Abstract

Measurement of blood flow with high spatial and temporal resolutions in a three-dimensional (3D) volume is a challenge in biomedical research fields. In this study, digital holographic microscopy is used to measure the 3D motion of human red blood cells (RBCs) in a microscale volume. The cinematographic holography technique, which uses a high-speed camera, enabled the continuous tracking of individual RBCs in a microtube flow. Several autofocus functions that quantify the sharpness of reconstructed RBC images are evaluated to locate the accurate depthwise position of RBCs. In this study, the squared Laplacian function yields the smallest depth of focus and locates the depthwise positions of RBCs with a root mean square error of 2.3μm. By applying this method, we demonstrate the measurement of four-dimensional (space and time) trajectories as well as 3D velocity profiles of RBCs. The measurement uncertainties of the present method are also discussed.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Y. Suggi, R. Okuda, K. Okamoto, and H. Madarame, “Velocity measurement of both red blood cells and plasma of in vitro blood flow using high-speed micro PIV technique,” Meas. Sci. Technol. 16, 1126-1130 (2005).
    [CrossRef]
  2. R. Lima, S. Wada, M. Takeda, K. Tsubota, and T. Yamaguchi, “In vitro confocal micro-PIV measurements of blood flow in a square microchannel: the effect of the hematocrit on instantaneous velocity profiles,” J. Biomech. 40, 2752-2757 (2007).
    [CrossRef] [PubMed]
  3. H. S. Ji and S. J. Lee, “In vitro hemorheological study on the hematocrit effect of human blood flow in a microtube,” Clin. Hemorheol. Microcirc. 40, 19-30 (2008).
    [PubMed]
  4. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
    [CrossRef] [PubMed]
  5. Y. Wang, B. A. Bower, J. A. Izatt, O. Tan, and D. Huang, “In vivo total retinal blood flow measurement by Fourier domain Doppler optical coherence tomography,” J. Biomed. Opt. 12, 041215 (2007).
    [CrossRef] [PubMed]
  6. U. Schnars and W. Jüptner, “Direct recording of holograms by a CCD target and numerical reconstruction,” Appl. Opt. 33, 179-181 (1994).
    [CrossRef] [PubMed]
  7. H. Meng, G. Pan, Y. Pu, and S. H. Woodward, “Holographic particle image velocimetry: from film to digital recording,” Meas. Sci. Technol. 15, 673-685 (2004).
    [CrossRef]
  8. W. Xu, M. H. Jericho, I. A. Meinertzhagen, and H. J. Kreuzer, “Digital in-line holography of microscopheres,” Appl. Opt. 41, 5367-5375 (2002).
    [CrossRef] [PubMed]
  9. S. Satake, T. Kunugi, K. Sato, T. Ito, and J. Taniguchi, “Three-dimensional flow tracking in a micro channel with high time resolution using micro digital-holographic particle-tracking velocimetry,” Opt. Rev. 12, 442-444 (2005).
    [CrossRef]
  10. J. Sheng, E. Malkiel, and J. Katz, “Digital holographic microscope for measuring three-dimensional particle distributions and motions,” Appl. Opt. 45, 3893-3901 (2006).
    [CrossRef] [PubMed]
  11. S. Satake, T. Kunugi, K. Sato, T. Ito, H. Kanamori, and J. Taniguchi, “Measurements of 3D flow in a micro-pipe via micro digital holographic particle tracking velocimetry,” Meas. Sci. Technol. 17, 1647-1651 (2006).
    [CrossRef]
  12. S. Kim and S. J. Lee, “Measurement of 3D laminar flow inside a micro tube using micro digital holographic particle tracking velocimetry,” J. Micromech. Microeng. 17, 2157-2162 (2007).
    [CrossRef]
  13. J. Sheng, E. Malkiel, J. Katz, J. Adolf, R. Belas, and A. R. Place, “Digital holographic microscopy reveals prey-induced changes in swimming behavior of predatory dinoflagellates,” Proc. Natl. Acad. Sci. USA 104, 17512-17517 (2007).
    [CrossRef] [PubMed]
  14. P. Langehanenberg, B. Kemper, D. Dirksen, and G. V. Bally, “Autofocusing in digital holographic phase contrast microscopy on pure phase objects for live cell imaging,” Appl. Opt. 47, D176-D182 (2008).
    [CrossRef] [PubMed]
  15. L. Yu and M. K. Kim, “Wavelength-scanning digital interference holography for tomographic three-dimensional imaging by use of the angular spectrum method,” Opt. Lett. 30, 2092-2094 (2005).
    [CrossRef] [PubMed]
  16. J. H. Milgram and W. Li, “Computational reconstruction of images from holograms,” Appl. Opt. 41, 853-864 (2002).
    [CrossRef] [PubMed]
  17. J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1996).
  18. F. C. Groen, I. T. Young, and G. Ligthart, “A comparison of different focus functions for use in autofocus algorithms,” Cytometry 6, 81-91 (1985).
    [CrossRef] [PubMed]
  19. A. Thelen, J. Bongartz, D. Giel, S. Frey, and P. Hering, “Iterative focus detection in hologram tomography,” J. Opt. Soc. Am. A 22, 1176-1180 (2005).
    [CrossRef]
  20. S. J. Baek and S. J. Lee, “A new two-frame particle tracking algorithm using match probability,” Exp. Fluids 22, 23-32 (1996).
    [CrossRef]

2008

H. S. Ji and S. J. Lee, “In vitro hemorheological study on the hematocrit effect of human blood flow in a microtube,” Clin. Hemorheol. Microcirc. 40, 19-30 (2008).
[PubMed]

P. Langehanenberg, B. Kemper, D. Dirksen, and G. V. Bally, “Autofocusing in digital holographic phase contrast microscopy on pure phase objects for live cell imaging,” Appl. Opt. 47, D176-D182 (2008).
[CrossRef] [PubMed]

2007

S. Kim and S. J. Lee, “Measurement of 3D laminar flow inside a micro tube using micro digital holographic particle tracking velocimetry,” J. Micromech. Microeng. 17, 2157-2162 (2007).
[CrossRef]

J. Sheng, E. Malkiel, J. Katz, J. Adolf, R. Belas, and A. R. Place, “Digital holographic microscopy reveals prey-induced changes in swimming behavior of predatory dinoflagellates,” Proc. Natl. Acad. Sci. USA 104, 17512-17517 (2007).
[CrossRef] [PubMed]

R. Lima, S. Wada, M. Takeda, K. Tsubota, and T. Yamaguchi, “In vitro confocal micro-PIV measurements of blood flow in a square microchannel: the effect of the hematocrit on instantaneous velocity profiles,” J. Biomech. 40, 2752-2757 (2007).
[CrossRef] [PubMed]

Y. Wang, B. A. Bower, J. A. Izatt, O. Tan, and D. Huang, “In vivo total retinal blood flow measurement by Fourier domain Doppler optical coherence tomography,” J. Biomed. Opt. 12, 041215 (2007).
[CrossRef] [PubMed]

2006

J. Sheng, E. Malkiel, and J. Katz, “Digital holographic microscope for measuring three-dimensional particle distributions and motions,” Appl. Opt. 45, 3893-3901 (2006).
[CrossRef] [PubMed]

S. Satake, T. Kunugi, K. Sato, T. Ito, H. Kanamori, and J. Taniguchi, “Measurements of 3D flow in a micro-pipe via micro digital holographic particle tracking velocimetry,” Meas. Sci. Technol. 17, 1647-1651 (2006).
[CrossRef]

2005

L. Yu and M. K. Kim, “Wavelength-scanning digital interference holography for tomographic three-dimensional imaging by use of the angular spectrum method,” Opt. Lett. 30, 2092-2094 (2005).
[CrossRef] [PubMed]

Y. Suggi, R. Okuda, K. Okamoto, and H. Madarame, “Velocity measurement of both red blood cells and plasma of in vitro blood flow using high-speed micro PIV technique,” Meas. Sci. Technol. 16, 1126-1130 (2005).
[CrossRef]

A. Thelen, J. Bongartz, D. Giel, S. Frey, and P. Hering, “Iterative focus detection in hologram tomography,” J. Opt. Soc. Am. A 22, 1176-1180 (2005).
[CrossRef]

S. Satake, T. Kunugi, K. Sato, T. Ito, and J. Taniguchi, “Three-dimensional flow tracking in a micro channel with high time resolution using micro digital-holographic particle-tracking velocimetry,” Opt. Rev. 12, 442-444 (2005).
[CrossRef]

2004

H. Meng, G. Pan, Y. Pu, and S. H. Woodward, “Holographic particle image velocimetry: from film to digital recording,” Meas. Sci. Technol. 15, 673-685 (2004).
[CrossRef]

2002

1996

S. J. Baek and S. J. Lee, “A new two-frame particle tracking algorithm using match probability,” Exp. Fluids 22, 23-32 (1996).
[CrossRef]

1994

1991

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

1985

F. C. Groen, I. T. Young, and G. Ligthart, “A comparison of different focus functions for use in autofocus algorithms,” Cytometry 6, 81-91 (1985).
[CrossRef] [PubMed]

Adolf, J.

J. Sheng, E. Malkiel, J. Katz, J. Adolf, R. Belas, and A. R. Place, “Digital holographic microscopy reveals prey-induced changes in swimming behavior of predatory dinoflagellates,” Proc. Natl. Acad. Sci. USA 104, 17512-17517 (2007).
[CrossRef] [PubMed]

Baek, S. J.

S. J. Baek and S. J. Lee, “A new two-frame particle tracking algorithm using match probability,” Exp. Fluids 22, 23-32 (1996).
[CrossRef]

Bally, G. V.

Belas, R.

J. Sheng, E. Malkiel, J. Katz, J. Adolf, R. Belas, and A. R. Place, “Digital holographic microscopy reveals prey-induced changes in swimming behavior of predatory dinoflagellates,” Proc. Natl. Acad. Sci. USA 104, 17512-17517 (2007).
[CrossRef] [PubMed]

Bongartz, J.

Bower, B. A.

Y. Wang, B. A. Bower, J. A. Izatt, O. Tan, and D. Huang, “In vivo total retinal blood flow measurement by Fourier domain Doppler optical coherence tomography,” J. Biomed. Opt. 12, 041215 (2007).
[CrossRef] [PubMed]

Chang, W.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Dirksen, D.

Flotte, T.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Frey, S.

Fujimoto, J. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Giel, D.

Goodman, J. W.

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1996).

Gregory, K.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Groen, F. C.

F. C. Groen, I. T. Young, and G. Ligthart, “A comparison of different focus functions for use in autofocus algorithms,” Cytometry 6, 81-91 (1985).
[CrossRef] [PubMed]

Hee, M. R.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Hering, P.

Huang, D.

Y. Wang, B. A. Bower, J. A. Izatt, O. Tan, and D. Huang, “In vivo total retinal blood flow measurement by Fourier domain Doppler optical coherence tomography,” J. Biomed. Opt. 12, 041215 (2007).
[CrossRef] [PubMed]

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Ito, T.

S. Satake, T. Kunugi, K. Sato, T. Ito, H. Kanamori, and J. Taniguchi, “Measurements of 3D flow in a micro-pipe via micro digital holographic particle tracking velocimetry,” Meas. Sci. Technol. 17, 1647-1651 (2006).
[CrossRef]

S. Satake, T. Kunugi, K. Sato, T. Ito, and J. Taniguchi, “Three-dimensional flow tracking in a micro channel with high time resolution using micro digital-holographic particle-tracking velocimetry,” Opt. Rev. 12, 442-444 (2005).
[CrossRef]

Izatt, J. A.

Y. Wang, B. A. Bower, J. A. Izatt, O. Tan, and D. Huang, “In vivo total retinal blood flow measurement by Fourier domain Doppler optical coherence tomography,” J. Biomed. Opt. 12, 041215 (2007).
[CrossRef] [PubMed]

Jericho, M. H.

Ji, H. S.

H. S. Ji and S. J. Lee, “In vitro hemorheological study on the hematocrit effect of human blood flow in a microtube,” Clin. Hemorheol. Microcirc. 40, 19-30 (2008).
[PubMed]

Jüptner, W.

Kanamori, H.

S. Satake, T. Kunugi, K. Sato, T. Ito, H. Kanamori, and J. Taniguchi, “Measurements of 3D flow in a micro-pipe via micro digital holographic particle tracking velocimetry,” Meas. Sci. Technol. 17, 1647-1651 (2006).
[CrossRef]

Katz, J.

J. Sheng, E. Malkiel, J. Katz, J. Adolf, R. Belas, and A. R. Place, “Digital holographic microscopy reveals prey-induced changes in swimming behavior of predatory dinoflagellates,” Proc. Natl. Acad. Sci. USA 104, 17512-17517 (2007).
[CrossRef] [PubMed]

J. Sheng, E. Malkiel, and J. Katz, “Digital holographic microscope for measuring three-dimensional particle distributions and motions,” Appl. Opt. 45, 3893-3901 (2006).
[CrossRef] [PubMed]

Kemper, B.

Kim, M. K.

Kim, S.

S. Kim and S. J. Lee, “Measurement of 3D laminar flow inside a micro tube using micro digital holographic particle tracking velocimetry,” J. Micromech. Microeng. 17, 2157-2162 (2007).
[CrossRef]

Kreuzer, H. J.

Kunugi, T.

S. Satake, T. Kunugi, K. Sato, T. Ito, H. Kanamori, and J. Taniguchi, “Measurements of 3D flow in a micro-pipe via micro digital holographic particle tracking velocimetry,” Meas. Sci. Technol. 17, 1647-1651 (2006).
[CrossRef]

S. Satake, T. Kunugi, K. Sato, T. Ito, and J. Taniguchi, “Three-dimensional flow tracking in a micro channel with high time resolution using micro digital-holographic particle-tracking velocimetry,” Opt. Rev. 12, 442-444 (2005).
[CrossRef]

Langehanenberg, P.

Lee, S. J.

H. S. Ji and S. J. Lee, “In vitro hemorheological study on the hematocrit effect of human blood flow in a microtube,” Clin. Hemorheol. Microcirc. 40, 19-30 (2008).
[PubMed]

S. Kim and S. J. Lee, “Measurement of 3D laminar flow inside a micro tube using micro digital holographic particle tracking velocimetry,” J. Micromech. Microeng. 17, 2157-2162 (2007).
[CrossRef]

S. J. Baek and S. J. Lee, “A new two-frame particle tracking algorithm using match probability,” Exp. Fluids 22, 23-32 (1996).
[CrossRef]

Li, W.

Ligthart, G.

F. C. Groen, I. T. Young, and G. Ligthart, “A comparison of different focus functions for use in autofocus algorithms,” Cytometry 6, 81-91 (1985).
[CrossRef] [PubMed]

Lima, R.

R. Lima, S. Wada, M. Takeda, K. Tsubota, and T. Yamaguchi, “In vitro confocal micro-PIV measurements of blood flow in a square microchannel: the effect of the hematocrit on instantaneous velocity profiles,” J. Biomech. 40, 2752-2757 (2007).
[CrossRef] [PubMed]

Lin, C. P.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Madarame, H.

Y. Suggi, R. Okuda, K. Okamoto, and H. Madarame, “Velocity measurement of both red blood cells and plasma of in vitro blood flow using high-speed micro PIV technique,” Meas. Sci. Technol. 16, 1126-1130 (2005).
[CrossRef]

Malkiel, E.

J. Sheng, E. Malkiel, J. Katz, J. Adolf, R. Belas, and A. R. Place, “Digital holographic microscopy reveals prey-induced changes in swimming behavior of predatory dinoflagellates,” Proc. Natl. Acad. Sci. USA 104, 17512-17517 (2007).
[CrossRef] [PubMed]

J. Sheng, E. Malkiel, and J. Katz, “Digital holographic microscope for measuring three-dimensional particle distributions and motions,” Appl. Opt. 45, 3893-3901 (2006).
[CrossRef] [PubMed]

Meinertzhagen, I. A.

Meng, H.

H. Meng, G. Pan, Y. Pu, and S. H. Woodward, “Holographic particle image velocimetry: from film to digital recording,” Meas. Sci. Technol. 15, 673-685 (2004).
[CrossRef]

Milgram, J. H.

Okamoto, K.

Y. Suggi, R. Okuda, K. Okamoto, and H. Madarame, “Velocity measurement of both red blood cells and plasma of in vitro blood flow using high-speed micro PIV technique,” Meas. Sci. Technol. 16, 1126-1130 (2005).
[CrossRef]

Okuda, R.

Y. Suggi, R. Okuda, K. Okamoto, and H. Madarame, “Velocity measurement of both red blood cells and plasma of in vitro blood flow using high-speed micro PIV technique,” Meas. Sci. Technol. 16, 1126-1130 (2005).
[CrossRef]

Pan, G.

H. Meng, G. Pan, Y. Pu, and S. H. Woodward, “Holographic particle image velocimetry: from film to digital recording,” Meas. Sci. Technol. 15, 673-685 (2004).
[CrossRef]

Place, A. R.

J. Sheng, E. Malkiel, J. Katz, J. Adolf, R. Belas, and A. R. Place, “Digital holographic microscopy reveals prey-induced changes in swimming behavior of predatory dinoflagellates,” Proc. Natl. Acad. Sci. USA 104, 17512-17517 (2007).
[CrossRef] [PubMed]

Pu, Y.

H. Meng, G. Pan, Y. Pu, and S. H. Woodward, “Holographic particle image velocimetry: from film to digital recording,” Meas. Sci. Technol. 15, 673-685 (2004).
[CrossRef]

Puliafito, C. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Satake, S.

S. Satake, T. Kunugi, K. Sato, T. Ito, H. Kanamori, and J. Taniguchi, “Measurements of 3D flow in a micro-pipe via micro digital holographic particle tracking velocimetry,” Meas. Sci. Technol. 17, 1647-1651 (2006).
[CrossRef]

S. Satake, T. Kunugi, K. Sato, T. Ito, and J. Taniguchi, “Three-dimensional flow tracking in a micro channel with high time resolution using micro digital-holographic particle-tracking velocimetry,” Opt. Rev. 12, 442-444 (2005).
[CrossRef]

Sato, K.

S. Satake, T. Kunugi, K. Sato, T. Ito, H. Kanamori, and J. Taniguchi, “Measurements of 3D flow in a micro-pipe via micro digital holographic particle tracking velocimetry,” Meas. Sci. Technol. 17, 1647-1651 (2006).
[CrossRef]

S. Satake, T. Kunugi, K. Sato, T. Ito, and J. Taniguchi, “Three-dimensional flow tracking in a micro channel with high time resolution using micro digital-holographic particle-tracking velocimetry,” Opt. Rev. 12, 442-444 (2005).
[CrossRef]

Schnars, U.

Schuman, J. S.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Sheng, J.

J. Sheng, E. Malkiel, J. Katz, J. Adolf, R. Belas, and A. R. Place, “Digital holographic microscopy reveals prey-induced changes in swimming behavior of predatory dinoflagellates,” Proc. Natl. Acad. Sci. USA 104, 17512-17517 (2007).
[CrossRef] [PubMed]

J. Sheng, E. Malkiel, and J. Katz, “Digital holographic microscope for measuring three-dimensional particle distributions and motions,” Appl. Opt. 45, 3893-3901 (2006).
[CrossRef] [PubMed]

Stinson, W. G.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Suggi, Y.

Y. Suggi, R. Okuda, K. Okamoto, and H. Madarame, “Velocity measurement of both red blood cells and plasma of in vitro blood flow using high-speed micro PIV technique,” Meas. Sci. Technol. 16, 1126-1130 (2005).
[CrossRef]

Swanson, E. A.

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Takeda, M.

R. Lima, S. Wada, M. Takeda, K. Tsubota, and T. Yamaguchi, “In vitro confocal micro-PIV measurements of blood flow in a square microchannel: the effect of the hematocrit on instantaneous velocity profiles,” J. Biomech. 40, 2752-2757 (2007).
[CrossRef] [PubMed]

Tan, O.

Y. Wang, B. A. Bower, J. A. Izatt, O. Tan, and D. Huang, “In vivo total retinal blood flow measurement by Fourier domain Doppler optical coherence tomography,” J. Biomed. Opt. 12, 041215 (2007).
[CrossRef] [PubMed]

Taniguchi, J.

S. Satake, T. Kunugi, K. Sato, T. Ito, H. Kanamori, and J. Taniguchi, “Measurements of 3D flow in a micro-pipe via micro digital holographic particle tracking velocimetry,” Meas. Sci. Technol. 17, 1647-1651 (2006).
[CrossRef]

S. Satake, T. Kunugi, K. Sato, T. Ito, and J. Taniguchi, “Three-dimensional flow tracking in a micro channel with high time resolution using micro digital-holographic particle-tracking velocimetry,” Opt. Rev. 12, 442-444 (2005).
[CrossRef]

Thelen, A.

Tsubota, K.

R. Lima, S. Wada, M. Takeda, K. Tsubota, and T. Yamaguchi, “In vitro confocal micro-PIV measurements of blood flow in a square microchannel: the effect of the hematocrit on instantaneous velocity profiles,” J. Biomech. 40, 2752-2757 (2007).
[CrossRef] [PubMed]

Wada, S.

R. Lima, S. Wada, M. Takeda, K. Tsubota, and T. Yamaguchi, “In vitro confocal micro-PIV measurements of blood flow in a square microchannel: the effect of the hematocrit on instantaneous velocity profiles,” J. Biomech. 40, 2752-2757 (2007).
[CrossRef] [PubMed]

Wang, Y.

Y. Wang, B. A. Bower, J. A. Izatt, O. Tan, and D. Huang, “In vivo total retinal blood flow measurement by Fourier domain Doppler optical coherence tomography,” J. Biomed. Opt. 12, 041215 (2007).
[CrossRef] [PubMed]

Woodward, S. H.

H. Meng, G. Pan, Y. Pu, and S. H. Woodward, “Holographic particle image velocimetry: from film to digital recording,” Meas. Sci. Technol. 15, 673-685 (2004).
[CrossRef]

Xu, W.

Yamaguchi, T.

R. Lima, S. Wada, M. Takeda, K. Tsubota, and T. Yamaguchi, “In vitro confocal micro-PIV measurements of blood flow in a square microchannel: the effect of the hematocrit on instantaneous velocity profiles,” J. Biomech. 40, 2752-2757 (2007).
[CrossRef] [PubMed]

Young, I. T.

F. C. Groen, I. T. Young, and G. Ligthart, “A comparison of different focus functions for use in autofocus algorithms,” Cytometry 6, 81-91 (1985).
[CrossRef] [PubMed]

Yu, L.

Appl. Opt.

Clin. Hemorheol. Microcirc.

H. S. Ji and S. J. Lee, “In vitro hemorheological study on the hematocrit effect of human blood flow in a microtube,” Clin. Hemorheol. Microcirc. 40, 19-30 (2008).
[PubMed]

Cytometry

F. C. Groen, I. T. Young, and G. Ligthart, “A comparison of different focus functions for use in autofocus algorithms,” Cytometry 6, 81-91 (1985).
[CrossRef] [PubMed]

Exp. Fluids

S. J. Baek and S. J. Lee, “A new two-frame particle tracking algorithm using match probability,” Exp. Fluids 22, 23-32 (1996).
[CrossRef]

J. Biomech.

R. Lima, S. Wada, M. Takeda, K. Tsubota, and T. Yamaguchi, “In vitro confocal micro-PIV measurements of blood flow in a square microchannel: the effect of the hematocrit on instantaneous velocity profiles,” J. Biomech. 40, 2752-2757 (2007).
[CrossRef] [PubMed]

J. Biomed. Opt.

Y. Wang, B. A. Bower, J. A. Izatt, O. Tan, and D. Huang, “In vivo total retinal blood flow measurement by Fourier domain Doppler optical coherence tomography,” J. Biomed. Opt. 12, 041215 (2007).
[CrossRef] [PubMed]

J. Micromech. Microeng.

S. Kim and S. J. Lee, “Measurement of 3D laminar flow inside a micro tube using micro digital holographic particle tracking velocimetry,” J. Micromech. Microeng. 17, 2157-2162 (2007).
[CrossRef]

J. Opt. Soc. Am. A

Meas. Sci. Technol.

S. Satake, T. Kunugi, K. Sato, T. Ito, H. Kanamori, and J. Taniguchi, “Measurements of 3D flow in a micro-pipe via micro digital holographic particle tracking velocimetry,” Meas. Sci. Technol. 17, 1647-1651 (2006).
[CrossRef]

Y. Suggi, R. Okuda, K. Okamoto, and H. Madarame, “Velocity measurement of both red blood cells and plasma of in vitro blood flow using high-speed micro PIV technique,” Meas. Sci. Technol. 16, 1126-1130 (2005).
[CrossRef]

H. Meng, G. Pan, Y. Pu, and S. H. Woodward, “Holographic particle image velocimetry: from film to digital recording,” Meas. Sci. Technol. 15, 673-685 (2004).
[CrossRef]

Opt. Lett.

Opt. Rev.

S. Satake, T. Kunugi, K. Sato, T. Ito, and J. Taniguchi, “Three-dimensional flow tracking in a micro channel with high time resolution using micro digital-holographic particle-tracking velocimetry,” Opt. Rev. 12, 442-444 (2005).
[CrossRef]

Proc. Natl. Acad. Sci. USA

J. Sheng, E. Malkiel, J. Katz, J. Adolf, R. Belas, and A. R. Place, “Digital holographic microscopy reveals prey-induced changes in swimming behavior of predatory dinoflagellates,” Proc. Natl. Acad. Sci. USA 104, 17512-17517 (2007).
[CrossRef] [PubMed]

Science

D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, and J. G. Fujimoto, “Optical coherence tomography,” Science 254, 1178-1181 (1991).
[CrossRef] [PubMed]

Other

J. W. Goodman, Introduction to Fourier Optics (McGraw-Hill, 1996).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Experimental setup for measuring red blood cell motion in a circular microtube flow.

Fig. 2
Fig. 2

Optical setup for uncertainty analysis.

Fig. 3
Fig. 3

Digital hologram obtained from a planar RBC target positioned at (a)  0 μm , (b)  100 μm , (c)  200 μm , and (d)  300 μm from the focal plane.

Fig. 4
Fig. 4

(a) Typical digital hologram of a planar RBC target positioned at 100 μm from the focal plane. (b), (c), (d) Reconstructed images at three selected depth planes. (e) Microscopic image of RBCs positioned at the focal plane. (f), (g), (h) Reconstructions of the hologram of RBCs of (e) at selected depth planes. (i) Projection of reconstructed RBCs of (a). (j) Segmentation of RBCs after bandpass filtering of (i).

Fig. 5
Fig. 5

Schematics of tilt angle between the reference wave and diffracted wave.

Fig. 6
Fig. 6

(a) Comparison of ensemble-averaged focus value profiles for several image sharpness quantification methods. (b) Spatial distribution of RBC positions obtained by the LAP method.

Fig. 7
Fig. 7

(a) Ensemble-averaged LAP profiles at three reconstruction depths. (b) Depth positions of RBCs at three measurement planes. (c) Probability density functions of the depthwise position measurement errors ( z z min ).

Fig. 8
Fig. 8

(a) Typical RBC hologram obtained in a circular microtube flow. (b), (c), (d) Reconstructed images at three selected depth planes. Each focused RBC is shown by an arrow. (e) 3D spatial distribution of RBCs measured from two consecutive holograms.

Fig. 9
Fig. 9

3D vector field shown from different view angles.

Fig. 10
Fig. 10

Mean streamwise velocity profiles and RMS errors in the (a)  x y plane and the (b) x z plane.

Fig. 11
Fig. 11

Trajectories of two RBCs tracked from 60 cinematographic holograms.

Tables (2)

Tables Icon

Table 1 Comparison of Mean Depth of Focus, RMS Position Error, and Normalized Computation Time of Five Focus Functions

Tables Icon

Table 2 Comparison of Measurement Resolution, RMS Velocity Fluctuation, and RMS Errors in Three Coordinate Axes

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

R = 0.61 λ NA .
Γ ( ξ , η ) = I 1 [ I { h ( x , y ) } I { g ( ξ x , η y ) } ] ,
I { g ( ξ , η ) } = G ( f ξ , f η ) = exp { i k d 1 ( λ f ξ ) 2 ( λ f η ) 2 } .
GRA ( z ) = x , y | I ( x , y ; z ) |
LAP ( z ) = x , y { 2 I ( x , y ; z ) } 2
VAR ( z ) = 1 N x N y x , y { I ( x , y ; z ) I ¯ ( z ) } 2
SPEC ( z ) = f x , f y log [ 1 + | I { I ( x , y ; z ) I ¯ ( z ) } | ]
INTENSITY ( z ) = I ¯ ( x , y ; z ) I center ( z ) I ¯ ( x , y ; z min ) I center ( z min ) .
θ < sin 1 λ 2 R .

Metrics