Abstract

The polarization state of light transmitted through a polymer-dispersed liquid-crystal film with small, spherical, nonabsorbing, partially oriented nematic droplets is theoretically investigated. The model used is based on the effective medium approach. Scattering properties of a single droplet are described by the Rayleigh–Gans approximation. Propagation of coherent light is described within the framework of the Twersky theory. To describe the orientation of liquid-crystal molecules inside droplets and liquid-crystal droplets in a sample, the concept of multilevel order parameters is employed. Conditions for circular and linear polarization of the transmitted light are determined and investigated.

© 2009 Optical Society of America

Full Article  |  PDF Article
OSA Recommended Articles
Gradient polymer-disposed liquid crystal single layer of large nematic droplets for modulation of laser light

Georgi B. Hadjichristov, Yordan G. Marinov, and Alexander G. Petrov
Appl. Opt. 50(16) 2326-2333 (2011)

Polarized light scattering in a novel polymer dispersed liquid-crystal geometry

F. Bloisi, P. Terrecuso, and L. Vicari
J. Opt. Soc. Am. A 14(3) 662-668 (1997)

Origins of Kerr phase and orientational phase in polymer-dispersed liquid crystals

Chia-Ming Chang, Yi-Hsin Lin, Victor Reshetnyak, Chui Ho Park, Ramesh Manda, and Seung Hee Lee
Opt. Express 25(17) 19807-19821 (2017)

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (53)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription