Abstract

A new optical configuration for digital holographic microscopy is presented. Digital off-axis holograms are recorded by use of a single cube beam splitter in a nonconventional configuration to both split and combine a diverging spherical wavefront as it emerges from a single point source. Both the amplitude and the phase can then be reconstructed, yielding intensity and phase images with improved resolution. The novelty of the proposed configuration is its simplicity, minimal number of optical elements, insensitivity to vibration, and its inherent capability to compensate for the phase curvature that results from the illuminating wavefront in the case of microscopic samples.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. I. Yamaguchi and T. Zhang, “Phase-shifting digital holography,” Opt. Lett. 22, 1268-1270 (1997).
    [CrossRef] [PubMed]
  2. U. Schnars, “Direct phase determination in hologram interferometry with use of digitally recorded holograms,” J. Opt. Soc. Am. A 11, 2011-2015 (1994).
    [CrossRef]
  3. E. Cuche, F. Bevilacqua, and C. Depeursinge, “Digital holography for quantitative phase-contrast imaging,” Opt. Lett. 24, 291-293 (1999).
    [CrossRef]
  4. E. Cuche, P. Marquet, and C. Depeursinge, “Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms,” Appl. Opt. 38, 6994-7001 (1999).
    [CrossRef]
  5. T. Colomb, F. Montfort, J. Kühn, N. Aspert, E. Cuche, A. Marian, F. Charrière, S. Bourquin, P. Marquet, and C. Depeursinge, “Numerical parametric lens for shifting, magnification, and complete aberration compensation in digital holographic microscopy,” J. Opt. Soc. Am. A 23, 3177-3190 (2006).
    [CrossRef]
  6. T. Colomb, E. Cuche, F. Charrière, J. Kühn, N. Aspert, F. Montfort, P. Marquet, and C. Depeursinge, “Automatic procedure for aberration compensation in digital holographic microscopy and applications to specimen shape compensation,” Appl. Opt. 45, 851-863 (2006).
    [CrossRef] [PubMed]
  7. F. Montfort, F. Charrière, T. Colomb, E. Cuche, P. Marquet, and C. Depeursinge, “Purely numerical compensation for microscope objective phase curvature in digital holographic microscopy: influence of digital phase mask position,” J. Opt. Soc. Am. A 23, 2944-2953 (2006).
    [CrossRef]
  8. T. Colomb, J. K¨uhn, F. Charriére, C. Depeursinge, P. Marquet, and N. Aspert, “Total aberrations compensation in digital holographic microscopy with a reference conjugated hologram,” Opt. Express 14, 4300-4306 (2006).
    [CrossRef] [PubMed]
  9. D. Malacara, Optical Shop Testing (Wiley, 1992).
  10. C. Mann, L. Yu, C.-M. Lo, and M. Kim, “High-resolution quantitative phase-contrast microscopy by digital holography,” Opt. Express 13, 8693-8698 (2005).
    [CrossRef] [PubMed]
  11. Y. Zhi, W. Qu, D. Liu, L. Zhu, Z. Yu, and L. Liu, “Ridge-shape phase distribution adjacent to 180° domain wall in congruent LiNbO3 crystal,” Appl. Phys. Lett. 89, 112912 (2006).
    [CrossRef]
  12. U. Schnars and W. Jüptner, “Digital recording and numerical reconstruction of holograms,” Meas. Sci. Technol. 13, R85-R101 (2002).
    [CrossRef]
  13. J. A. Ferrari and E. M. Frins, “Single-element interferometer,” Opt. Commun. 279, 235-239 (2007).
    [CrossRef]

2007 (1)

J. A. Ferrari and E. M. Frins, “Single-element interferometer,” Opt. Commun. 279, 235-239 (2007).
[CrossRef]

2006 (5)

2005 (1)

2002 (1)

U. Schnars and W. Jüptner, “Digital recording and numerical reconstruction of holograms,” Meas. Sci. Technol. 13, R85-R101 (2002).
[CrossRef]

1999 (2)

1997 (1)

1994 (1)

Aspert, N.

Bevilacqua, F.

Bourquin, S.

Charriére, F.

Charrière, F.

Charrière, F.

Charrière, F.

Colomb, T.

Cuche, E.

Depeursinge, C.

T. Colomb, E. Cuche, F. Charrière, J. Kühn, N. Aspert, F. Montfort, P. Marquet, and C. Depeursinge, “Automatic procedure for aberration compensation in digital holographic microscopy and applications to specimen shape compensation,” Appl. Opt. 45, 851-863 (2006).
[CrossRef] [PubMed]

T. Colomb, J. K¨uhn, F. Charriére, C. Depeursinge, P. Marquet, and N. Aspert, “Total aberrations compensation in digital holographic microscopy with a reference conjugated hologram,” Opt. Express 14, 4300-4306 (2006).
[CrossRef] [PubMed]

F. Montfort, F. Charrière, T. Colomb, E. Cuche, P. Marquet, and C. Depeursinge, “Purely numerical compensation for microscope objective phase curvature in digital holographic microscopy: influence of digital phase mask position,” J. Opt. Soc. Am. A 23, 2944-2953 (2006).
[CrossRef]

T. Colomb, F. Montfort, J. Kühn, N. Aspert, E. Cuche, A. Marian, F. Charrière, S. Bourquin, P. Marquet, and C. Depeursinge, “Numerical parametric lens for shifting, magnification, and complete aberration compensation in digital holographic microscopy,” J. Opt. Soc. Am. A 23, 3177-3190 (2006).
[CrossRef]

E. Cuche, P. Marquet, and C. Depeursinge, “Simultaneous amplitude-contrast and quantitative phase-contrast microscopy by numerical reconstruction of Fresnel off-axis holograms,” Appl. Opt. 38, 6994-7001 (1999).
[CrossRef]

E. Cuche, F. Bevilacqua, and C. Depeursinge, “Digital holography for quantitative phase-contrast imaging,” Opt. Lett. 24, 291-293 (1999).
[CrossRef]

Ferrari, J. A.

J. A. Ferrari and E. M. Frins, “Single-element interferometer,” Opt. Commun. 279, 235-239 (2007).
[CrossRef]

Frins, E. M.

J. A. Ferrari and E. M. Frins, “Single-element interferometer,” Opt. Commun. 279, 235-239 (2007).
[CrossRef]

Jüptner, W.

U. Schnars and W. Jüptner, “Digital recording and numerical reconstruction of holograms,” Meas. Sci. Technol. 13, R85-R101 (2002).
[CrossRef]

K¨uhn, J.

Kim, M.

Kühn, J.

Liu, D.

Y. Zhi, W. Qu, D. Liu, L. Zhu, Z. Yu, and L. Liu, “Ridge-shape phase distribution adjacent to 180° domain wall in congruent LiNbO3 crystal,” Appl. Phys. Lett. 89, 112912 (2006).
[CrossRef]

Liu, L.

Y. Zhi, W. Qu, D. Liu, L. Zhu, Z. Yu, and L. Liu, “Ridge-shape phase distribution adjacent to 180° domain wall in congruent LiNbO3 crystal,” Appl. Phys. Lett. 89, 112912 (2006).
[CrossRef]

Lo, C.-M.

Malacara, D.

D. Malacara, Optical Shop Testing (Wiley, 1992).

Mann, C.

Marian, A.

Marquet, P.

Montfort, F.

Qu, W.

Y. Zhi, W. Qu, D. Liu, L. Zhu, Z. Yu, and L. Liu, “Ridge-shape phase distribution adjacent to 180° domain wall in congruent LiNbO3 crystal,” Appl. Phys. Lett. 89, 112912 (2006).
[CrossRef]

Schnars, U.

U. Schnars and W. Jüptner, “Digital recording and numerical reconstruction of holograms,” Meas. Sci. Technol. 13, R85-R101 (2002).
[CrossRef]

U. Schnars, “Direct phase determination in hologram interferometry with use of digitally recorded holograms,” J. Opt. Soc. Am. A 11, 2011-2015 (1994).
[CrossRef]

Yamaguchi, I.

Yu, L.

Yu, Z.

Y. Zhi, W. Qu, D. Liu, L. Zhu, Z. Yu, and L. Liu, “Ridge-shape phase distribution adjacent to 180° domain wall in congruent LiNbO3 crystal,” Appl. Phys. Lett. 89, 112912 (2006).
[CrossRef]

Zhang, T.

Zhi, Y.

Y. Zhi, W. Qu, D. Liu, L. Zhu, Z. Yu, and L. Liu, “Ridge-shape phase distribution adjacent to 180° domain wall in congruent LiNbO3 crystal,” Appl. Phys. Lett. 89, 112912 (2006).
[CrossRef]

Zhu, L.

Y. Zhi, W. Qu, D. Liu, L. Zhu, Z. Yu, and L. Liu, “Ridge-shape phase distribution adjacent to 180° domain wall in congruent LiNbO3 crystal,” Appl. Phys. Lett. 89, 112912 (2006).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. Lett. (1)

Y. Zhi, W. Qu, D. Liu, L. Zhu, Z. Yu, and L. Liu, “Ridge-shape phase distribution adjacent to 180° domain wall in congruent LiNbO3 crystal,” Appl. Phys. Lett. 89, 112912 (2006).
[CrossRef]

J. Opt. Soc. Am. A (3)

Meas. Sci. Technol. (1)

U. Schnars and W. Jüptner, “Digital recording and numerical reconstruction of holograms,” Meas. Sci. Technol. 13, R85-R101 (2002).
[CrossRef]

Opt. Commun. (1)

J. A. Ferrari and E. M. Frins, “Single-element interferometer,” Opt. Commun. 279, 235-239 (2007).
[CrossRef]

Opt. Express (2)

Opt. Lett. (2)

Other (1)

D. Malacara, Optical Shop Testing (Wiley, 1992).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Proposed DHM system based on a beam splitter cube interferometer. The dashed lines illustrate the ray tracing from the sample.

Fig. 2
Fig. 2

Ray trajectories in the beam splitter cube; d represents the size of the working region in the x direction. More external rays suffer total reflection at the cube walls.

Fig. 3
Fig. 3

Straight fringe pattern observed for different angles of θ. From (a) to (c) θ increases.

Fig. 4
Fig. 4

(a) Digital hologram of a laser-ablated microscopic spot on a glass substrate; (b) its frequency spectra distribution and the selected spectrum.

Fig. 5
Fig. 5

(a) Numerically reconstructed intensity image from the proposed setup; (b) image from a conventional microscope with a 10 × objective lens.

Fig. 6
Fig. 6

(a) Three-dimensional phase distribution from the proposed setup; (b) phase curves from (a).

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

R ( x , y ) = exp { j π λ h r [ ( x S R x ) 2 + ( y S R y ) 2 ] } .
O ( x , y ) = A O exp { j π λ h o [ x 2 + y 2 ] } exp [ j φ ( x , y ) ] ,
I H ( x , y ) = | O | 2 + | R | 2 + R O * + R * O = 1 + | A O | 2 + A O exp [ j π λ ( S R x 2 + S R y 2 ) h r ] exp [ j π λ ( 1 h r 1 h o ) ( x 2 + y 2 ) + j 2 π λ h r ( S R x x + S R y y ) ] exp [ j φ ( x , y ) ] + A O exp [ j π λ ( S R x 2 + S R y 2 ) h r ] exp [ j π λ ( 1 h r 1 h o ) ( x 2 + y 2 ) j 2 π λ h r ( S R x x + S R y y ) ] exp [ j φ ( x , y ) ] ,
I H ( x , y ) = 1 + | A O | 2 + A O exp [ j π λ ( S R x 2 + S R y 2 ) h o ] exp [ j 2 π λ h o ( S R x x + S R y y ) ] exp [ j φ ( x , y ) ] + A O exp [ j π λ ( S R x 2 + S R y 2 ) h o ] exp [ j 2 π λ h o ( S R x x + S R y y ) ] exp [ j φ ( x , y ) ] .
I H F ( f x , f y ) = ( 1 + | A O | 2 ) δ ( f x , f y ) + A O exp [ j π λ ( S R x 2 + S R y 2 ) h o ] δ ( f x S R x λ h o , f y S R y λ h o ) FFT { exp [ j φ ( x , y ) ] } + A O exp [ j π λ ( S R x 2 + S R y 2 ) h o ] δ ( f x + S R x λ h o , f y + S R y λ h o ) FFT { exp [ j φ ( x , y ) ] } ,
ψ H F ( f x , f y ) = A O exp [ j π λ ( S R x 2 + S R y 2 ) h o ] δ ( f x , f y ) FFT { exp [ j φ ( x , y ) ] } ,
ψ I ( k Δ x i , l Δ y i ) = exp ( j k d ) j λ d FFT 1 { ψ H F ( k Δ f , x l Δ f y ) G ( k Δ f , x l Δ f y ) } , G ( k Δ f x , l Δ f y ) = exp [ j 2 π d λ 1 ( λ k Δ f x ) 2 ( λ l Δ f y ) 2 ] ,
d = [ 1 d r ' λ ' λ ( 1 d r 1 d o ) ] 1 ,
φ ( x , y ) = arctan Im ( ψ I ( x , y ) ) Re ( ψ I ( x , y ) ) .

Metrics