and E. Seyhan, “The effect of spectral bandwidth and positioning on the spectral signature analysis of inland waters,” Remote Sens. Environ. 41, 211-225 (1992).
[CrossRef]

1988

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res. 93, 10,909-10,924(1988).
[CrossRef]

1981

A. Bricaud, A. Morel, and L. Prieur, “Absorption by dissolved organic matter of the sea (yellow substance) in the UV and visible domains,” Limnol. Oceanogr. 26, 43-53 (1981).
[CrossRef]

1973

Andrefouet, S.

C. Hu, F. E. Muller-Karger, S. Andrefouet, and K. L. Carder, “Atmospheric correction and cross-calibration of LANDSAT-7/ETM+imagery over aquatic environments: a multiplatform approach using SeaWiFS/MODIS,” Remote Sens. Environ. 78, 99-107 (2001).
[CrossRef]

Arnone, R.

Z. P. Lee, A. Weidemann, J. Kindle, R. Arnone, K. L. Carder, and C. Davis, “Euphotic zone depth: Its derivation and implication to ocean-color remote sensing,” J. Geophys. Res. 112, C03009 (2007).
[CrossRef]

Z. P. Lee, B. Casey, R. Arnone, A. Weidemann, R. Parsons, M. J. Montes, B.-C. Gao, W. Goode, C. O. Davis, and J. Dye, “Water and bottom properties of a coastal environment derived from Hyperion data measured from the EO-1 spacecraft platform,” J. Appl. Remote Sens. 1, 011502 (2007).
[CrossRef]

Z. P. Lee, K. L. Carder, and R. Arnone, “Deriving inherent optical properties from water color: a multi-band quasi-analytical algorithm for optically deep waters,” Appl. Opt. 41, 5755-5772 (2002).
[CrossRef] [PubMed]

Bailey, S. W.

Baker, K. S.

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res. 93, 10,909-10,924(1988).
[CrossRef]

Barnes, R. A.

Brando, V. E.

V. E. Brando and A. G. Dekker, “Satellite hyperspectral remote sensing for estimating estuarine and coastal water quality,” IEEE Trans. Geosci. Remote Sens. 41, 1378-1387 (2003).
[CrossRef]

Bricaud, A.

A. Bricaud, A. Morel, and L. Prieur, “Absorption by dissolved organic matter of the sea (yellow substance) in the UV and visible domains,” Limnol. Oceanogr. 26, 43-53 (1981).
[CrossRef]

Bridgeman, T.

R. K. Vincent, X. Qin, R. M. L. McKay, J. Miner, K. Czajkowski, J. Savino, and T. Bridgeman, “Phycocyanin detection from LANDSAT TM data for mapping cyanobacterial blooms in Lake Erie,” Remote Sens. Environ. 89, 381-392 (2004).
[CrossRef]

Brown, J. W.

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res. 93, 10,909-10,924(1988).
[CrossRef]

Brown, O. B.

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res. 93, 10,909-10,924(1988).
[CrossRef]

Bukata, R. P.

R. P. Bukata, J. H. Jerome, K. Y. Kondratyev, and D. V. Pozdnyakov, Optical Properties and Remote Sensing of Inland and Coastal Waters (CRC Press, 1995).

Carder, K. L.

Z. P. Lee, A. Weidemann, J. Kindle, R. Arnone, K. L. Carder, and C. Davis, “Euphotic zone depth: Its derivation and implication to ocean-color remote sensing,” J. Geophys. Res. 112, C03009 (2007).
[CrossRef]

Z. P. Lee, K. L. Carder, and K. P. Du, “Effects of molecular and particle scatterings on model parameters for remote-sensing reflectance,” Appl. Opt. 43, 4957-4964 (2004).
[CrossRef] [PubMed]

Z. P. Lee and K. L. Carder, “Effect of spectral band numbers on the retrieval of water column and bottom properties from ocean color data,” Appl. Opt. 41, 2191-2201 (2002).
[CrossRef] [PubMed]

Z. P. Lee, K. L. Carder, and R. Arnone, “Deriving inherent optical properties from water color: a multi-band quasi-analytical algorithm for optically deep waters,” Appl. Opt. 41, 5755-5772 (2002).
[CrossRef] [PubMed]

C. Hu, F. E. Muller-Karger, S. Andrefouet, and K. L. Carder, “Atmospheric correction and cross-calibration of LANDSAT-7/ETM+imagery over aquatic environments: a multiplatform approach using SeaWiFS/MODIS,” Remote Sens. Environ. 78, 99-107 (2001).
[CrossRef]

Z. P. Lee, K. L. Carder, C. D. Mobley, R. G. Steward, and J. S. Patch, “Hyperspectral remote sensing for shallow waters: 2. Deriving bottom depths and water properties by optimization,” Appl. Opt. 38, 3831-3843 (1999).
[CrossRef]

K. L. Carder, F. R. Chen, Z. P. Lee, S. K. Hawes, and D. Kamykowski, “Semianalytic moderate-resolution imaging spectrometer algorithms for chlorophyll-a and absorption with bio-optical domains based on nitrate-depletion temperatures,” J. Geophys. Res. 104, 5403-5421 (1999).
[CrossRef]

Z. P. Lee, K. L. Carder, C. D. Mobley, R. G. Steward, and J. S. Patch, “Hyperspectral remote sensing for shallow waters. 1. A semianalytical model,” Appl. Opt. 37, 6329-6338 (1998).
[CrossRef]

Casey, B.

Z. P. Lee, B. Casey, R. Arnone, A. Weidemann, R. Parsons, M. J. Montes, B.-C. Gao, W. Goode, C. O. Davis, and J. Dye, “Water and bottom properties of a coastal environment derived from Hyperion data measured from the EO-1 spacecraft platform,” J. Appl. Remote Sens. 1, 011502 (2007).
[CrossRef]

Castaing, P.

D. Doxaran, J.-M. Froidefond, S. Lavender, and P. Castaing, “Spectral signature of highly turbid waters: application with SPOT data to quantify suspended particulate matter concentrations,” Remote Sens. Environ. 81, 149-161 (2002).
[CrossRef]

Chang, C. W.

A. W.-C. Heng, S. C. Liew, and C. W. Chang, “Retrieval of inherent optical properties from Landsat ETM+data: possibilities and limitations,” in Proceedings of 2004 IEEE International Geoscience and Remote Sensing Symposium (IEEE, 2004), pp. 3487-3488.

Chen, F. R.

K. L. Carder, F. R. Chen, Z. P. Lee, S. K. Hawes, and D. Kamykowski, “Semianalytic moderate-resolution imaging spectrometer algorithms for chlorophyll-a and absorption with bio-optical domains based on nitrate-depletion temperatures,” J. Geophys. Res. 104, 5403-5421 (1999).
[CrossRef]

Chen, M.

S. Liang, H. Fang, and M. Chen, “Atmospheric correction of Landsat ETM+Land surface imagery--part I: methods,” IEEE Trans. Geosci. Remote Sens. 39, 2490-2498 (2001).
[CrossRef]

Clark, D. K.

R. E. Eplee, W. D. Robinson, S. W. Bailey, D. K. Clark, P. J. Werdell, M. Wang, R. A. Barnes, and C. R. McClain, “Calibration of SeaWiFS. II. Vicarious techniques,” Appl. Opt. 40, 6701-6718 (2001).
[CrossRef]

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res. 93, 10,909-10,924(1988).
[CrossRef]

Czajkowski, K.

R. K. Vincent, X. Qin, R. M. L. McKay, J. Miner, K. Czajkowski, J. Savino, and T. Bridgeman, “Phycocyanin detection from LANDSAT TM data for mapping cyanobacterial blooms in Lake Erie,” Remote Sens. Environ. 89, 381-392 (2004).
[CrossRef]

Davis, C.

Z. P. Lee, A. Weidemann, J. Kindle, R. Arnone, K. L. Carder, and C. Davis, “Euphotic zone depth: Its derivation and implication to ocean-color remote sensing,” J. Geophys. Res. 112, C03009 (2007).
[CrossRef]

Davis, C. O.

Z. P. Lee, B. Casey, R. Arnone, A. Weidemann, R. Parsons, M. J. Montes, B.-C. Gao, W. Goode, C. O. Davis, and J. Dye, “Water and bottom properties of a coastal environment derived from Hyperion data measured from the EO-1 spacecraft platform,” J. Appl. Remote Sens. 1, 011502 (2007).
[CrossRef]

Dekker, A. G.

V. E. Brando and A. G. Dekker, “Satellite hyperspectral remote sensing for estimating estuarine and coastal water quality,” IEEE Trans. Geosci. Remote Sens. 41, 1378-1387 (2003).
[CrossRef]

A. G. Dekker, R. J. Vos, and S. W. M. Peters, “Analytical algorithms for lake water TSM estimation for retrospective analyses of TM and SPOT sensor data,” Int. J. Remote Sensing 23, 15-35 (2002).
[CrossRef]

A. G. Dekker, T. J. Malthus, M. M. Wijnen, and E. Seyhan, “The effect of spectral bandwidth and positioning on the spectral signature analysis of inland waters,” Remote Sens. Environ. 41, 211-225 (1992).
[CrossRef]

Doxaran, D.

D. Doxaran, J.-M. Froidefond, S. Lavender, and P. Castaing, “Spectral signature of highly turbid waters: application with SPOT data to quantify suspended particulate matter concentrations,” Remote Sens. Environ. 81, 149-161 (2002).
[CrossRef]

Du, K. P.

Dye, J.

Z. P. Lee, B. Casey, R. Arnone, A. Weidemann, R. Parsons, M. J. Montes, B.-C. Gao, W. Goode, C. O. Davis, and J. Dye, “Water and bottom properties of a coastal environment derived from Hyperion data measured from the EO-1 spacecraft platform,” J. Appl. Remote Sens. 1, 011502 (2007).
[CrossRef]

Eplee, R. E.

Evans, R. H.

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res. 93, 10,909-10,924(1988).
[CrossRef]

Fang, H.

S. Liang, H. Fang, and M. Chen, “Atmospheric correction of Landsat ETM+Land surface imagery--part I: methods,” IEEE Trans. Geosci. Remote Sens. 39, 2490-2498 (2001).
[CrossRef]

Froidefond, J.-M.

D. Doxaran, J.-M. Froidefond, S. Lavender, and P. Castaing, “Spectral signature of highly turbid waters: application with SPOT data to quantify suspended particulate matter concentrations,” Remote Sens. Environ. 81, 149-161 (2002).
[CrossRef]

Fry, E.

Gao, B.-C.

Z. P. Lee, B. Casey, R. Arnone, A. Weidemann, R. Parsons, M. J. Montes, B.-C. Gao, W. Goode, C. O. Davis, and J. Dye, “Water and bottom properties of a coastal environment derived from Hyperion data measured from the EO-1 spacecraft platform,” J. Appl. Remote Sens. 1, 011502 (2007).
[CrossRef]

Gentili, B.

S. Maritorena, A. Morel, and B. Gentili, “Diffuse reflectance of oceanic shallow waters: influence of water depth and bottom albedo,” Limnol. Oceanogr. 39, 1689-1703 (1994).
[CrossRef]

Goode, W.

Z. P. Lee, B. Casey, R. Arnone, A. Weidemann, R. Parsons, M. J. Montes, B.-C. Gao, W. Goode, C. O. Davis, and J. Dye, “Water and bottom properties of a coastal environment derived from Hyperion data measured from the EO-1 spacecraft platform,” J. Appl. Remote Sens. 1, 011502 (2007).
[CrossRef]

Gordon, H. R.

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res. 93, 10,909-10,924(1988).
[CrossRef]

H. R. Gordon and A. Morel, Remote Assessment of Ocean Color for Interpretation of Satellite Visible Imagery: A Review (Springer-Verlag, 1983).

Hale, G. M.

Hallikaine, M. T.

Y. Zhang, J. T. Pulliainen, S. S. Koponen, and M. T. Hallikaine, “Water quality retrievals from combined Landsat TM data and ERS-2 SAR data in the Gulf of Finland,” IEEE Trans. Geosci. Remote Sens. 41, 622-629 (2003).
[CrossRef]

Hawes, S. K.

K. L. Carder, F. R. Chen, Z. P. Lee, S. K. Hawes, and D. Kamykowski, “Semianalytic moderate-resolution imaging spectrometer algorithms for chlorophyll-a and absorption with bio-optical domains based on nitrate-depletion temperatures,” J. Geophys. Res. 104, 5403-5421 (1999).
[CrossRef]

Hellweger, F. L.

F. L. Hellweger, P. Schlosser, U. Lall, and J. K. Weissel, “Use of satellite imagery for water quality studies in New York Harbor,” Remote Sens. Environ. 61, 437-448 (2004).

Heng, A. W.-C.

A. W.-C. Heng, S. C. Liew, and C. W. Chang, “Retrieval of inherent optical properties from Landsat ETM+data: possibilities and limitations,” in Proceedings of 2004 IEEE International Geoscience and Remote Sensing Symposium (IEEE, 2004), pp. 3487-3488.

Holderied, K.

R. P. Stumpf, K. Holderied, and M. Sinclair, “Determination of water depth with high-resolution satellite imagery over variable bottom types,” Limnol. Oceanogr. 48, 547-556 (2003).
[CrossRef]

Hu, C.

C. Hu, F. E. Muller-Karger, S. Andrefouet, and K. L. Carder, “Atmospheric correction and cross-calibration of LANDSAT-7/ETM+imagery over aquatic environments: a multiplatform approach using SeaWiFS/MODIS,” Remote Sens. Environ. 78, 99-107 (2001).
[CrossRef]

Jerome, J. H.

R. P. Bukata, J. H. Jerome, K. Y. Kondratyev, and D. V. Pozdnyakov, Optical Properties and Remote Sensing of Inland and Coastal Waters (CRC Press, 1995).

Kamykowski, D.

K. L. Carder, F. R. Chen, Z. P. Lee, S. K. Hawes, and D. Kamykowski, “Semianalytic moderate-resolution imaging spectrometer algorithms for chlorophyll-a and absorption with bio-optical domains based on nitrate-depletion temperatures,” J. Geophys. Res. 104, 5403-5421 (1999).
[CrossRef]

Kindle, J.

Z. P. Lee, A. Weidemann, J. Kindle, R. Arnone, K. L. Carder, and C. Davis, “Euphotic zone depth: Its derivation and implication to ocean-color remote sensing,” J. Geophys. Res. 112, C03009 (2007).
[CrossRef]

Kirk, J. T. O.

J. T. O. Kirk, Light and Photosynthesis in Aquatic Ecosystems (Cambridge University, 1994).
[CrossRef]

Kondratyev, K. Y.

R. P. Bukata, J. H. Jerome, K. Y. Kondratyev, and D. V. Pozdnyakov, Optical Properties and Remote Sensing of Inland and Coastal Waters (CRC Press, 1995).

Koponen, S. S.

Y. Zhang, J. T. Pulliainen, S. S. Koponen, and M. T. Hallikaine, “Water quality retrievals from combined Landsat TM data and ERS-2 SAR data in the Gulf of Finland,” IEEE Trans. Geosci. Remote Sens. 41, 622-629 (2003).
[CrossRef]

Lall, U.

F. L. Hellweger, P. Schlosser, U. Lall, and J. K. Weissel, “Use of satellite imagery for water quality studies in New York Harbor,” Remote Sens. Environ. 61, 437-448 (2004).

Lavender, S.

D. Doxaran, J.-M. Froidefond, S. Lavender, and P. Castaing, “Spectral signature of highly turbid waters: application with SPOT data to quantify suspended particulate matter concentrations,” Remote Sens. Environ. 81, 149-161 (2002).
[CrossRef]

Lee, Z. P.

Z. P. Lee, A. Weidemann, J. Kindle, R. Arnone, K. L. Carder, and C. Davis, “Euphotic zone depth: Its derivation and implication to ocean-color remote sensing,” J. Geophys. Res. 112, C03009 (2007).
[CrossRef]

Z. P. Lee, B. Casey, R. Arnone, A. Weidemann, R. Parsons, M. J. Montes, B.-C. Gao, W. Goode, C. O. Davis, and J. Dye, “Water and bottom properties of a coastal environment derived from Hyperion data measured from the EO-1 spacecraft platform,” J. Appl. Remote Sens. 1, 011502 (2007).
[CrossRef]

Z. P. Lee, K. L. Carder, and K. P. Du, “Effects of molecular and particle scatterings on model parameters for remote-sensing reflectance,” Appl. Opt. 43, 4957-4964 (2004).
[CrossRef] [PubMed]

Z. P. Lee and K. L. Carder, “Effect of spectral band numbers on the retrieval of water column and bottom properties from ocean color data,” Appl. Opt. 41, 2191-2201 (2002).
[CrossRef] [PubMed]

Z. P. Lee, K. L. Carder, and R. Arnone, “Deriving inherent optical properties from water color: a multi-band quasi-analytical algorithm for optically deep waters,” Appl. Opt. 41, 5755-5772 (2002).
[CrossRef] [PubMed]

Z. P. Lee, K. L. Carder, C. D. Mobley, R. G. Steward, and J. S. Patch, “Hyperspectral remote sensing for shallow waters: 2. Deriving bottom depths and water properties by optimization,” Appl. Opt. 38, 3831-3843 (1999).
[CrossRef]

K. L. Carder, F. R. Chen, Z. P. Lee, S. K. Hawes, and D. Kamykowski, “Semianalytic moderate-resolution imaging spectrometer algorithms for chlorophyll-a and absorption with bio-optical domains based on nitrate-depletion temperatures,” J. Geophys. Res. 104, 5403-5421 (1999).
[CrossRef]

Z. P. Lee, K. L. Carder, C. D. Mobley, R. G. Steward, and J. S. Patch, “Hyperspectral remote sensing for shallow waters. 1. A semianalytical model,” Appl. Opt. 37, 6329-6338 (1998).
[CrossRef]

Liang, S.

S. Liang, H. Fang, and M. Chen, “Atmospheric correction of Landsat ETM+Land surface imagery--part I: methods,” IEEE Trans. Geosci. Remote Sens. 39, 2490-2498 (2001).
[CrossRef]

Liew, S. C.

A. W.-C. Heng, S. C. Liew, and C. W. Chang, “Retrieval of inherent optical properties from Landsat ETM+data: possibilities and limitations,” in Proceedings of 2004 IEEE International Geoscience and Remote Sensing Symposium (IEEE, 2004), pp. 3487-3488.

Malthus, T. J.

A. G. Dekker, T. J. Malthus, M. M. Wijnen, and E. Seyhan, “The effect of spectral bandwidth and positioning on the spectral signature analysis of inland waters,” Remote Sens. Environ. 41, 211-225 (1992).
[CrossRef]

Maritorena, S.

S. Maritorena, D. A. Siegel, and A. R. Peterson, “Optimization of a semianalytical ocean color model for global-scale applications,” Appl. Opt. 41, 2705-2714 (2002).
[CrossRef] [PubMed]

S. Maritorena, A. Morel, and B. Gentili, “Diffuse reflectance of oceanic shallow waters: influence of water depth and bottom albedo,” Limnol. Oceanogr. 39, 1689-1703 (1994).
[CrossRef]

McClain, C. R.

McKay, R. M. L.

R. K. Vincent, X. Qin, R. M. L. McKay, J. Miner, K. Czajkowski, J. Savino, and T. Bridgeman, “Phycocyanin detection from LANDSAT TM data for mapping cyanobacterial blooms in Lake Erie,” Remote Sens. Environ. 89, 381-392 (2004).
[CrossRef]

Miner, J.

R. K. Vincent, X. Qin, R. M. L. McKay, J. Miner, K. Czajkowski, J. Savino, and T. Bridgeman, “Phycocyanin detection from LANDSAT TM data for mapping cyanobacterial blooms in Lake Erie,” Remote Sens. Environ. 89, 381-392 (2004).
[CrossRef]

Mobley, C. D.

Montes, M. J.

Z. P. Lee, B. Casey, R. Arnone, A. Weidemann, R. Parsons, M. J. Montes, B.-C. Gao, W. Goode, C. O. Davis, and J. Dye, “Water and bottom properties of a coastal environment derived from Hyperion data measured from the EO-1 spacecraft platform,” J. Appl. Remote Sens. 1, 011502 (2007).
[CrossRef]

Morel, A.

S. Maritorena, A. Morel, and B. Gentili, “Diffuse reflectance of oceanic shallow waters: influence of water depth and bottom albedo,” Limnol. Oceanogr. 39, 1689-1703 (1994).
[CrossRef]

A. Bricaud, A. Morel, and L. Prieur, “Absorption by dissolved organic matter of the sea (yellow substance) in the UV and visible domains,” Limnol. Oceanogr. 26, 43-53 (1981).
[CrossRef]

A. Morel, “Optical properties of pure water and pure sea water,” in Optical Aspects of Oceanography, N. G. Jerlov and E. S. Nielsen, ed. (Academic, 1974), pp. 1-24.

H. R. Gordon and A. Morel, Remote Assessment of Ocean Color for Interpretation of Satellite Visible Imagery: A Review (Springer-Verlag, 1983).

Muller-Karger, F. E.

C. Hu, F. E. Muller-Karger, S. Andrefouet, and K. L. Carder, “Atmospheric correction and cross-calibration of LANDSAT-7/ETM+imagery over aquatic environments: a multiplatform approach using SeaWiFS/MODIS,” Remote Sens. Environ. 78, 99-107 (2001).
[CrossRef]

Parsons, R.

Z. P. Lee, B. Casey, R. Arnone, A. Weidemann, R. Parsons, M. J. Montes, B.-C. Gao, W. Goode, C. O. Davis, and J. Dye, “Water and bottom properties of a coastal environment derived from Hyperion data measured from the EO-1 spacecraft platform,” J. Appl. Remote Sens. 1, 011502 (2007).
[CrossRef]

Patch, J. S.

Peters, S. W. M.

A. G. Dekker, R. J. Vos, and S. W. M. Peters, “Analytical algorithms for lake water TSM estimation for retrospective analyses of TM and SPOT sensor data,” Int. J. Remote Sensing 23, 15-35 (2002).
[CrossRef]

Peterson, A. R.

Pope, R.

Pozdnyakov, D. V.

R. P. Bukata, J. H. Jerome, K. Y. Kondratyev, and D. V. Pozdnyakov, Optical Properties and Remote Sensing of Inland and Coastal Waters (CRC Press, 1995).

Preisendorfer, R. W.

R. W. Preisendorfer, Hydrologic Optics Vol. 1: Introduction (National Technical Information Service, 1976).

Prieur, L.

A. Bricaud, A. Morel, and L. Prieur, “Absorption by dissolved organic matter of the sea (yellow substance) in the UV and visible domains,” Limnol. Oceanogr. 26, 43-53 (1981).
[CrossRef]

Pulliainen, J. T.

Y. Zhang, J. T. Pulliainen, S. S. Koponen, and M. T. Hallikaine, “Water quality retrievals from combined Landsat TM data and ERS-2 SAR data in the Gulf of Finland,” IEEE Trans. Geosci. Remote Sens. 41, 622-629 (2003).
[CrossRef]

Qin, X.

R. K. Vincent, X. Qin, R. M. L. McKay, J. Miner, K. Czajkowski, J. Savino, and T. Bridgeman, “Phycocyanin detection from LANDSAT TM data for mapping cyanobacterial blooms in Lake Erie,” Remote Sens. Environ. 89, 381-392 (2004).
[CrossRef]

Querry, M. R.

Robinson, W. D.

Savino, J.

R. K. Vincent, X. Qin, R. M. L. McKay, J. Miner, K. Czajkowski, J. Savino, and T. Bridgeman, “Phycocyanin detection from LANDSAT TM data for mapping cyanobacterial blooms in Lake Erie,” Remote Sens. Environ. 89, 381-392 (2004).
[CrossRef]

Schlosser, P.

F. L. Hellweger, P. Schlosser, U. Lall, and J. K. Weissel, “Use of satellite imagery for water quality studies in New York Harbor,” Remote Sens. Environ. 61, 437-448 (2004).

Seyhan, E.

A. G. Dekker, T. J. Malthus, M. M. Wijnen, and E. Seyhan, “The effect of spectral bandwidth and positioning on the spectral signature analysis of inland waters,” Remote Sens. Environ. 41, 211-225 (1992).
[CrossRef]

Siegel, D. A.

Sinclair, M.

R. P. Stumpf, K. Holderied, and M. Sinclair, “Determination of water depth with high-resolution satellite imagery over variable bottom types,” Limnol. Oceanogr. 48, 547-556 (2003).
[CrossRef]

Smith, R. C.

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res. 93, 10,909-10,924(1988).
[CrossRef]

Steward, R. G.

Stumpf, R. P.

R. P. Stumpf, K. Holderied, and M. Sinclair, “Determination of water depth with high-resolution satellite imagery over variable bottom types,” Limnol. Oceanogr. 48, 547-556 (2003).
[CrossRef]

Vincent, R. K.

R. K. Vincent, X. Qin, R. M. L. McKay, J. Miner, K. Czajkowski, J. Savino, and T. Bridgeman, “Phycocyanin detection from LANDSAT TM data for mapping cyanobacterial blooms in Lake Erie,” Remote Sens. Environ. 89, 381-392 (2004).
[CrossRef]

Vos, R. J.

A. G. Dekker, R. J. Vos, and S. W. M. Peters, “Analytical algorithms for lake water TSM estimation for retrospective analyses of TM and SPOT sensor data,” Int. J. Remote Sensing 23, 15-35 (2002).
[CrossRef]

Wang, M.

Weidemann, A.

Z. P. Lee, A. Weidemann, J. Kindle, R. Arnone, K. L. Carder, and C. Davis, “Euphotic zone depth: Its derivation and implication to ocean-color remote sensing,” J. Geophys. Res. 112, C03009 (2007).
[CrossRef]

Z. P. Lee, B. Casey, R. Arnone, A. Weidemann, R. Parsons, M. J. Montes, B.-C. Gao, W. Goode, C. O. Davis, and J. Dye, “Water and bottom properties of a coastal environment derived from Hyperion data measured from the EO-1 spacecraft platform,” J. Appl. Remote Sens. 1, 011502 (2007).
[CrossRef]

Weissel, J. K.

F. L. Hellweger, P. Schlosser, U. Lall, and J. K. Weissel, “Use of satellite imagery for water quality studies in New York Harbor,” Remote Sens. Environ. 61, 437-448 (2004).

Werdell, P. J.

Wijnen, M. M.

A. G. Dekker, T. J. Malthus, M. M. Wijnen, and E. Seyhan, “The effect of spectral bandwidth and positioning on the spectral signature analysis of inland waters,” Remote Sens. Environ. 41, 211-225 (1992).
[CrossRef]

Zhang, Y.

Y. Zhang, J. T. Pulliainen, S. S. Koponen, and M. T. Hallikaine, “Water quality retrievals from combined Landsat TM data and ERS-2 SAR data in the Gulf of Finland,” IEEE Trans. Geosci. Remote Sens. 41, 622-629 (2003).
[CrossRef]

Appl. Opt.

G. M. Hale and M. R. Querry, “Optical constants of water in the 200 nm to 200 μm wavelength region,” Appl. Opt. 12, 555-563 (1973).
[CrossRef] [PubMed]

Z. P. Lee, K. L. Carder, C. D. Mobley, R. G. Steward, and J. S. Patch, “Hyperspectral remote sensing for shallow waters. 1. A semianalytical model,” Appl. Opt. 37, 6329-6338 (1998).
[CrossRef]

Z. P. Lee, K. L. Carder, C. D. Mobley, R. G. Steward, and J. S. Patch, “Hyperspectral remote sensing for shallow waters: 2. Deriving bottom depths and water properties by optimization,” Appl. Opt. 38, 3831-3843 (1999).
[CrossRef]

R. Pope and E. Fry, “Absorption spectrum (380-700 nm) of pure waters: II. Integrating cavity measurements,” Appl. Opt. 36, 8710-8723 (1997).
[CrossRef]

R. E. Eplee, W. D. Robinson, S. W. Bailey, D. K. Clark, P. J. Werdell, M. Wang, R. A. Barnes, and C. R. McClain, “Calibration of SeaWiFS. II. Vicarious techniques,” Appl. Opt. 40, 6701-6718 (2001).
[CrossRef]

Z. P. Lee and K. L. Carder, “Effect of spectral band numbers on the retrieval of water column and bottom properties from ocean color data,” Appl. Opt. 41, 2191-2201 (2002).
[CrossRef] [PubMed]

S. Maritorena, D. A. Siegel, and A. R. Peterson, “Optimization of a semianalytical ocean color model for global-scale applications,” Appl. Opt. 41, 2705-2714 (2002).
[CrossRef] [PubMed]

Z. P. Lee, K. L. Carder, and R. Arnone, “Deriving inherent optical properties from water color: a multi-band quasi-analytical algorithm for optically deep waters,” Appl. Opt. 41, 5755-5772 (2002).
[CrossRef] [PubMed]

Z. P. Lee, K. L. Carder, and K. P. Du, “Effects of molecular and particle scatterings on model parameters for remote-sensing reflectance,” Appl. Opt. 43, 4957-4964 (2004).
[CrossRef] [PubMed]

IEEE Trans. Geosci. Remote Sens.

V. E. Brando and A. G. Dekker, “Satellite hyperspectral remote sensing for estimating estuarine and coastal water quality,” IEEE Trans. Geosci. Remote Sens. 41, 1378-1387 (2003).
[CrossRef]

Y. Zhang, J. T. Pulliainen, S. S. Koponen, and M. T. Hallikaine, “Water quality retrievals from combined Landsat TM data and ERS-2 SAR data in the Gulf of Finland,” IEEE Trans. Geosci. Remote Sens. 41, 622-629 (2003).
[CrossRef]

S. Liang, H. Fang, and M. Chen, “Atmospheric correction of Landsat ETM+Land surface imagery--part I: methods,” IEEE Trans. Geosci. Remote Sens. 39, 2490-2498 (2001).
[CrossRef]

Int. J. Remote Sensing

A. G. Dekker, R. J. Vos, and S. W. M. Peters, “Analytical algorithms for lake water TSM estimation for retrospective analyses of TM and SPOT sensor data,” Int. J. Remote Sensing 23, 15-35 (2002).
[CrossRef]

J. Appl. Remote Sens.

Z. P. Lee, B. Casey, R. Arnone, A. Weidemann, R. Parsons, M. J. Montes, B.-C. Gao, W. Goode, C. O. Davis, and J. Dye, “Water and bottom properties of a coastal environment derived from Hyperion data measured from the EO-1 spacecraft platform,” J. Appl. Remote Sens. 1, 011502 (2007).
[CrossRef]

J. Geophys. Res.

Z. P. Lee, A. Weidemann, J. Kindle, R. Arnone, K. L. Carder, and C. Davis, “Euphotic zone depth: Its derivation and implication to ocean-color remote sensing,” J. Geophys. Res. 112, C03009 (2007).
[CrossRef]

H. R. Gordon, O. B. Brown, R. H. Evans, J. W. Brown, R. C. Smith, K. S. Baker, and D. K. Clark, “A semianalytic radiance model of ocean color,” J. Geophys. Res. 93, 10,909-10,924(1988).
[CrossRef]

K. L. Carder, F. R. Chen, Z. P. Lee, S. K. Hawes, and D. Kamykowski, “Semianalytic moderate-resolution imaging spectrometer algorithms for chlorophyll-a and absorption with bio-optical domains based on nitrate-depletion temperatures,” J. Geophys. Res. 104, 5403-5421 (1999).
[CrossRef]

Limnol. Oceanogr.

A. Bricaud, A. Morel, and L. Prieur, “Absorption by dissolved organic matter of the sea (yellow substance) in the UV and visible domains,” Limnol. Oceanogr. 26, 43-53 (1981).
[CrossRef]

R. P. Stumpf, K. Holderied, and M. Sinclair, “Determination of water depth with high-resolution satellite imagery over variable bottom types,” Limnol. Oceanogr. 48, 547-556 (2003).
[CrossRef]

S. Maritorena, A. Morel, and B. Gentili, “Diffuse reflectance of oceanic shallow waters: influence of water depth and bottom albedo,” Limnol. Oceanogr. 39, 1689-1703 (1994).
[CrossRef]

Remote Sens. Environ.

C. Hu, F. E. Muller-Karger, S. Andrefouet, and K. L. Carder, “Atmospheric correction and cross-calibration of LANDSAT-7/ETM+imagery over aquatic environments: a multiplatform approach using SeaWiFS/MODIS,” Remote Sens. Environ. 78, 99-107 (2001).
[CrossRef]

A. G. Dekker, T. J. Malthus, M. M. Wijnen, and E. Seyhan, “The effect of spectral bandwidth and positioning on the spectral signature analysis of inland waters,” Remote Sens. Environ. 41, 211-225 (1992).
[CrossRef]

D. Doxaran, J.-M. Froidefond, S. Lavender, and P. Castaing, “Spectral signature of highly turbid waters: application with SPOT data to quantify suspended particulate matter concentrations,” Remote Sens. Environ. 81, 149-161 (2002).
[CrossRef]

F. L. Hellweger, P. Schlosser, U. Lall, and J. K. Weissel, “Use of satellite imagery for water quality studies in New York Harbor,” Remote Sens. Environ. 61, 437-448 (2004).

R. K. Vincent, X. Qin, R. M. L. McKay, J. Miner, K. Czajkowski, J. Savino, and T. Bridgeman, “Phycocyanin detection from LANDSAT TM data for mapping cyanobacterial blooms in Lake Erie,” Remote Sens. Environ. 89, 381-392 (2004).
[CrossRef]

Other

A. W.-C. Heng, S. C. Liew, and C. W. Chang, “Retrieval of inherent optical properties from Landsat ETM+data: possibilities and limitations,” in Proceedings of 2004 IEEE International Geoscience and Remote Sensing Symposium (IEEE, 2004), pp. 3487-3488.

H. R. Gordon and A. Morel, Remote Assessment of Ocean Color for Interpretation of Satellite Visible Imagery: A Review (Springer-Verlag, 1983).

IOCCG, “Remote sensing of ocean colour in coastal, and other optically-complex, waters,” in Reports of the International Ocean-Colour Coordinating Group, No.3, S. Sathyendranath, ed. (IOCCG, 2000).

IOCCG, “Why ocean colour? The societal benefits of ocean-colour technology,” in Reports of the International Ocean-Colour Coordinating Group, No. 7, T. Platt, N. Hoepffner, V. Stuart, and C. Brown, eds. (IOCCG, 2008).

URL: http://modis.gsfc.nasa.gov/about/specifications.php

URL: http://Landsat.usgs.gov/

URL: http://www.geoeye.com

URL: http://www.digitalglobe.com

URL: http://www.eorc.jaxa.jp/ALOS/en

IOCCG, “Status and plans for satellite ocean-color missions: considerations for complementary missions,” in Reports of the International Ocean-Colour Coordinating Group, No. 2, J. A. Yoder, ed. (IOCCG, 1998).

URL: http://eros.usgs.gov/products/satellite/eo1.php

J. T. O. Kirk, Light and Photosynthesis in Aquatic Ecosystems (Cambridge University, 1994).
[CrossRef]

URL: http://Landsathandbook.gsfc.nasa.gov/

R. P. Bukata, J. H. Jerome, K. Y. Kondratyev, and D. V. Pozdnyakov, Optical Properties and Remote Sensing of Inland and Coastal Waters (CRC Press, 1995).

C. D. Mobley, Light and Water: Radiative Transfer in Natural Waters (Academic, 1994).

A. Morel, “Optical properties of pure water and pure sea water,” in Optical Aspects of Oceanography, N. G. Jerlov and E. S. Nielsen, ed. (Academic, 1974), pp. 1-24.

R. W. Preisendorfer, Hydrologic Optics Vol. 1: Introduction (National Technical Information Service, 1976).

IOCCG, “Remote sensing of inherent optical properties: fundamentals, tests of algorithms, and applications,” in Reports of the International Ocean-Colour Coordinating Group, No. 5, Z. -P. Lee, ed. (IOCCG, 2006), p. 126.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Spectrum of pure water absorption coefficient ( a w ) used in this study (line with dark circle). Also shown is a spectral shape of E d ( λ ) (thin line), modeled by MODTRAN with continental aerosols. The vertical bars indicate the four visible/near-infrared bands of Landsat.

Fig. 2
Fig. 2

Examples of simulated hyperspectral R rs , along with R rs ( λ i W ) calculated by Eq. (3) (open square) and by Eq. (11) (solid circle). Values in each chart indicate the total absorption coefficients at 440 nm , which conceptually indicate that top left represents oceanic water, top right for offshore water, lower left for near-shore water, and lower right for coastal turbid water.

Fig. 3
Fig. 3

Percentage difference between values of R rs ( λ i W ) calculated by Eq. (3) and by Eq. (11) for the four Landsat bands, respectively. Because of the limited numerical simulations, this chart is not intended to draw a definite relationship between the error and the total absorption coefficient, but to indicate the likely uncertainties for different IOPs.

Fig. 4
Fig. 4

Percentage difference, [ a inversion a known ] / a known × 100 , between inverted (using QAA with B 2 as reference wavelength) a ( B 1 ) and known absorption coefficients, for the same data used for Figs. 2, 3. The X axis represents known band-averaged values of a ( B 1 ) . The dark-square symbol represents a comparison between inverted a ( B 1 ) and the absorption at the center wavelength; the open-circle symbol represents a comparison between inverted a ( B 1 ) and known a ( B 1 ) , i.e., a comparison of band- averaged values.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

R rs ( λ i c ) = L w ( λ i c ) E d ( λ i c ) .
R rs ( λ i c ) = G ( λ i c ) b b ( λ i c ) a ( λ i c ) + b b ( λ i c ) .
R rs ( λ i W ) = G ¯ ( λ i W ) b ¯ b ( λ i W ) a ¯ ( λ i W ) + b ¯ b ( λ i W ) .
R rs ( λ i W ) = λ i l λ i u L w ( λ ) d λ λ i l λ i u E d ( λ ) d λ .
R rs ( λ i W ) = λ i l λ i u G ( λ ) b b ( λ ) κ ( λ ) E d ( λ ) d λ / λ i l λ i u E d ( λ ) d λ ,
R rs ( λ i W ) λ i l λ i u G ( λ ) b b ( λ ) κ ( λ ) d λ .
R rs ( λ i W ) λ i l λ i u G ( λ ) d λ λ i l λ i u b b ( λ ) d λ λ i l λ i u κ ( λ ) d λ .
R rs ( λ i W ) G ¯ ( λ i W ) b ¯ b ( λ i W ) a ¯ ( λ i W ) + b ¯ b ( λ i W ) .
R rs = 0.52 r rs 1 1.7 r rs ,
r rs = ( 0.089 + 0.125 b b κ ) b b κ .
R rs ( λ i W ) λ i l λ i u R rs ( λ ) d λ .

Metrics