Abstract

We investigate and present a generalized methodology for the design of a fiber-bend-loss-based edge filter, starting with the task of evaluating and selecting suitable fibers and then considering the design of a fiber-bending-loss edge filter. As an example to illustrate the methodology, a Corning SMF28e fiber with a 900μm diameter is selected and two sample edge filters are designed for experimental verification. The designed edge filters are compact, easy to fabricate, meet target spectral specifications, and show low polarization-dependent loss, confirming the effectiveness of the proposed methodology for fiber- bend-loss-based edge filter design.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. T. Wlodarczyk, “Wavelength referencing in single-mode microbend sensors,” Opt. Lett. 12, 741-743 (1987).
    [CrossRef] [PubMed]
  2. R. C. Gauthier and C. Ross, “Theoretical and experimental considerations for a single-mode fiber-optic bend-type sensor,” Appl. Opt. 36, 6264-6273 (1997).
    [CrossRef]
  3. S. H. Nam and S. Yin, “High-temperature sensing using whispering gallery mode resonance in bent optical fibers,” IEEE Photon. Technol. Lett. 17, 2391-2393 (2005).
    [CrossRef]
  4. M. D. Nielsen, N. A. Mortensen, M. Albertsen, J. R. Folkenberg, A. Bjarklev, and D. Bonacinni, “Predicting macrobending loss for large-mode area photonic crystal fibers,” Opt. Express 12, 1775 (2004).
    [CrossRef] [PubMed]
  5. Q. Wang, G. Farrell, and T. Freir, “Study of transmission response of edge filters employed in wavelength measurements,” Appl. Opt. 44, 7789-7792 (2005).
    [CrossRef] [PubMed]
  6. Q. Wang, G. Rajan, G. Farrell, P. Wang, Y. Semenova, and T. Freir, “Macrobending fiber loss filter, ratiometric wavelength measurement and application,” Meas. Sci. Technol. 18, 3082-3088 (2007).
    [CrossRef]
  7. Q. Wang, G. Farrell, T. Freir, G. Rajan, and P. Wang, “Low-cost wavelength measurement based on a macrobending single-mode fiber,” Opt. Lett. 31, 1785-1787 (2006).
    [CrossRef] [PubMed]
  8. Q. Wang, G. Rajan, P. Wang, and G. Farrell, “Polarization dependence of bend loss for a standard single-mode fiber,” Opt. Express 15, 4909 (2007).
    [CrossRef] [PubMed]
  9. P. Wang, G. Farrell, Q. Wang, and G. Rajan, “An optimized macrobending fiber based edge filter,” IEEE Photon. Technol. Lett. 19, 1136-1138 (2007).
    [CrossRef]
  10. Q. Wang, G. Rajan, P. Wang, and G. Farrell, “Resolution investigation of ratiometric wavelength measurement system,” Appl. Opt. 46, 6362-6367 (2007).
    [CrossRef] [PubMed]
  11. D. Marcuse, “Curvature loss formula for optical fibers,” J. Opt. Soc. Am. 66, 216-220 (1976).
    [CrossRef]
  12. H. Renner, “Bending losses of coated single-mode fibers: a simple approach,” J. Lightwave Technol. 10, 544-551 (1992).
    [CrossRef]
  13. L. Faustini and G. Martini, “Bend loss in single-mode fibers,” J. Lightwave Technol. 15, 671-679 (1997).
    [CrossRef]
  14. Q. Wang, G. Farrell, and T. Freir, “Theoretical and experimental investigations of macro-bend losses for standard single mode fibers,” Opt. Express 13, 4476-4484 (2005).
    [CrossRef] [PubMed]
  15. R. T. Schermer and J. H. Cole, “Improved bend loss formula verified for optical fiber by simulation and experiment,” IEEE J. Quantum Electron. 43, 899-909 (2007).
    [CrossRef]
  16. Y. Murakami and H. Tsuchiya, “Bending losses of coated single-mode optical fibers,” IEEE J. Quantum Electron. 14, 495-501 (1978).
    [CrossRef]

2007

Q. Wang, G. Rajan, P. Wang, and G. Farrell, “Polarization dependence of bend loss for a standard single-mode fiber,” Opt. Express 15, 4909 (2007).
[CrossRef] [PubMed]

P. Wang, G. Farrell, Q. Wang, and G. Rajan, “An optimized macrobending fiber based edge filter,” IEEE Photon. Technol. Lett. 19, 1136-1138 (2007).
[CrossRef]

Q. Wang, G. Rajan, P. Wang, and G. Farrell, “Resolution investigation of ratiometric wavelength measurement system,” Appl. Opt. 46, 6362-6367 (2007).
[CrossRef] [PubMed]

Q. Wang, G. Rajan, G. Farrell, P. Wang, Y. Semenova, and T. Freir, “Macrobending fiber loss filter, ratiometric wavelength measurement and application,” Meas. Sci. Technol. 18, 3082-3088 (2007).
[CrossRef]

R. T. Schermer and J. H. Cole, “Improved bend loss formula verified for optical fiber by simulation and experiment,” IEEE J. Quantum Electron. 43, 899-909 (2007).
[CrossRef]

2006

2005

2004

1997

1992

H. Renner, “Bending losses of coated single-mode fibers: a simple approach,” J. Lightwave Technol. 10, 544-551 (1992).
[CrossRef]

1987

1978

Y. Murakami and H. Tsuchiya, “Bending losses of coated single-mode optical fibers,” IEEE J. Quantum Electron. 14, 495-501 (1978).
[CrossRef]

1976

Albertsen, M.

Bjarklev, A.

Bonacinni, D.

Cole, J. H.

R. T. Schermer and J. H. Cole, “Improved bend loss formula verified for optical fiber by simulation and experiment,” IEEE J. Quantum Electron. 43, 899-909 (2007).
[CrossRef]

Farrell, G.

Faustini, L.

L. Faustini and G. Martini, “Bend loss in single-mode fibers,” J. Lightwave Technol. 15, 671-679 (1997).
[CrossRef]

Folkenberg, J. R.

Freir, T.

Gauthier, R. C.

Marcuse, D.

Martini, G.

L. Faustini and G. Martini, “Bend loss in single-mode fibers,” J. Lightwave Technol. 15, 671-679 (1997).
[CrossRef]

Mortensen, N. A.

Murakami, Y.

Y. Murakami and H. Tsuchiya, “Bending losses of coated single-mode optical fibers,” IEEE J. Quantum Electron. 14, 495-501 (1978).
[CrossRef]

Nam, S. H.

S. H. Nam and S. Yin, “High-temperature sensing using whispering gallery mode resonance in bent optical fibers,” IEEE Photon. Technol. Lett. 17, 2391-2393 (2005).
[CrossRef]

Nielsen, M. D.

Rajan, G.

Renner, H.

H. Renner, “Bending losses of coated single-mode fibers: a simple approach,” J. Lightwave Technol. 10, 544-551 (1992).
[CrossRef]

Ross, C.

Schermer, R. T.

R. T. Schermer and J. H. Cole, “Improved bend loss formula verified for optical fiber by simulation and experiment,” IEEE J. Quantum Electron. 43, 899-909 (2007).
[CrossRef]

Semenova, Y.

Q. Wang, G. Rajan, G. Farrell, P. Wang, Y. Semenova, and T. Freir, “Macrobending fiber loss filter, ratiometric wavelength measurement and application,” Meas. Sci. Technol. 18, 3082-3088 (2007).
[CrossRef]

Tsuchiya, H.

Y. Murakami and H. Tsuchiya, “Bending losses of coated single-mode optical fibers,” IEEE J. Quantum Electron. 14, 495-501 (1978).
[CrossRef]

Wang, P.

Wang, Q.

Wlodarczyk, M. T.

Yin, S.

S. H. Nam and S. Yin, “High-temperature sensing using whispering gallery mode resonance in bent optical fibers,” IEEE Photon. Technol. Lett. 17, 2391-2393 (2005).
[CrossRef]

Appl. Opt.

IEEE J. Quantum Electron.

R. T. Schermer and J. H. Cole, “Improved bend loss formula verified for optical fiber by simulation and experiment,” IEEE J. Quantum Electron. 43, 899-909 (2007).
[CrossRef]

Y. Murakami and H. Tsuchiya, “Bending losses of coated single-mode optical fibers,” IEEE J. Quantum Electron. 14, 495-501 (1978).
[CrossRef]

IEEE Photon. Technol. Lett.

P. Wang, G. Farrell, Q. Wang, and G. Rajan, “An optimized macrobending fiber based edge filter,” IEEE Photon. Technol. Lett. 19, 1136-1138 (2007).
[CrossRef]

S. H. Nam and S. Yin, “High-temperature sensing using whispering gallery mode resonance in bent optical fibers,” IEEE Photon. Technol. Lett. 17, 2391-2393 (2005).
[CrossRef]

J. Lightwave Technol.

H. Renner, “Bending losses of coated single-mode fibers: a simple approach,” J. Lightwave Technol. 10, 544-551 (1992).
[CrossRef]

L. Faustini and G. Martini, “Bend loss in single-mode fibers,” J. Lightwave Technol. 15, 671-679 (1997).
[CrossRef]

J. Opt. Soc. Am.

Meas. Sci. Technol.

Q. Wang, G. Rajan, G. Farrell, P. Wang, Y. Semenova, and T. Freir, “Macrobending fiber loss filter, ratiometric wavelength measurement and application,” Meas. Sci. Technol. 18, 3082-3088 (2007).
[CrossRef]

Opt. Express

Opt. Lett.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Calculated baseline loss and discrimination range as a function of different fiber NA with a fiber length of five turns when the bend radius is 10.5 mm .

Fig. 2
Fig. 2

Theoretical modeling with correction factor and experimental bend-loss results for SMF28e fiber for different bending radii at a wavelength of 1550 nm and 10 turns of fiber.

Fig. 3
Fig. 3

Correction factor as a function of wavelength for SMF28e fiber.

Fig. 4
Fig. 4

Calculated baseline loss (bend loss at the wavelength of 1500 nm with the correction factor of 1.335) and discrimination range versus different bending radii; the fiber length is one turn.

Fig. 5
Fig. 5

Calculated polarization dependent losses of SMF28e fiber with the bending radius of 8.95 (solid curve), 10.95 (dashed-dotted curve) and 11.45 mm (dashed curve), and with the lengths of two turns, nine turns, and 10 turns, respectively.

Fig. 6
Fig. 6

Calculated (solid symbols connected with solid curves) and measured (* and + symbols) macrobending results for SMF28e fiber at bend radii of 8.95 and 10.95 mm .

Tables (2)

Tables Icon

Table 1 Calculated Parameters versus Bending Radii for Selected Bend Radii with a Target Discrimination Range of 15 dB

Tables Icon

Table 2 Calculated Baseline Loss and Discrimination Range versus Selected Bending Radii with Different Fiber Length

Metrics