Abstract

Low- and high-refractive-index chalcogenide glasses are studied for their potential use in the fabrication of one-dimensional hollow Bragg fibers. The low-index glasses are based on the GeSe–glass systems with indices varying from 2.0 to 2.5, while the high-index glasses are formed from the AgAsSe glasses with indices ranging from 2.8 to 3.8. High-purity elemental starting materials are distilled and the surface oxides removed prior to mixing in a rocking furnace. The refractive indices of the AgAsSe glasses, measured using a CO2 laser reflectometer, were near 3.10 for the compositions most compatible with the low-index Ge20Se80 glass (n=2.46). Spectral measurements show impurity absorption bands between 12 and 16μm. The loss at 10.6μm for the Ag25As40Se35 glass measured using CO2 laser calorimetry was 1.16×103cm1.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. A. Harrington, Infrared Fiber Optics and Their Applications (SPIE, 2004).
    [CrossRef]
  2. R. George and J. A. Harrington, “Infrared transmissive, hollow plastic waveguides with inner Ag--AgI coatings,” Appl. Opt. 44, 6449-6455 (2005).
    [CrossRef] [PubMed]
  3. P. Yeh, A. Yariv, and E. Marom, “Theory of Bragg fiber,” J. Opt. Soc. Am. A 68, 1196-1201 (1978).
    [CrossRef]
  4. Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. Joannopoulos, and E. Thomas, “A dielectric omnidirectional reflector,” Science 282, 1679-1682 (1998).
    [CrossRef] [PubMed]
  5. B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, “Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission,” Nature 420, 650-653 (2002).
    [CrossRef] [PubMed]
  6. L. P. Tate and Y. A. Elce, “Transendoscopic application of CO2 laser radiation using the OmniGuide fiber,” Proc. SPIE 5686, 612-619 (2005).
    [CrossRef]
  7. B. Bowden, J. A. Harrington, and J. L. Cutrera, “Chalcogenide glass 1-D photonic bandgap hollow fiber,” Proc. SPIE 5691, 66-72 (2005).
    [CrossRef]
  8. A. K. Varshneya, Fundamentals of Inorganic Glasses (Academic, 1993).
  9. V. F. Kokorina, Glasses for Infrared Optics (CRC Press, 1996).
  10. T. Nang, M. Okuda, and T. Matsushita, “Composition dependence of the refractive index and its photoinduced variation in the binary glass systems: Ge1−xSex and As1−xSex,” J. Non-Cryst. Solids 33, 311-323 (1979).
    [CrossRef]
  11. A. N. Sreeram, D. R. Swiler, and A. K. Varshneya, “Gibbs-Demarzio equation to describe the glass transition temperature trends in multicomponent chalcogenide glasses,” J. Non-Cryst. Solids 127, 287-297 (1991).
    [CrossRef]
  12. Z. U. Borisova, Glassy Semiconductors (Plenum, 1981).
  13. J. Nishii, S. Morimoto, I. Inagawa, R. Iizuka, T. Yamashita, and T. Yamagishi, “Recent advances and trends in chalcogenide glass fiber technology: a review,” J. Non-Cryst. Solids 140, 199-208 (1992).
    [CrossRef]
  14. Z. U. Borisova and T. S. Rykova, “Some features of glass formation in the silver-arsenic-selenium systems,” Sov. J. Glass Phys. Chem 3, 537-540 (1977).
  15. W. A. King, A. G. Clare, and W. C. Lacourse, “Laboratory preparation of highly pure As2Se33 glass,” J. Non-Cryst. Solids 181, 231-237 (1995).
    [CrossRef]
  16. A. M. Reitter, A. N. Sreeram, A. K. Varshneya, and D. R. Swiler, “Modified preparation procedure for laboratory melting of multicomponent chalcogenide glasses,” J. Non-Cryst. Solids 139, 121-128 (1992).
    [CrossRef]
  17. E. Hecht, Optics (Pearson Education, 2002).
  18. B. J. Stagg and T. T. Charalampopulos, “Sensitivity of the reflection technique: optimum angles of incidence to determine the properties of materials,” Appl. Opt. 31, 4420-4427 (1992).
    [CrossRef] [PubMed]
  19. D. L. Windt, “Software for modeling the optical properties of multilayer films,” Comput. Phys. 12, 360-370 (1998).
    [CrossRef]
  20. H. B. Rosenstock, M. Hass, D. A. Gregory, and J. A. Harrington, “Analysis of laser calorimetric data,” Appl. Opt. 16, 2837-2842 (1977).
    [CrossRef] [PubMed]
  21. J. Sanghera, V. Nguyen, R. Miklos, and I. D. Aggarwal, “Measurement of bulk absorption coefficients of chalcogenide and chalcohalide glasses at 10.6 μm using CO2 laser calorimetry,” J. Non-Cryst. Solids 161, 320-322 (1993).
    [CrossRef]
  22. U. Willamowski, D. Ristau, and E. Welsch, “Measuring the absolute absorptance of optical laser components,” Appl. Opt. 37, 8362-8370 (1998).
    [CrossRef]

2005 (3)

R. George and J. A. Harrington, “Infrared transmissive, hollow plastic waveguides with inner Ag--AgI coatings,” Appl. Opt. 44, 6449-6455 (2005).
[CrossRef] [PubMed]

L. P. Tate and Y. A. Elce, “Transendoscopic application of CO2 laser radiation using the OmniGuide fiber,” Proc. SPIE 5686, 612-619 (2005).
[CrossRef]

B. Bowden, J. A. Harrington, and J. L. Cutrera, “Chalcogenide glass 1-D photonic bandgap hollow fiber,” Proc. SPIE 5691, 66-72 (2005).
[CrossRef]

2002 (1)

B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, “Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission,” Nature 420, 650-653 (2002).
[CrossRef] [PubMed]

1998 (3)

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. Joannopoulos, and E. Thomas, “A dielectric omnidirectional reflector,” Science 282, 1679-1682 (1998).
[CrossRef] [PubMed]

D. L. Windt, “Software for modeling the optical properties of multilayer films,” Comput. Phys. 12, 360-370 (1998).
[CrossRef]

U. Willamowski, D. Ristau, and E. Welsch, “Measuring the absolute absorptance of optical laser components,” Appl. Opt. 37, 8362-8370 (1998).
[CrossRef]

1995 (1)

W. A. King, A. G. Clare, and W. C. Lacourse, “Laboratory preparation of highly pure As2Se33 glass,” J. Non-Cryst. Solids 181, 231-237 (1995).
[CrossRef]

1993 (1)

J. Sanghera, V. Nguyen, R. Miklos, and I. D. Aggarwal, “Measurement of bulk absorption coefficients of chalcogenide and chalcohalide glasses at 10.6 μm using CO2 laser calorimetry,” J. Non-Cryst. Solids 161, 320-322 (1993).
[CrossRef]

1992 (3)

A. M. Reitter, A. N. Sreeram, A. K. Varshneya, and D. R. Swiler, “Modified preparation procedure for laboratory melting of multicomponent chalcogenide glasses,” J. Non-Cryst. Solids 139, 121-128 (1992).
[CrossRef]

B. J. Stagg and T. T. Charalampopulos, “Sensitivity of the reflection technique: optimum angles of incidence to determine the properties of materials,” Appl. Opt. 31, 4420-4427 (1992).
[CrossRef] [PubMed]

J. Nishii, S. Morimoto, I. Inagawa, R. Iizuka, T. Yamashita, and T. Yamagishi, “Recent advances and trends in chalcogenide glass fiber technology: a review,” J. Non-Cryst. Solids 140, 199-208 (1992).
[CrossRef]

1991 (1)

A. N. Sreeram, D. R. Swiler, and A. K. Varshneya, “Gibbs-Demarzio equation to describe the glass transition temperature trends in multicomponent chalcogenide glasses,” J. Non-Cryst. Solids 127, 287-297 (1991).
[CrossRef]

1979 (1)

T. Nang, M. Okuda, and T. Matsushita, “Composition dependence of the refractive index and its photoinduced variation in the binary glass systems: Ge1−xSex and As1−xSex,” J. Non-Cryst. Solids 33, 311-323 (1979).
[CrossRef]

1978 (1)

P. Yeh, A. Yariv, and E. Marom, “Theory of Bragg fiber,” J. Opt. Soc. Am. A 68, 1196-1201 (1978).
[CrossRef]

1977 (2)

Z. U. Borisova and T. S. Rykova, “Some features of glass formation in the silver-arsenic-selenium systems,” Sov. J. Glass Phys. Chem 3, 537-540 (1977).

H. B. Rosenstock, M. Hass, D. A. Gregory, and J. A. Harrington, “Analysis of laser calorimetric data,” Appl. Opt. 16, 2837-2842 (1977).
[CrossRef] [PubMed]

Aggarwal, I. D.

J. Sanghera, V. Nguyen, R. Miklos, and I. D. Aggarwal, “Measurement of bulk absorption coefficients of chalcogenide and chalcohalide glasses at 10.6 μm using CO2 laser calorimetry,” J. Non-Cryst. Solids 161, 320-322 (1993).
[CrossRef]

Benoit, G.

B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, “Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission,” Nature 420, 650-653 (2002).
[CrossRef] [PubMed]

Borisova, Z. U.

Z. U. Borisova and T. S. Rykova, “Some features of glass formation in the silver-arsenic-selenium systems,” Sov. J. Glass Phys. Chem 3, 537-540 (1977).

Z. U. Borisova, Glassy Semiconductors (Plenum, 1981).

Bowden, B.

B. Bowden, J. A. Harrington, and J. L. Cutrera, “Chalcogenide glass 1-D photonic bandgap hollow fiber,” Proc. SPIE 5691, 66-72 (2005).
[CrossRef]

Charalampopulos, T. T.

Chen, C.

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. Joannopoulos, and E. Thomas, “A dielectric omnidirectional reflector,” Science 282, 1679-1682 (1998).
[CrossRef] [PubMed]

Clare, A. G.

W. A. King, A. G. Clare, and W. C. Lacourse, “Laboratory preparation of highly pure As2Se33 glass,” J. Non-Cryst. Solids 181, 231-237 (1995).
[CrossRef]

Cutrera, J. L.

B. Bowden, J. A. Harrington, and J. L. Cutrera, “Chalcogenide glass 1-D photonic bandgap hollow fiber,” Proc. SPIE 5691, 66-72 (2005).
[CrossRef]

Elce, Y. A.

L. P. Tate and Y. A. Elce, “Transendoscopic application of CO2 laser radiation using the OmniGuide fiber,” Proc. SPIE 5686, 612-619 (2005).
[CrossRef]

Fan, S.

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. Joannopoulos, and E. Thomas, “A dielectric omnidirectional reflector,” Science 282, 1679-1682 (1998).
[CrossRef] [PubMed]

Fink, Y.

B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, “Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission,” Nature 420, 650-653 (2002).
[CrossRef] [PubMed]

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. Joannopoulos, and E. Thomas, “A dielectric omnidirectional reflector,” Science 282, 1679-1682 (1998).
[CrossRef] [PubMed]

George, R.

Gregory, D. A.

Harrington, J. A.

Hart, S. D.

B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, “Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission,” Nature 420, 650-653 (2002).
[CrossRef] [PubMed]

Hass, M.

Hecht, E.

E. Hecht, Optics (Pearson Education, 2002).

Iizuka, R.

J. Nishii, S. Morimoto, I. Inagawa, R. Iizuka, T. Yamashita, and T. Yamagishi, “Recent advances and trends in chalcogenide glass fiber technology: a review,” J. Non-Cryst. Solids 140, 199-208 (1992).
[CrossRef]

Inagawa, I.

J. Nishii, S. Morimoto, I. Inagawa, R. Iizuka, T. Yamashita, and T. Yamagishi, “Recent advances and trends in chalcogenide glass fiber technology: a review,” J. Non-Cryst. Solids 140, 199-208 (1992).
[CrossRef]

Joannopoulos, J.

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. Joannopoulos, and E. Thomas, “A dielectric omnidirectional reflector,” Science 282, 1679-1682 (1998).
[CrossRef] [PubMed]

Joannopoulos, J. D.

B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, “Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission,” Nature 420, 650-653 (2002).
[CrossRef] [PubMed]

King, W. A.

W. A. King, A. G. Clare, and W. C. Lacourse, “Laboratory preparation of highly pure As2Se33 glass,” J. Non-Cryst. Solids 181, 231-237 (1995).
[CrossRef]

Kokorina, V. F.

V. F. Kokorina, Glasses for Infrared Optics (CRC Press, 1996).

Lacourse, W. C.

W. A. King, A. G. Clare, and W. C. Lacourse, “Laboratory preparation of highly pure As2Se33 glass,” J. Non-Cryst. Solids 181, 231-237 (1995).
[CrossRef]

Marom, E.

P. Yeh, A. Yariv, and E. Marom, “Theory of Bragg fiber,” J. Opt. Soc. Am. A 68, 1196-1201 (1978).
[CrossRef]

Matsushita, T.

T. Nang, M. Okuda, and T. Matsushita, “Composition dependence of the refractive index and its photoinduced variation in the binary glass systems: Ge1−xSex and As1−xSex,” J. Non-Cryst. Solids 33, 311-323 (1979).
[CrossRef]

Michel, J.

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. Joannopoulos, and E. Thomas, “A dielectric omnidirectional reflector,” Science 282, 1679-1682 (1998).
[CrossRef] [PubMed]

Miklos, R.

J. Sanghera, V. Nguyen, R. Miklos, and I. D. Aggarwal, “Measurement of bulk absorption coefficients of chalcogenide and chalcohalide glasses at 10.6 μm using CO2 laser calorimetry,” J. Non-Cryst. Solids 161, 320-322 (1993).
[CrossRef]

Morimoto, S.

J. Nishii, S. Morimoto, I. Inagawa, R. Iizuka, T. Yamashita, and T. Yamagishi, “Recent advances and trends in chalcogenide glass fiber technology: a review,” J. Non-Cryst. Solids 140, 199-208 (1992).
[CrossRef]

Nang, T.

T. Nang, M. Okuda, and T. Matsushita, “Composition dependence of the refractive index and its photoinduced variation in the binary glass systems: Ge1−xSex and As1−xSex,” J. Non-Cryst. Solids 33, 311-323 (1979).
[CrossRef]

Nguyen, V.

J. Sanghera, V. Nguyen, R. Miklos, and I. D. Aggarwal, “Measurement of bulk absorption coefficients of chalcogenide and chalcohalide glasses at 10.6 μm using CO2 laser calorimetry,” J. Non-Cryst. Solids 161, 320-322 (1993).
[CrossRef]

Nishii, J.

J. Nishii, S. Morimoto, I. Inagawa, R. Iizuka, T. Yamashita, and T. Yamagishi, “Recent advances and trends in chalcogenide glass fiber technology: a review,” J. Non-Cryst. Solids 140, 199-208 (1992).
[CrossRef]

Okuda, M.

T. Nang, M. Okuda, and T. Matsushita, “Composition dependence of the refractive index and its photoinduced variation in the binary glass systems: Ge1−xSex and As1−xSex,” J. Non-Cryst. Solids 33, 311-323 (1979).
[CrossRef]

Reitter, A. M.

A. M. Reitter, A. N. Sreeram, A. K. Varshneya, and D. R. Swiler, “Modified preparation procedure for laboratory melting of multicomponent chalcogenide glasses,” J. Non-Cryst. Solids 139, 121-128 (1992).
[CrossRef]

Ristau, D.

Rosenstock, H. B.

Rykova, T. S.

Z. U. Borisova and T. S. Rykova, “Some features of glass formation in the silver-arsenic-selenium systems,” Sov. J. Glass Phys. Chem 3, 537-540 (1977).

Sanghera, J.

J. Sanghera, V. Nguyen, R. Miklos, and I. D. Aggarwal, “Measurement of bulk absorption coefficients of chalcogenide and chalcohalide glasses at 10.6 μm using CO2 laser calorimetry,” J. Non-Cryst. Solids 161, 320-322 (1993).
[CrossRef]

Sreeram, A. N.

A. M. Reitter, A. N. Sreeram, A. K. Varshneya, and D. R. Swiler, “Modified preparation procedure for laboratory melting of multicomponent chalcogenide glasses,” J. Non-Cryst. Solids 139, 121-128 (1992).
[CrossRef]

A. N. Sreeram, D. R. Swiler, and A. K. Varshneya, “Gibbs-Demarzio equation to describe the glass transition temperature trends in multicomponent chalcogenide glasses,” J. Non-Cryst. Solids 127, 287-297 (1991).
[CrossRef]

Stagg, B. J.

Swiler, D. R.

A. M. Reitter, A. N. Sreeram, A. K. Varshneya, and D. R. Swiler, “Modified preparation procedure for laboratory melting of multicomponent chalcogenide glasses,” J. Non-Cryst. Solids 139, 121-128 (1992).
[CrossRef]

A. N. Sreeram, D. R. Swiler, and A. K. Varshneya, “Gibbs-Demarzio equation to describe the glass transition temperature trends in multicomponent chalcogenide glasses,” J. Non-Cryst. Solids 127, 287-297 (1991).
[CrossRef]

Tate, L. P.

L. P. Tate and Y. A. Elce, “Transendoscopic application of CO2 laser radiation using the OmniGuide fiber,” Proc. SPIE 5686, 612-619 (2005).
[CrossRef]

Temelkuran, B.

B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, “Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission,” Nature 420, 650-653 (2002).
[CrossRef] [PubMed]

Thomas, E.

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. Joannopoulos, and E. Thomas, “A dielectric omnidirectional reflector,” Science 282, 1679-1682 (1998).
[CrossRef] [PubMed]

Varshneya, A. K.

A. M. Reitter, A. N. Sreeram, A. K. Varshneya, and D. R. Swiler, “Modified preparation procedure for laboratory melting of multicomponent chalcogenide glasses,” J. Non-Cryst. Solids 139, 121-128 (1992).
[CrossRef]

A. N. Sreeram, D. R. Swiler, and A. K. Varshneya, “Gibbs-Demarzio equation to describe the glass transition temperature trends in multicomponent chalcogenide glasses,” J. Non-Cryst. Solids 127, 287-297 (1991).
[CrossRef]

A. K. Varshneya, Fundamentals of Inorganic Glasses (Academic, 1993).

Welsch, E.

Willamowski, U.

Windt, D. L.

D. L. Windt, “Software for modeling the optical properties of multilayer films,” Comput. Phys. 12, 360-370 (1998).
[CrossRef]

Winn, J. N.

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. Joannopoulos, and E. Thomas, “A dielectric omnidirectional reflector,” Science 282, 1679-1682 (1998).
[CrossRef] [PubMed]

Yamagishi, T.

J. Nishii, S. Morimoto, I. Inagawa, R. Iizuka, T. Yamashita, and T. Yamagishi, “Recent advances and trends in chalcogenide glass fiber technology: a review,” J. Non-Cryst. Solids 140, 199-208 (1992).
[CrossRef]

Yamashita, T.

J. Nishii, S. Morimoto, I. Inagawa, R. Iizuka, T. Yamashita, and T. Yamagishi, “Recent advances and trends in chalcogenide glass fiber technology: a review,” J. Non-Cryst. Solids 140, 199-208 (1992).
[CrossRef]

Yariv, A.

P. Yeh, A. Yariv, and E. Marom, “Theory of Bragg fiber,” J. Opt. Soc. Am. A 68, 1196-1201 (1978).
[CrossRef]

Yeh, P.

P. Yeh, A. Yariv, and E. Marom, “Theory of Bragg fiber,” J. Opt. Soc. Am. A 68, 1196-1201 (1978).
[CrossRef]

Appl. Opt. (4)

Comput. Phys. (1)

D. L. Windt, “Software for modeling the optical properties of multilayer films,” Comput. Phys. 12, 360-370 (1998).
[CrossRef]

J. Non-Cryst. Solids (6)

J. Sanghera, V. Nguyen, R. Miklos, and I. D. Aggarwal, “Measurement of bulk absorption coefficients of chalcogenide and chalcohalide glasses at 10.6 μm using CO2 laser calorimetry,” J. Non-Cryst. Solids 161, 320-322 (1993).
[CrossRef]

J. Nishii, S. Morimoto, I. Inagawa, R. Iizuka, T. Yamashita, and T. Yamagishi, “Recent advances and trends in chalcogenide glass fiber technology: a review,” J. Non-Cryst. Solids 140, 199-208 (1992).
[CrossRef]

W. A. King, A. G. Clare, and W. C. Lacourse, “Laboratory preparation of highly pure As2Se33 glass,” J. Non-Cryst. Solids 181, 231-237 (1995).
[CrossRef]

A. M. Reitter, A. N. Sreeram, A. K. Varshneya, and D. R. Swiler, “Modified preparation procedure for laboratory melting of multicomponent chalcogenide glasses,” J. Non-Cryst. Solids 139, 121-128 (1992).
[CrossRef]

T. Nang, M. Okuda, and T. Matsushita, “Composition dependence of the refractive index and its photoinduced variation in the binary glass systems: Ge1−xSex and As1−xSex,” J. Non-Cryst. Solids 33, 311-323 (1979).
[CrossRef]

A. N. Sreeram, D. R. Swiler, and A. K. Varshneya, “Gibbs-Demarzio equation to describe the glass transition temperature trends in multicomponent chalcogenide glasses,” J. Non-Cryst. Solids 127, 287-297 (1991).
[CrossRef]

J. Opt. Soc. Am. A (1)

P. Yeh, A. Yariv, and E. Marom, “Theory of Bragg fiber,” J. Opt. Soc. Am. A 68, 1196-1201 (1978).
[CrossRef]

Nature (1)

B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, “Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission,” Nature 420, 650-653 (2002).
[CrossRef] [PubMed]

Proc. SPIE (2)

L. P. Tate and Y. A. Elce, “Transendoscopic application of CO2 laser radiation using the OmniGuide fiber,” Proc. SPIE 5686, 612-619 (2005).
[CrossRef]

B. Bowden, J. A. Harrington, and J. L. Cutrera, “Chalcogenide glass 1-D photonic bandgap hollow fiber,” Proc. SPIE 5691, 66-72 (2005).
[CrossRef]

Science (1)

Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. Joannopoulos, and E. Thomas, “A dielectric omnidirectional reflector,” Science 282, 1679-1682 (1998).
[CrossRef] [PubMed]

Sov. J. Glass Phys. Chem (1)

Z. U. Borisova and T. S. Rykova, “Some features of glass formation in the silver-arsenic-selenium systems,” Sov. J. Glass Phys. Chem 3, 537-540 (1977).

Other (5)

E. Hecht, Optics (Pearson Education, 2002).

Z. U. Borisova, Glassy Semiconductors (Plenum, 1981).

A. K. Varshneya, Fundamentals of Inorganic Glasses (Academic, 1993).

V. F. Kokorina, Glasses for Infrared Optics (CRC Press, 1996).

J. A. Harrington, Infrared Fiber Optics and Their Applications (SPIE, 2004).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic diagram of the proposed fiber’s cross section showing its air core (a), chalcogenide glass 1-D HBF film (b), and thick polymer coating (c). A schematic of the HBF film and polymer substrate is shown below the cross section.

Fig. 2
Fig. 2

(a) Schematic diagram of the rocking furnace used to melt chalcogenide glasses. (b) Photograph of an ampoule (top) used to melt chalcogenide glass compositions and an Ag-As-Se glass slug (bottom).

Fig. 3
Fig. 3

Schematic diagram of a variable-angle reflectometer.

Fig. 4
Fig. 4

Refractive indices of Ag-As-Se glasses are indicated on a ternary diagram.

Fig. 5
Fig. 5

IR transmission spectra of 3 mm thick chalcogenide glass plates.

Fig. 6
Fig. 6

Schematic diagram of a CO 2 laser calorimeter is shown.

Fig. 7
Fig. 7

Δ T plotted as a function of time for a 14.7 mm Ag 25 As 40 Se 35 glass rod heated with a CO 2 laser for 120 s .

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

R p = [ n 1 · cos θ 0 cos [ sin 1 ( 1 n 1 · sin θ 0 ) ] n 1 · cos θ 0 + cos [ sin 1 ( 1 n 1 · sin θ 0 ) ] ] 2 ,
a = n + 1 2 · n · m · c p L · P T · ( d T d t | c + d T d t | h ) ,

Metrics