Abstract

We investigate the dispersion mechanism of surface magnetoplasmons for periodic layered structures in the Voigt configuration. An analytical dispersion relation that retains a similar form with ordinary surface plasmons is obtained. The splitting of surface plasma frequency is accompanied with unequal field strengths of surface modes at the two interfaces and is characterized by a simple dynamic model that recasts the role of magnetic force on to the effective mass. The underlying mechanism is illustrated with the transverse currents induced by the cyclotron motion of electrons, which appears as the typical feature of the dynamic Hall effect. In particular, the acoustical and optical branches exhibit an anticrossing scheme for small filling fractions, due to the like symmetry of modes in the two branches. As the parallel wave number changes, the two interaction branches experience a transition of mode pattern from symmetry to antisymmetry, or vice versa.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (4)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (14)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription