Abstract

We report multiple holographic recording and optical address recognition schemes in Methyl Red-doped liquid-crystal film without an applied electric field. Ten gratings are recorded at a single location of a 5mm2 area by using optical multiplexing methods, and the diffraction efficiencies are studied for multiplexed gratings. Diffraction behavior of angular and peristrophic multiplexed gratings is discussed, and two methods that involve recording angles and peristrophic rotation angles are presented for optical recognition.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. Gao, K. Gu, Z. Zhou, Y. Jiang, and D. Gong, “Diffraction behavior of an azo-dye-doped nematic liquid crystal without applied electric field,” Curr. Appl. Phys. 8, 31-35 (2008).
    [CrossRef]
  2. H. Gao, Z. Zhou, and Y. Jiang, “Holographic image storage and multiple hologram storage in a planar Methyl Red-doped nematic liquid crystal film,” Appl. Opt. 47, 2437-2442 (2008).
    [CrossRef] [PubMed]
  3. P. Pagliusi and G. Cipparrone, “Surface-induced photorefractive-like. effect in pure liquid crystals,” Appl. Phys. Lett. 80, 168-170 (2002).
    [CrossRef]
  4. L. Lucchetti, M. Gentili, and F. Simoni, “Pretransitional enhancement of the optical nonlinearity of thin dye-doped liquid crystals in the nematic phase,” Appl. Phys. Lett. 86, 151117 (2005).
    [CrossRef]
  5. I. C. Khoo, “Orientational photorefractive effects in nematic liquid crystal films,” IEEE J. Quantum Electron. 32, 525-534 (1996).
    [CrossRef]
  6. A. Y. G. Fuh, C. C. Liao, K. C. Hsu, C. L. Lu, and C. Y. Tsai, “Dynamic studies of holographic gratings in dye-doped liquid-crystal films,” Opt. Lett. 26, 1767-1769 (2001).
    [CrossRef]
  7. H. Gao, Y. Jiang, Z. Zhou, K. Gu, and D. Gong, “The dependence of orientational optical nonlinearity in dye-doped liquid-crystal films on the polarization direction of the recording beams,” IEEE J. Quantum Electron. 42, 651-656(2006).
    [CrossRef]
  8. P. Pagliusi, R. Macdonald, S. Busch, G. Cipparrone, and M. Kreuzer, “Nonlocal dynamic gratings and energy transfer by optical two-beam coupling in a nematic liquid crystal owing to highly sensitive photoelectric reorientation,” J. Opt. Soc. Am. B 18, 1632-1638 (2001).
    [CrossRef]
  9. P. Etchegoin and R. T. Phillips, “Stimulated orientational scattering and third-order nonlinear optical processes in nematic liquid crystals,” Phys. Rev. E 55, 5603-5612 (1997).
    [CrossRef]
  10. I. C. Khoo, S. Slussarenko, B. D. Guenther, M. Y. Shih, P. H. Chen, and W. V. Wood, “Optically induced space-charge fields, dc voltage, and extraordinarily large nonlinearity in dye-doped nematic liquid crystals,” Opt. Lett. 23, 253-255(1998).
    [CrossRef]
  11. F. Sanchez, P. H. Kayoun, and J. P. Huignard, “Two-wave mixing with gain in liquid crystals at 10.6 μm wavelength,” J. Appl. Phys. 64, 26-31 (1988).
    [CrossRef]
  12. A. Brignon, I. Bongrand, B. Loiseaux, and J.-P. Huignard, “Signal-beam amplification by two-wave mixing in a liquid-crystal light valve,” Opt. Lett. 22, 1855-1857 (1997).
    [CrossRef]
  13. L. Lucchetti, M. Di Fabrizio, M. Gentili, and F. Simoni, “Optical phase conjugation and efficient wave front correction of weak light beams by dye doped liquid crystals,” Appl. Phys. Lett. 83, 5389-5391 (2003).
    [CrossRef]
  14. I. C. Khoo, H. Li, and Y. Liang, “Self-starting optical phase conjugation in dyed nematic liquid crystals with a stimulated thermal-scattering effect,” Opt. Lett. 18, 1490-1492 (1993).
    [CrossRef] [PubMed]
  15. A. G.-S. Chen and D. J. Brady, “Surface-stabilized holography in an azo-dye-doped liquid crystal,” Opt. Lett. 17, 1231-1233(1992).
    [CrossRef] [PubMed]
  16. M. Kaczmarek, M.-Y. Shih, R. S. Cudney, and I. C. Khoo, “Electrically tunable, optically induced dynamic and permanent gratings in dye-doped liquid crystals,” IEEE J. Quantum Electron. 38, 451-457 (2002).
    [CrossRef]
  17. X. Wei, X. Z. Yan, D. R. Zhu, D. Mo, Z. X. Liang, and W. Z. Lin, “Stable optical storage and high-order diffraction in a liquid-crystal polymer film by two-wave mixing,” Appl. Phys. Lett. 68, 1913-1914 (1996).
    [CrossRef]
  18. I. C. Khoo, Liquid Crystals: Physical Properties and Nonlinear Optical Phenomena (Wiley-Interscience, 1994).
  19. Y. H. Kang, K. H. Kim, and B. Lee, “Volume hologram scheme using optical fiber for spatial multiplexing,” Opt. Lett. 22, 739-741 (1997).
    [CrossRef] [PubMed]
  20. G. W. Burr, F. H. Mok, and D. Psaltis, “Angle and space multiplexed storage using the 90° geometry,” Opt. Commun. 117, 49-55 (1995).
    [CrossRef]
  21. M. L. Hsieh, “Versatile holographic data storage system for angular multiplexing with no upper limit of the angular sweep of the reference beam,” Opt. Eng. 44, 090504 (2005).
    [CrossRef]
  22. S. Campbell and P. Yeh, “Sparse-wavelength angle-multiplexed volume holographic memory system: analysis and advances,” Appl. Opt. 35, 2380-2388 (1996).
    [CrossRef] [PubMed]
  23. C. C. Chang, K. L. Russell, and G. W. Hu, “Optical holographic memory using angular-rotationally phase-coded multiplexing in a LiNbO3:Fe crystal,” Appl. Phys. B 72, 307-310 (2001).
    [CrossRef]
  24. A. Pu and D. Psaltis, “High-density recording in photopolymer-based holographic three-dimensional disks,” Appl. Opt. 35, 2389-2398 (1996).
    [CrossRef] [PubMed]
  25. F. H. Mok, “Angle-multiplexed storage of 5000 holograms in lithium niobate,” Opt. Lett. 18, 915-917 (1993).
    [CrossRef] [PubMed]
  26. S. Tao, D. R. Selviah, and J. E. Midwinter, “Spatioangular multiplexed storage of 750 holograms in a Fe:LiNBO3 crystal,” Opt. Lett. 18, 912-914 (1993).
    [CrossRef] [PubMed]
  27. J. Rosen, M. Segev, and A. Yariv, “Wavelength-multiplexed computer-generated volume holography,” Opt. Lett. 18, 744-746 (1993).
    [CrossRef] [PubMed]
  28. P. Yeh, Introduction to Photorefractive Nonlinear Optics (Wiley, 1993).

2008 (2)

H. Gao, K. Gu, Z. Zhou, Y. Jiang, and D. Gong, “Diffraction behavior of an azo-dye-doped nematic liquid crystal without applied electric field,” Curr. Appl. Phys. 8, 31-35 (2008).
[CrossRef]

H. Gao, Z. Zhou, and Y. Jiang, “Holographic image storage and multiple hologram storage in a planar Methyl Red-doped nematic liquid crystal film,” Appl. Opt. 47, 2437-2442 (2008).
[CrossRef] [PubMed]

2006 (1)

H. Gao, Y. Jiang, Z. Zhou, K. Gu, and D. Gong, “The dependence of orientational optical nonlinearity in dye-doped liquid-crystal films on the polarization direction of the recording beams,” IEEE J. Quantum Electron. 42, 651-656(2006).
[CrossRef]

2005 (2)

L. Lucchetti, M. Gentili, and F. Simoni, “Pretransitional enhancement of the optical nonlinearity of thin dye-doped liquid crystals in the nematic phase,” Appl. Phys. Lett. 86, 151117 (2005).
[CrossRef]

M. L. Hsieh, “Versatile holographic data storage system for angular multiplexing with no upper limit of the angular sweep of the reference beam,” Opt. Eng. 44, 090504 (2005).
[CrossRef]

2003 (1)

L. Lucchetti, M. Di Fabrizio, M. Gentili, and F. Simoni, “Optical phase conjugation and efficient wave front correction of weak light beams by dye doped liquid crystals,” Appl. Phys. Lett. 83, 5389-5391 (2003).
[CrossRef]

2002 (2)

M. Kaczmarek, M.-Y. Shih, R. S. Cudney, and I. C. Khoo, “Electrically tunable, optically induced dynamic and permanent gratings in dye-doped liquid crystals,” IEEE J. Quantum Electron. 38, 451-457 (2002).
[CrossRef]

P. Pagliusi and G. Cipparrone, “Surface-induced photorefractive-like. effect in pure liquid crystals,” Appl. Phys. Lett. 80, 168-170 (2002).
[CrossRef]

2001 (3)

1998 (1)

1997 (3)

1996 (4)

X. Wei, X. Z. Yan, D. R. Zhu, D. Mo, Z. X. Liang, and W. Z. Lin, “Stable optical storage and high-order diffraction in a liquid-crystal polymer film by two-wave mixing,” Appl. Phys. Lett. 68, 1913-1914 (1996).
[CrossRef]

I. C. Khoo, “Orientational photorefractive effects in nematic liquid crystal films,” IEEE J. Quantum Electron. 32, 525-534 (1996).
[CrossRef]

S. Campbell and P. Yeh, “Sparse-wavelength angle-multiplexed volume holographic memory system: analysis and advances,” Appl. Opt. 35, 2380-2388 (1996).
[CrossRef] [PubMed]

A. Pu and D. Psaltis, “High-density recording in photopolymer-based holographic three-dimensional disks,” Appl. Opt. 35, 2389-2398 (1996).
[CrossRef] [PubMed]

1995 (1)

G. W. Burr, F. H. Mok, and D. Psaltis, “Angle and space multiplexed storage using the 90° geometry,” Opt. Commun. 117, 49-55 (1995).
[CrossRef]

1993 (4)

1992 (1)

1988 (1)

F. Sanchez, P. H. Kayoun, and J. P. Huignard, “Two-wave mixing with gain in liquid crystals at 10.6 μm wavelength,” J. Appl. Phys. 64, 26-31 (1988).
[CrossRef]

Bongrand, I.

Brady, D. J.

Brignon, A.

Burr, G. W.

G. W. Burr, F. H. Mok, and D. Psaltis, “Angle and space multiplexed storage using the 90° geometry,” Opt. Commun. 117, 49-55 (1995).
[CrossRef]

Busch, S.

Campbell, S.

Chang, C. C.

C. C. Chang, K. L. Russell, and G. W. Hu, “Optical holographic memory using angular-rotationally phase-coded multiplexing in a LiNbO3:Fe crystal,” Appl. Phys. B 72, 307-310 (2001).
[CrossRef]

Chen, A. G.-S.

Chen, P. H.

Cipparrone, G.

Cudney, R. S.

M. Kaczmarek, M.-Y. Shih, R. S. Cudney, and I. C. Khoo, “Electrically tunable, optically induced dynamic and permanent gratings in dye-doped liquid crystals,” IEEE J. Quantum Electron. 38, 451-457 (2002).
[CrossRef]

Di Fabrizio, M.

L. Lucchetti, M. Di Fabrizio, M. Gentili, and F. Simoni, “Optical phase conjugation and efficient wave front correction of weak light beams by dye doped liquid crystals,” Appl. Phys. Lett. 83, 5389-5391 (2003).
[CrossRef]

Etchegoin, P.

P. Etchegoin and R. T. Phillips, “Stimulated orientational scattering and third-order nonlinear optical processes in nematic liquid crystals,” Phys. Rev. E 55, 5603-5612 (1997).
[CrossRef]

Fuh, A. Y. G.

Gao, H.

H. Gao, Z. Zhou, and Y. Jiang, “Holographic image storage and multiple hologram storage in a planar Methyl Red-doped nematic liquid crystal film,” Appl. Opt. 47, 2437-2442 (2008).
[CrossRef] [PubMed]

H. Gao, K. Gu, Z. Zhou, Y. Jiang, and D. Gong, “Diffraction behavior of an azo-dye-doped nematic liquid crystal without applied electric field,” Curr. Appl. Phys. 8, 31-35 (2008).
[CrossRef]

H. Gao, Y. Jiang, Z. Zhou, K. Gu, and D. Gong, “The dependence of orientational optical nonlinearity in dye-doped liquid-crystal films on the polarization direction of the recording beams,” IEEE J. Quantum Electron. 42, 651-656(2006).
[CrossRef]

Gentili, M.

L. Lucchetti, M. Gentili, and F. Simoni, “Pretransitional enhancement of the optical nonlinearity of thin dye-doped liquid crystals in the nematic phase,” Appl. Phys. Lett. 86, 151117 (2005).
[CrossRef]

L. Lucchetti, M. Di Fabrizio, M. Gentili, and F. Simoni, “Optical phase conjugation and efficient wave front correction of weak light beams by dye doped liquid crystals,” Appl. Phys. Lett. 83, 5389-5391 (2003).
[CrossRef]

Gong, D.

H. Gao, K. Gu, Z. Zhou, Y. Jiang, and D. Gong, “Diffraction behavior of an azo-dye-doped nematic liquid crystal without applied electric field,” Curr. Appl. Phys. 8, 31-35 (2008).
[CrossRef]

H. Gao, Y. Jiang, Z. Zhou, K. Gu, and D. Gong, “The dependence of orientational optical nonlinearity in dye-doped liquid-crystal films on the polarization direction of the recording beams,” IEEE J. Quantum Electron. 42, 651-656(2006).
[CrossRef]

Gu, K.

H. Gao, K. Gu, Z. Zhou, Y. Jiang, and D. Gong, “Diffraction behavior of an azo-dye-doped nematic liquid crystal without applied electric field,” Curr. Appl. Phys. 8, 31-35 (2008).
[CrossRef]

H. Gao, Y. Jiang, Z. Zhou, K. Gu, and D. Gong, “The dependence of orientational optical nonlinearity in dye-doped liquid-crystal films on the polarization direction of the recording beams,” IEEE J. Quantum Electron. 42, 651-656(2006).
[CrossRef]

Guenther, B. D.

Hsieh, M. L.

M. L. Hsieh, “Versatile holographic data storage system for angular multiplexing with no upper limit of the angular sweep of the reference beam,” Opt. Eng. 44, 090504 (2005).
[CrossRef]

Hsu, K. C.

Hu, G. W.

C. C. Chang, K. L. Russell, and G. W. Hu, “Optical holographic memory using angular-rotationally phase-coded multiplexing in a LiNbO3:Fe crystal,” Appl. Phys. B 72, 307-310 (2001).
[CrossRef]

Huignard, J. P.

F. Sanchez, P. H. Kayoun, and J. P. Huignard, “Two-wave mixing with gain in liquid crystals at 10.6 μm wavelength,” J. Appl. Phys. 64, 26-31 (1988).
[CrossRef]

Huignard, J.-P.

Jiang, Y.

H. Gao, K. Gu, Z. Zhou, Y. Jiang, and D. Gong, “Diffraction behavior of an azo-dye-doped nematic liquid crystal without applied electric field,” Curr. Appl. Phys. 8, 31-35 (2008).
[CrossRef]

H. Gao, Z. Zhou, and Y. Jiang, “Holographic image storage and multiple hologram storage in a planar Methyl Red-doped nematic liquid crystal film,” Appl. Opt. 47, 2437-2442 (2008).
[CrossRef] [PubMed]

H. Gao, Y. Jiang, Z. Zhou, K. Gu, and D. Gong, “The dependence of orientational optical nonlinearity in dye-doped liquid-crystal films on the polarization direction of the recording beams,” IEEE J. Quantum Electron. 42, 651-656(2006).
[CrossRef]

Kaczmarek, M.

M. Kaczmarek, M.-Y. Shih, R. S. Cudney, and I. C. Khoo, “Electrically tunable, optically induced dynamic and permanent gratings in dye-doped liquid crystals,” IEEE J. Quantum Electron. 38, 451-457 (2002).
[CrossRef]

Kang, Y. H.

Kayoun, P. H.

F. Sanchez, P. H. Kayoun, and J. P. Huignard, “Two-wave mixing with gain in liquid crystals at 10.6 μm wavelength,” J. Appl. Phys. 64, 26-31 (1988).
[CrossRef]

Khoo, I. C.

M. Kaczmarek, M.-Y. Shih, R. S. Cudney, and I. C. Khoo, “Electrically tunable, optically induced dynamic and permanent gratings in dye-doped liquid crystals,” IEEE J. Quantum Electron. 38, 451-457 (2002).
[CrossRef]

I. C. Khoo, S. Slussarenko, B. D. Guenther, M. Y. Shih, P. H. Chen, and W. V. Wood, “Optically induced space-charge fields, dc voltage, and extraordinarily large nonlinearity in dye-doped nematic liquid crystals,” Opt. Lett. 23, 253-255(1998).
[CrossRef]

I. C. Khoo, “Orientational photorefractive effects in nematic liquid crystal films,” IEEE J. Quantum Electron. 32, 525-534 (1996).
[CrossRef]

I. C. Khoo, H. Li, and Y. Liang, “Self-starting optical phase conjugation in dyed nematic liquid crystals with a stimulated thermal-scattering effect,” Opt. Lett. 18, 1490-1492 (1993).
[CrossRef] [PubMed]

I. C. Khoo, Liquid Crystals: Physical Properties and Nonlinear Optical Phenomena (Wiley-Interscience, 1994).

Kim, K. H.

Kreuzer, M.

Lee, B.

Li, H.

Liang, Y.

Liang, Z. X.

X. Wei, X. Z. Yan, D. R. Zhu, D. Mo, Z. X. Liang, and W. Z. Lin, “Stable optical storage and high-order diffraction in a liquid-crystal polymer film by two-wave mixing,” Appl. Phys. Lett. 68, 1913-1914 (1996).
[CrossRef]

Liao, C. C.

Lin, W. Z.

X. Wei, X. Z. Yan, D. R. Zhu, D. Mo, Z. X. Liang, and W. Z. Lin, “Stable optical storage and high-order diffraction in a liquid-crystal polymer film by two-wave mixing,” Appl. Phys. Lett. 68, 1913-1914 (1996).
[CrossRef]

Loiseaux, B.

Lu, C. L.

Lucchetti, L.

L. Lucchetti, M. Gentili, and F. Simoni, “Pretransitional enhancement of the optical nonlinearity of thin dye-doped liquid crystals in the nematic phase,” Appl. Phys. Lett. 86, 151117 (2005).
[CrossRef]

L. Lucchetti, M. Di Fabrizio, M. Gentili, and F. Simoni, “Optical phase conjugation and efficient wave front correction of weak light beams by dye doped liquid crystals,” Appl. Phys. Lett. 83, 5389-5391 (2003).
[CrossRef]

Macdonald, R.

Midwinter, J. E.

Mo, D.

X. Wei, X. Z. Yan, D. R. Zhu, D. Mo, Z. X. Liang, and W. Z. Lin, “Stable optical storage and high-order diffraction in a liquid-crystal polymer film by two-wave mixing,” Appl. Phys. Lett. 68, 1913-1914 (1996).
[CrossRef]

Mok, F. H.

G. W. Burr, F. H. Mok, and D. Psaltis, “Angle and space multiplexed storage using the 90° geometry,” Opt. Commun. 117, 49-55 (1995).
[CrossRef]

F. H. Mok, “Angle-multiplexed storage of 5000 holograms in lithium niobate,” Opt. Lett. 18, 915-917 (1993).
[CrossRef] [PubMed]

Pagliusi, P.

Phillips, R. T.

P. Etchegoin and R. T. Phillips, “Stimulated orientational scattering and third-order nonlinear optical processes in nematic liquid crystals,” Phys. Rev. E 55, 5603-5612 (1997).
[CrossRef]

Psaltis, D.

A. Pu and D. Psaltis, “High-density recording in photopolymer-based holographic three-dimensional disks,” Appl. Opt. 35, 2389-2398 (1996).
[CrossRef] [PubMed]

G. W. Burr, F. H. Mok, and D. Psaltis, “Angle and space multiplexed storage using the 90° geometry,” Opt. Commun. 117, 49-55 (1995).
[CrossRef]

Pu, A.

Rosen, J.

Russell, K. L.

C. C. Chang, K. L. Russell, and G. W. Hu, “Optical holographic memory using angular-rotationally phase-coded multiplexing in a LiNbO3:Fe crystal,” Appl. Phys. B 72, 307-310 (2001).
[CrossRef]

Sanchez, F.

F. Sanchez, P. H. Kayoun, and J. P. Huignard, “Two-wave mixing with gain in liquid crystals at 10.6 μm wavelength,” J. Appl. Phys. 64, 26-31 (1988).
[CrossRef]

Segev, M.

Selviah, D. R.

Shih, M. Y.

Shih, M.-Y.

M. Kaczmarek, M.-Y. Shih, R. S. Cudney, and I. C. Khoo, “Electrically tunable, optically induced dynamic and permanent gratings in dye-doped liquid crystals,” IEEE J. Quantum Electron. 38, 451-457 (2002).
[CrossRef]

Simoni, F.

L. Lucchetti, M. Gentili, and F. Simoni, “Pretransitional enhancement of the optical nonlinearity of thin dye-doped liquid crystals in the nematic phase,” Appl. Phys. Lett. 86, 151117 (2005).
[CrossRef]

L. Lucchetti, M. Di Fabrizio, M. Gentili, and F. Simoni, “Optical phase conjugation and efficient wave front correction of weak light beams by dye doped liquid crystals,” Appl. Phys. Lett. 83, 5389-5391 (2003).
[CrossRef]

Slussarenko, S.

Tao, S.

Tsai, C. Y.

Wei, X.

X. Wei, X. Z. Yan, D. R. Zhu, D. Mo, Z. X. Liang, and W. Z. Lin, “Stable optical storage and high-order diffraction in a liquid-crystal polymer film by two-wave mixing,” Appl. Phys. Lett. 68, 1913-1914 (1996).
[CrossRef]

Wood, W. V.

Yan, X. Z.

X. Wei, X. Z. Yan, D. R. Zhu, D. Mo, Z. X. Liang, and W. Z. Lin, “Stable optical storage and high-order diffraction in a liquid-crystal polymer film by two-wave mixing,” Appl. Phys. Lett. 68, 1913-1914 (1996).
[CrossRef]

Yariv, A.

Yeh, P.

Zhou, Z.

H. Gao, Z. Zhou, and Y. Jiang, “Holographic image storage and multiple hologram storage in a planar Methyl Red-doped nematic liquid crystal film,” Appl. Opt. 47, 2437-2442 (2008).
[CrossRef] [PubMed]

H. Gao, K. Gu, Z. Zhou, Y. Jiang, and D. Gong, “Diffraction behavior of an azo-dye-doped nematic liquid crystal without applied electric field,” Curr. Appl. Phys. 8, 31-35 (2008).
[CrossRef]

H. Gao, Y. Jiang, Z. Zhou, K. Gu, and D. Gong, “The dependence of orientational optical nonlinearity in dye-doped liquid-crystal films on the polarization direction of the recording beams,” IEEE J. Quantum Electron. 42, 651-656(2006).
[CrossRef]

Zhu, D. R.

X. Wei, X. Z. Yan, D. R. Zhu, D. Mo, Z. X. Liang, and W. Z. Lin, “Stable optical storage and high-order diffraction in a liquid-crystal polymer film by two-wave mixing,” Appl. Phys. Lett. 68, 1913-1914 (1996).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. B (1)

C. C. Chang, K. L. Russell, and G. W. Hu, “Optical holographic memory using angular-rotationally phase-coded multiplexing in a LiNbO3:Fe crystal,” Appl. Phys. B 72, 307-310 (2001).
[CrossRef]

Appl. Phys. Lett. (4)

L. Lucchetti, M. Di Fabrizio, M. Gentili, and F. Simoni, “Optical phase conjugation and efficient wave front correction of weak light beams by dye doped liquid crystals,” Appl. Phys. Lett. 83, 5389-5391 (2003).
[CrossRef]

P. Pagliusi and G. Cipparrone, “Surface-induced photorefractive-like. effect in pure liquid crystals,” Appl. Phys. Lett. 80, 168-170 (2002).
[CrossRef]

L. Lucchetti, M. Gentili, and F. Simoni, “Pretransitional enhancement of the optical nonlinearity of thin dye-doped liquid crystals in the nematic phase,” Appl. Phys. Lett. 86, 151117 (2005).
[CrossRef]

X. Wei, X. Z. Yan, D. R. Zhu, D. Mo, Z. X. Liang, and W. Z. Lin, “Stable optical storage and high-order diffraction in a liquid-crystal polymer film by two-wave mixing,” Appl. Phys. Lett. 68, 1913-1914 (1996).
[CrossRef]

Curr. Appl. Phys. (1)

H. Gao, K. Gu, Z. Zhou, Y. Jiang, and D. Gong, “Diffraction behavior of an azo-dye-doped nematic liquid crystal without applied electric field,” Curr. Appl. Phys. 8, 31-35 (2008).
[CrossRef]

IEEE J. Quantum Electron. (3)

H. Gao, Y. Jiang, Z. Zhou, K. Gu, and D. Gong, “The dependence of orientational optical nonlinearity in dye-doped liquid-crystal films on the polarization direction of the recording beams,” IEEE J. Quantum Electron. 42, 651-656(2006).
[CrossRef]

I. C. Khoo, “Orientational photorefractive effects in nematic liquid crystal films,” IEEE J. Quantum Electron. 32, 525-534 (1996).
[CrossRef]

M. Kaczmarek, M.-Y. Shih, R. S. Cudney, and I. C. Khoo, “Electrically tunable, optically induced dynamic and permanent gratings in dye-doped liquid crystals,” IEEE J. Quantum Electron. 38, 451-457 (2002).
[CrossRef]

J. Appl. Phys. (1)

F. Sanchez, P. H. Kayoun, and J. P. Huignard, “Two-wave mixing with gain in liquid crystals at 10.6 μm wavelength,” J. Appl. Phys. 64, 26-31 (1988).
[CrossRef]

J. Opt. Soc. Am. B (1)

Opt. Commun. (1)

G. W. Burr, F. H. Mok, and D. Psaltis, “Angle and space multiplexed storage using the 90° geometry,” Opt. Commun. 117, 49-55 (1995).
[CrossRef]

Opt. Eng. (1)

M. L. Hsieh, “Versatile holographic data storage system for angular multiplexing with no upper limit of the angular sweep of the reference beam,” Opt. Eng. 44, 090504 (2005).
[CrossRef]

Opt. Lett. (9)

A. Y. G. Fuh, C. C. Liao, K. C. Hsu, C. L. Lu, and C. Y. Tsai, “Dynamic studies of holographic gratings in dye-doped liquid-crystal films,” Opt. Lett. 26, 1767-1769 (2001).
[CrossRef]

A. G.-S. Chen and D. J. Brady, “Surface-stabilized holography in an azo-dye-doped liquid crystal,” Opt. Lett. 17, 1231-1233(1992).
[CrossRef] [PubMed]

J. Rosen, M. Segev, and A. Yariv, “Wavelength-multiplexed computer-generated volume holography,” Opt. Lett. 18, 744-746 (1993).
[CrossRef] [PubMed]

S. Tao, D. R. Selviah, and J. E. Midwinter, “Spatioangular multiplexed storage of 750 holograms in a Fe:LiNBO3 crystal,” Opt. Lett. 18, 912-914 (1993).
[CrossRef] [PubMed]

F. H. Mok, “Angle-multiplexed storage of 5000 holograms in lithium niobate,” Opt. Lett. 18, 915-917 (1993).
[CrossRef] [PubMed]

I. C. Khoo, H. Li, and Y. Liang, “Self-starting optical phase conjugation in dyed nematic liquid crystals with a stimulated thermal-scattering effect,” Opt. Lett. 18, 1490-1492 (1993).
[CrossRef] [PubMed]

Y. H. Kang, K. H. Kim, and B. Lee, “Volume hologram scheme using optical fiber for spatial multiplexing,” Opt. Lett. 22, 739-741 (1997).
[CrossRef] [PubMed]

A. Brignon, I. Bongrand, B. Loiseaux, and J.-P. Huignard, “Signal-beam amplification by two-wave mixing in a liquid-crystal light valve,” Opt. Lett. 22, 1855-1857 (1997).
[CrossRef]

I. C. Khoo, S. Slussarenko, B. D. Guenther, M. Y. Shih, P. H. Chen, and W. V. Wood, “Optically induced space-charge fields, dc voltage, and extraordinarily large nonlinearity in dye-doped nematic liquid crystals,” Opt. Lett. 23, 253-255(1998).
[CrossRef]

Phys. Rev. E (1)

P. Etchegoin and R. T. Phillips, “Stimulated orientational scattering and third-order nonlinear optical processes in nematic liquid crystals,” Phys. Rev. E 55, 5603-5612 (1997).
[CrossRef]

Other (2)

I. C. Khoo, Liquid Crystals: Physical Properties and Nonlinear Optical Phenomena (Wiley-Interscience, 1994).

P. Yeh, Introduction to Photorefractive Nonlinear Optics (Wiley, 1993).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Experimental setup for holographic storage: M, mirror; BS, beam splitter; λ / 2 , half-wave plates; PM, powermeter.

Fig. 2
Fig. 2

Diffraction pattern for angular multiplexed gratings probed by a He–Ne laser.

Fig. 3
Fig. 3

Holographic reconstruction from peristrophic multiplexed gratings probed by a He–Ne laser.

Fig. 4
Fig. 4

Formation process of multiple holographic gratings. Diffractions I, II, and III represent the diffraction efficiencies from the first, second, and third recorded gratings at a single location, respectively. ON and OFF indicate when the writing light is on or off.

Fig. 5
Fig. 5

Holographic reconstruction from angular and peristrophic multiplexed gratings recorded at a single location.

Fig. 6
Fig. 6

Dependence of the experimental value of sin θ m for m = 1 ( ) and m = 2 ( ) and the theoretical value of 2 mn λ p sin θ / ( n p λ ) sin θ p for m = 1 ( ) and m = 2 ( ) on the recording angle with sin θ p = 0 .

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

η 1 ( π d Δ n 1 λ ) 2 = [ π d ( Δ n Δ n e r a s e ) λ ] 2 ,
η 2 ( π d Δ n 2 λ ) 2 ,
η ¯ [ π d Δ n ¯ λ ] 2 ,
M π d Δ n max η ¯ 1 2 λ .
Λ = λ 2 n sin θ ,
Λ sin θ + Λ sin θ m = m λ n , m = 0 , 1 , 2 ,
sin θ m = m 2 n λ p n p λ sin θ sin θ p , m = 0 , 1 , 2 ,

Metrics