Abstract

Fiber Bragg gratings (FBGs) have previously found many applications as strain and vibration sensors. Here we demonstrate that they may also be employed as pickups for musical instruments and, specifically, for acoustic guitars and solid-body electric guitars. By fixing the FBG to a vibrating part of the instrument’s body, e.g., near the bridge of an acoustic guitar or on the headstock of a solid-body guitar, a number of sound recordings were made and compared to those obtained with either piezoelectric pickups or with magnetic induction pickups. The change in attenuation at the FBG’s midreflection point is found to be correlated to the amplitude of vibration of the vibrating structure of the instrument. Acoustic frequency spectrum analysis supports the observation that the FBG acoustic transducer has a frequency response range that is comparable to those of commercial piezoelectric pickups. The record ings made with FBG pickups were of comparable quality to those obtained with other recording methods.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Hoag, I. Kenzaburo, and K. Katsufumi, “Light responsive transducer for musical instruments,” Canada patent CA921738 (27 February 1973).
  2. I. C. Fotsing-Djouwe, M. Gagne, J. J. Laurin, and R. Kashyap, “Optical fibre musical instruments: making sense of the senseless,” J. Mater. Sci. Mater. Electron. 20, 170-174 (2007).
    [CrossRef]
  3. A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442-1463(1997).
    [CrossRef]
  4. R. Kashyap, Fiber Bragg Gratings (Academic, 1999).
  5. M. Majumder, T. K. Gangopadhyay, A. K. Chakraborty, K. Dasgupta, and D. K. Bhattacharya, “Fibre Bragg gratings in structural health monitoring--Present status and applications,” Sens. Actuators A, Phys. 147, 150-164 (2008).
    [CrossRef]
  6. N. E. Fisher, J. Surowiec, D. J. Webb, D. A. Jackson, L. R. Gavrilov, J. W. Hand, L. Zhang, and I. Bennion, “In-fibre Bragg gratings for ultrasonic medical applications,” Meas. Sci. Technol. 8, 1050-1054 (1997).
    [CrossRef]
  7. M. W. Hathaway, N. E. Fisher, D. J. Webb, C. N. Pannell, D. A. Jackson, L. R. Gavrilov, J. W. Hand, L. Zhang, and I. Bennion, “Combined ultrasound and temperature sensor using a fibre Brag grating,” Opt. Commun. 171, 225-231 (1999).
    [CrossRef]
  8. H. Tsuda, “Ultrasound and damage detection in CFRP using fiber Bragg grating sensors,” Compos. Sci. Technol. 66, 676-683 (2006).
    [CrossRef]
  9. Q. X. Yang, J. Barnes, H. P. Loock, and D. Pedersen, “Time-resolved photoacoustic spectroscopy using fiber Bragg grating acoustic transducers,” Opt. Commun. 276, 97-106(2007).
    [CrossRef]
  10. F. Bezombes, M. Lalor, and D. Burton, “Contact microphone using optical fibre Bragg grating technology,” J. Phys. Conf. Ser. 76, 012017 (2007).
    [CrossRef]
  11. D. Tosi, M. Olivero, and G. Perrone, “Low-cost fiber Bragg grating vibroacoustic sensor for voice and heartbeat detection,” Appl. Opt. 47, 5123-5129 (2008).
    [CrossRef] [PubMed]
  12. K. O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15, 1263-1276 (1997).
    [CrossRef]
  13. A. Arie, B. Lissak, and M. Tur, “Static fiber-Bragg grating strain sensing using frequency-locked lasers,” J. Lightwave Technol. 17, 1849-1855 (1999).
    [CrossRef]
  14. A. Hongo, S. Kojima, and S. Komatsuzaki, “Applications of fiber Bragg grating sensors and high-speed interrogation techniques,” Struct. Control Health Monit. 12, 269-282 (2005).
    [CrossRef]
  15. Y. J. Rao, “In-fibre Bragg grating sensors,” Meas. Sci. Technol. 8, 355-375 (1997).
    [CrossRef]
  16. Y. J. Rao, D. J. Webb, D. A. Jackson, L. Zhang, and I. Bennion, “In-fiber Bragg-Grating temperature sensor system for medical applications,” J. Lightwave Technol. 15, 779-785 (1997).
    [CrossRef]
  17. G. Gagliardi, M. Salza, P. Ferraro, and P. De Natale, “Fiber Bragg-grating strain sensor interrogation using laser radio-frequency modulation,” Opt. Express 13, 2377-2384(2005).
    [CrossRef] [PubMed]
  18. G. Gagliardi, M. Salza, P. Ferraro, and P. De Natale, “Interrogation of FBG-based strain sensors by means of laser radio-frequency modulation techniques,” J. Opt. A Pure Appl. Opt. 8, S507-S513 (2006).
    [CrossRef]
  19. D. Gatti, G. Galzerano, D. Janner, S. Longhi, and P. Laporta, “Fiber strain sensor based on a pi-phase-shifted Bragg grating and the Pound-Drever-Hall technique,” Opt. Express 16, 1945-1950 (2008).
    [CrossRef] [PubMed]
  20. M. LeBlanc, S. T. Vohra, T. E. Tsai, and E. J. Friebele, “Transverse load sensing by use of pi-phase-shifted fiber Bragg gratings,” Opt. Lett. 24, 1091-1093 (1999).
    [CrossRef]

2008 (3)

2007 (3)

I. C. Fotsing-Djouwe, M. Gagne, J. J. Laurin, and R. Kashyap, “Optical fibre musical instruments: making sense of the senseless,” J. Mater. Sci. Mater. Electron. 20, 170-174 (2007).
[CrossRef]

Q. X. Yang, J. Barnes, H. P. Loock, and D. Pedersen, “Time-resolved photoacoustic spectroscopy using fiber Bragg grating acoustic transducers,” Opt. Commun. 276, 97-106(2007).
[CrossRef]

F. Bezombes, M. Lalor, and D. Burton, “Contact microphone using optical fibre Bragg grating technology,” J. Phys. Conf. Ser. 76, 012017 (2007).
[CrossRef]

2006 (2)

H. Tsuda, “Ultrasound and damage detection in CFRP using fiber Bragg grating sensors,” Compos. Sci. Technol. 66, 676-683 (2006).
[CrossRef]

G. Gagliardi, M. Salza, P. Ferraro, and P. De Natale, “Interrogation of FBG-based strain sensors by means of laser radio-frequency modulation techniques,” J. Opt. A Pure Appl. Opt. 8, S507-S513 (2006).
[CrossRef]

2005 (2)

G. Gagliardi, M. Salza, P. Ferraro, and P. De Natale, “Fiber Bragg-grating strain sensor interrogation using laser radio-frequency modulation,” Opt. Express 13, 2377-2384(2005).
[CrossRef] [PubMed]

A. Hongo, S. Kojima, and S. Komatsuzaki, “Applications of fiber Bragg grating sensors and high-speed interrogation techniques,” Struct. Control Health Monit. 12, 269-282 (2005).
[CrossRef]

1999 (3)

M. LeBlanc, S. T. Vohra, T. E. Tsai, and E. J. Friebele, “Transverse load sensing by use of pi-phase-shifted fiber Bragg gratings,” Opt. Lett. 24, 1091-1093 (1999).
[CrossRef]

A. Arie, B. Lissak, and M. Tur, “Static fiber-Bragg grating strain sensing using frequency-locked lasers,” J. Lightwave Technol. 17, 1849-1855 (1999).
[CrossRef]

M. W. Hathaway, N. E. Fisher, D. J. Webb, C. N. Pannell, D. A. Jackson, L. R. Gavrilov, J. W. Hand, L. Zhang, and I. Bennion, “Combined ultrasound and temperature sensor using a fibre Brag grating,” Opt. Commun. 171, 225-231 (1999).
[CrossRef]

1997 (5)

Y. J. Rao, “In-fibre Bragg grating sensors,” Meas. Sci. Technol. 8, 355-375 (1997).
[CrossRef]

Y. J. Rao, D. J. Webb, D. A. Jackson, L. Zhang, and I. Bennion, “In-fiber Bragg-Grating temperature sensor system for medical applications,” J. Lightwave Technol. 15, 779-785 (1997).
[CrossRef]

K. O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15, 1263-1276 (1997).
[CrossRef]

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442-1463(1997).
[CrossRef]

N. E. Fisher, J. Surowiec, D. J. Webb, D. A. Jackson, L. R. Gavrilov, J. W. Hand, L. Zhang, and I. Bennion, “In-fibre Bragg gratings for ultrasonic medical applications,” Meas. Sci. Technol. 8, 1050-1054 (1997).
[CrossRef]

Arie, A.

Askins, C. G.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442-1463(1997).
[CrossRef]

Barnes, J.

Q. X. Yang, J. Barnes, H. P. Loock, and D. Pedersen, “Time-resolved photoacoustic spectroscopy using fiber Bragg grating acoustic transducers,” Opt. Commun. 276, 97-106(2007).
[CrossRef]

Bennion, I.

M. W. Hathaway, N. E. Fisher, D. J. Webb, C. N. Pannell, D. A. Jackson, L. R. Gavrilov, J. W. Hand, L. Zhang, and I. Bennion, “Combined ultrasound and temperature sensor using a fibre Brag grating,” Opt. Commun. 171, 225-231 (1999).
[CrossRef]

N. E. Fisher, J. Surowiec, D. J. Webb, D. A. Jackson, L. R. Gavrilov, J. W. Hand, L. Zhang, and I. Bennion, “In-fibre Bragg gratings for ultrasonic medical applications,” Meas. Sci. Technol. 8, 1050-1054 (1997).
[CrossRef]

Y. J. Rao, D. J. Webb, D. A. Jackson, L. Zhang, and I. Bennion, “In-fiber Bragg-Grating temperature sensor system for medical applications,” J. Lightwave Technol. 15, 779-785 (1997).
[CrossRef]

Bezombes, F.

F. Bezombes, M. Lalor, and D. Burton, “Contact microphone using optical fibre Bragg grating technology,” J. Phys. Conf. Ser. 76, 012017 (2007).
[CrossRef]

Bhattacharya, D. K.

M. Majumder, T. K. Gangopadhyay, A. K. Chakraborty, K. Dasgupta, and D. K. Bhattacharya, “Fibre Bragg gratings in structural health monitoring--Present status and applications,” Sens. Actuators A, Phys. 147, 150-164 (2008).
[CrossRef]

Burton, D.

F. Bezombes, M. Lalor, and D. Burton, “Contact microphone using optical fibre Bragg grating technology,” J. Phys. Conf. Ser. 76, 012017 (2007).
[CrossRef]

Chakraborty, A. K.

M. Majumder, T. K. Gangopadhyay, A. K. Chakraborty, K. Dasgupta, and D. K. Bhattacharya, “Fibre Bragg gratings in structural health monitoring--Present status and applications,” Sens. Actuators A, Phys. 147, 150-164 (2008).
[CrossRef]

Dasgupta, K.

M. Majumder, T. K. Gangopadhyay, A. K. Chakraborty, K. Dasgupta, and D. K. Bhattacharya, “Fibre Bragg gratings in structural health monitoring--Present status and applications,” Sens. Actuators A, Phys. 147, 150-164 (2008).
[CrossRef]

Davis, M. A.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442-1463(1997).
[CrossRef]

De Natale, P.

G. Gagliardi, M. Salza, P. Ferraro, and P. De Natale, “Interrogation of FBG-based strain sensors by means of laser radio-frequency modulation techniques,” J. Opt. A Pure Appl. Opt. 8, S507-S513 (2006).
[CrossRef]

G. Gagliardi, M. Salza, P. Ferraro, and P. De Natale, “Fiber Bragg-grating strain sensor interrogation using laser radio-frequency modulation,” Opt. Express 13, 2377-2384(2005).
[CrossRef] [PubMed]

Ferraro, P.

G. Gagliardi, M. Salza, P. Ferraro, and P. De Natale, “Interrogation of FBG-based strain sensors by means of laser radio-frequency modulation techniques,” J. Opt. A Pure Appl. Opt. 8, S507-S513 (2006).
[CrossRef]

G. Gagliardi, M. Salza, P. Ferraro, and P. De Natale, “Fiber Bragg-grating strain sensor interrogation using laser radio-frequency modulation,” Opt. Express 13, 2377-2384(2005).
[CrossRef] [PubMed]

Fisher, N. E.

M. W. Hathaway, N. E. Fisher, D. J. Webb, C. N. Pannell, D. A. Jackson, L. R. Gavrilov, J. W. Hand, L. Zhang, and I. Bennion, “Combined ultrasound and temperature sensor using a fibre Brag grating,” Opt. Commun. 171, 225-231 (1999).
[CrossRef]

N. E. Fisher, J. Surowiec, D. J. Webb, D. A. Jackson, L. R. Gavrilov, J. W. Hand, L. Zhang, and I. Bennion, “In-fibre Bragg gratings for ultrasonic medical applications,” Meas. Sci. Technol. 8, 1050-1054 (1997).
[CrossRef]

Fotsing-Djouwe, I. C.

I. C. Fotsing-Djouwe, M. Gagne, J. J. Laurin, and R. Kashyap, “Optical fibre musical instruments: making sense of the senseless,” J. Mater. Sci. Mater. Electron. 20, 170-174 (2007).
[CrossRef]

Friebele, E. J.

M. LeBlanc, S. T. Vohra, T. E. Tsai, and E. J. Friebele, “Transverse load sensing by use of pi-phase-shifted fiber Bragg gratings,” Opt. Lett. 24, 1091-1093 (1999).
[CrossRef]

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442-1463(1997).
[CrossRef]

Gagliardi, G.

G. Gagliardi, M. Salza, P. Ferraro, and P. De Natale, “Interrogation of FBG-based strain sensors by means of laser radio-frequency modulation techniques,” J. Opt. A Pure Appl. Opt. 8, S507-S513 (2006).
[CrossRef]

G. Gagliardi, M. Salza, P. Ferraro, and P. De Natale, “Fiber Bragg-grating strain sensor interrogation using laser radio-frequency modulation,” Opt. Express 13, 2377-2384(2005).
[CrossRef] [PubMed]

Gagne, M.

I. C. Fotsing-Djouwe, M. Gagne, J. J. Laurin, and R. Kashyap, “Optical fibre musical instruments: making sense of the senseless,” J. Mater. Sci. Mater. Electron. 20, 170-174 (2007).
[CrossRef]

Galzerano, G.

Gangopadhyay, T. K.

M. Majumder, T. K. Gangopadhyay, A. K. Chakraborty, K. Dasgupta, and D. K. Bhattacharya, “Fibre Bragg gratings in structural health monitoring--Present status and applications,” Sens. Actuators A, Phys. 147, 150-164 (2008).
[CrossRef]

Gatti, D.

Gavrilov, L. R.

M. W. Hathaway, N. E. Fisher, D. J. Webb, C. N. Pannell, D. A. Jackson, L. R. Gavrilov, J. W. Hand, L. Zhang, and I. Bennion, “Combined ultrasound and temperature sensor using a fibre Brag grating,” Opt. Commun. 171, 225-231 (1999).
[CrossRef]

N. E. Fisher, J. Surowiec, D. J. Webb, D. A. Jackson, L. R. Gavrilov, J. W. Hand, L. Zhang, and I. Bennion, “In-fibre Bragg gratings for ultrasonic medical applications,” Meas. Sci. Technol. 8, 1050-1054 (1997).
[CrossRef]

Hand, J. W.

M. W. Hathaway, N. E. Fisher, D. J. Webb, C. N. Pannell, D. A. Jackson, L. R. Gavrilov, J. W. Hand, L. Zhang, and I. Bennion, “Combined ultrasound and temperature sensor using a fibre Brag grating,” Opt. Commun. 171, 225-231 (1999).
[CrossRef]

N. E. Fisher, J. Surowiec, D. J. Webb, D. A. Jackson, L. R. Gavrilov, J. W. Hand, L. Zhang, and I. Bennion, “In-fibre Bragg gratings for ultrasonic medical applications,” Meas. Sci. Technol. 8, 1050-1054 (1997).
[CrossRef]

Hathaway, M. W.

M. W. Hathaway, N. E. Fisher, D. J. Webb, C. N. Pannell, D. A. Jackson, L. R. Gavrilov, J. W. Hand, L. Zhang, and I. Bennion, “Combined ultrasound and temperature sensor using a fibre Brag grating,” Opt. Commun. 171, 225-231 (1999).
[CrossRef]

Hill, K. O.

K. O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15, 1263-1276 (1997).
[CrossRef]

Hoag, R.

R. Hoag, I. Kenzaburo, and K. Katsufumi, “Light responsive transducer for musical instruments,” Canada patent CA921738 (27 February 1973).

Hongo, A.

A. Hongo, S. Kojima, and S. Komatsuzaki, “Applications of fiber Bragg grating sensors and high-speed interrogation techniques,” Struct. Control Health Monit. 12, 269-282 (2005).
[CrossRef]

Jackson, D. A.

M. W. Hathaway, N. E. Fisher, D. J. Webb, C. N. Pannell, D. A. Jackson, L. R. Gavrilov, J. W. Hand, L. Zhang, and I. Bennion, “Combined ultrasound and temperature sensor using a fibre Brag grating,” Opt. Commun. 171, 225-231 (1999).
[CrossRef]

N. E. Fisher, J. Surowiec, D. J. Webb, D. A. Jackson, L. R. Gavrilov, J. W. Hand, L. Zhang, and I. Bennion, “In-fibre Bragg gratings for ultrasonic medical applications,” Meas. Sci. Technol. 8, 1050-1054 (1997).
[CrossRef]

Y. J. Rao, D. J. Webb, D. A. Jackson, L. Zhang, and I. Bennion, “In-fiber Bragg-Grating temperature sensor system for medical applications,” J. Lightwave Technol. 15, 779-785 (1997).
[CrossRef]

Janner, D.

Kashyap, R.

I. C. Fotsing-Djouwe, M. Gagne, J. J. Laurin, and R. Kashyap, “Optical fibre musical instruments: making sense of the senseless,” J. Mater. Sci. Mater. Electron. 20, 170-174 (2007).
[CrossRef]

R. Kashyap, Fiber Bragg Gratings (Academic, 1999).

Katsufumi, K.

R. Hoag, I. Kenzaburo, and K. Katsufumi, “Light responsive transducer for musical instruments,” Canada patent CA921738 (27 February 1973).

Kenzaburo, I.

R. Hoag, I. Kenzaburo, and K. Katsufumi, “Light responsive transducer for musical instruments,” Canada patent CA921738 (27 February 1973).

Kersey, A. D.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442-1463(1997).
[CrossRef]

Kojima, S.

A. Hongo, S. Kojima, and S. Komatsuzaki, “Applications of fiber Bragg grating sensors and high-speed interrogation techniques,” Struct. Control Health Monit. 12, 269-282 (2005).
[CrossRef]

Komatsuzaki, S.

A. Hongo, S. Kojima, and S. Komatsuzaki, “Applications of fiber Bragg grating sensors and high-speed interrogation techniques,” Struct. Control Health Monit. 12, 269-282 (2005).
[CrossRef]

Koo, K. P.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442-1463(1997).
[CrossRef]

Lalor, M.

F. Bezombes, M. Lalor, and D. Burton, “Contact microphone using optical fibre Bragg grating technology,” J. Phys. Conf. Ser. 76, 012017 (2007).
[CrossRef]

Laporta, P.

Laurin, J. J.

I. C. Fotsing-Djouwe, M. Gagne, J. J. Laurin, and R. Kashyap, “Optical fibre musical instruments: making sense of the senseless,” J. Mater. Sci. Mater. Electron. 20, 170-174 (2007).
[CrossRef]

LeBlanc, M.

M. LeBlanc, S. T. Vohra, T. E. Tsai, and E. J. Friebele, “Transverse load sensing by use of pi-phase-shifted fiber Bragg gratings,” Opt. Lett. 24, 1091-1093 (1999).
[CrossRef]

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442-1463(1997).
[CrossRef]

Lissak, B.

Longhi, S.

Loock, H. P.

Q. X. Yang, J. Barnes, H. P. Loock, and D. Pedersen, “Time-resolved photoacoustic spectroscopy using fiber Bragg grating acoustic transducers,” Opt. Commun. 276, 97-106(2007).
[CrossRef]

Majumder, M.

M. Majumder, T. K. Gangopadhyay, A. K. Chakraborty, K. Dasgupta, and D. K. Bhattacharya, “Fibre Bragg gratings in structural health monitoring--Present status and applications,” Sens. Actuators A, Phys. 147, 150-164 (2008).
[CrossRef]

Meltz, G.

K. O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15, 1263-1276 (1997).
[CrossRef]

Olivero, M.

Pannell, C. N.

M. W. Hathaway, N. E. Fisher, D. J. Webb, C. N. Pannell, D. A. Jackson, L. R. Gavrilov, J. W. Hand, L. Zhang, and I. Bennion, “Combined ultrasound and temperature sensor using a fibre Brag grating,” Opt. Commun. 171, 225-231 (1999).
[CrossRef]

Patrick, H. J.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442-1463(1997).
[CrossRef]

Pedersen, D.

Q. X. Yang, J. Barnes, H. P. Loock, and D. Pedersen, “Time-resolved photoacoustic spectroscopy using fiber Bragg grating acoustic transducers,” Opt. Commun. 276, 97-106(2007).
[CrossRef]

Perrone, G.

Putnam, M. A.

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442-1463(1997).
[CrossRef]

Rao, Y. J.

Y. J. Rao, D. J. Webb, D. A. Jackson, L. Zhang, and I. Bennion, “In-fiber Bragg-Grating temperature sensor system for medical applications,” J. Lightwave Technol. 15, 779-785 (1997).
[CrossRef]

Y. J. Rao, “In-fibre Bragg grating sensors,” Meas. Sci. Technol. 8, 355-375 (1997).
[CrossRef]

Salza, M.

G. Gagliardi, M. Salza, P. Ferraro, and P. De Natale, “Interrogation of FBG-based strain sensors by means of laser radio-frequency modulation techniques,” J. Opt. A Pure Appl. Opt. 8, S507-S513 (2006).
[CrossRef]

G. Gagliardi, M. Salza, P. Ferraro, and P. De Natale, “Fiber Bragg-grating strain sensor interrogation using laser radio-frequency modulation,” Opt. Express 13, 2377-2384(2005).
[CrossRef] [PubMed]

Surowiec, J.

N. E. Fisher, J. Surowiec, D. J. Webb, D. A. Jackson, L. R. Gavrilov, J. W. Hand, L. Zhang, and I. Bennion, “In-fibre Bragg gratings for ultrasonic medical applications,” Meas. Sci. Technol. 8, 1050-1054 (1997).
[CrossRef]

Tosi, D.

Tsai, T. E.

Tsuda, H.

H. Tsuda, “Ultrasound and damage detection in CFRP using fiber Bragg grating sensors,” Compos. Sci. Technol. 66, 676-683 (2006).
[CrossRef]

Tur, M.

Vohra, S. T.

Webb, D. J.

M. W. Hathaway, N. E. Fisher, D. J. Webb, C. N. Pannell, D. A. Jackson, L. R. Gavrilov, J. W. Hand, L. Zhang, and I. Bennion, “Combined ultrasound and temperature sensor using a fibre Brag grating,” Opt. Commun. 171, 225-231 (1999).
[CrossRef]

N. E. Fisher, J. Surowiec, D. J. Webb, D. A. Jackson, L. R. Gavrilov, J. W. Hand, L. Zhang, and I. Bennion, “In-fibre Bragg gratings for ultrasonic medical applications,” Meas. Sci. Technol. 8, 1050-1054 (1997).
[CrossRef]

Y. J. Rao, D. J. Webb, D. A. Jackson, L. Zhang, and I. Bennion, “In-fiber Bragg-Grating temperature sensor system for medical applications,” J. Lightwave Technol. 15, 779-785 (1997).
[CrossRef]

Yang, Q. X.

Q. X. Yang, J. Barnes, H. P. Loock, and D. Pedersen, “Time-resolved photoacoustic spectroscopy using fiber Bragg grating acoustic transducers,” Opt. Commun. 276, 97-106(2007).
[CrossRef]

Zhang, L.

M. W. Hathaway, N. E. Fisher, D. J. Webb, C. N. Pannell, D. A. Jackson, L. R. Gavrilov, J. W. Hand, L. Zhang, and I. Bennion, “Combined ultrasound and temperature sensor using a fibre Brag grating,” Opt. Commun. 171, 225-231 (1999).
[CrossRef]

N. E. Fisher, J. Surowiec, D. J. Webb, D. A. Jackson, L. R. Gavrilov, J. W. Hand, L. Zhang, and I. Bennion, “In-fibre Bragg gratings for ultrasonic medical applications,” Meas. Sci. Technol. 8, 1050-1054 (1997).
[CrossRef]

Y. J. Rao, D. J. Webb, D. A. Jackson, L. Zhang, and I. Bennion, “In-fiber Bragg-Grating temperature sensor system for medical applications,” J. Lightwave Technol. 15, 779-785 (1997).
[CrossRef]

Appl. Opt. (1)

Compos. Sci. Technol. (1)

H. Tsuda, “Ultrasound and damage detection in CFRP using fiber Bragg grating sensors,” Compos. Sci. Technol. 66, 676-683 (2006).
[CrossRef]

J. Lightwave Technol. (4)

A. D. Kersey, M. A. Davis, H. J. Patrick, M. LeBlanc, K. P. Koo, C. G. Askins, M. A. Putnam, and E. J. Friebele, “Fiber grating sensors,” J. Lightwave Technol. 15, 1442-1463(1997).
[CrossRef]

Y. J. Rao, D. J. Webb, D. A. Jackson, L. Zhang, and I. Bennion, “In-fiber Bragg-Grating temperature sensor system for medical applications,” J. Lightwave Technol. 15, 779-785 (1997).
[CrossRef]

K. O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Lightwave Technol. 15, 1263-1276 (1997).
[CrossRef]

A. Arie, B. Lissak, and M. Tur, “Static fiber-Bragg grating strain sensing using frequency-locked lasers,” J. Lightwave Technol. 17, 1849-1855 (1999).
[CrossRef]

J. Mater. Sci. Mater. Electron. (1)

I. C. Fotsing-Djouwe, M. Gagne, J. J. Laurin, and R. Kashyap, “Optical fibre musical instruments: making sense of the senseless,” J. Mater. Sci. Mater. Electron. 20, 170-174 (2007).
[CrossRef]

J. Opt. A Pure Appl. Opt. (1)

G. Gagliardi, M. Salza, P. Ferraro, and P. De Natale, “Interrogation of FBG-based strain sensors by means of laser radio-frequency modulation techniques,” J. Opt. A Pure Appl. Opt. 8, S507-S513 (2006).
[CrossRef]

J. Phys. Conf. Ser. (1)

F. Bezombes, M. Lalor, and D. Burton, “Contact microphone using optical fibre Bragg grating technology,” J. Phys. Conf. Ser. 76, 012017 (2007).
[CrossRef]

Meas. Sci. Technol. (2)

Y. J. Rao, “In-fibre Bragg grating sensors,” Meas. Sci. Technol. 8, 355-375 (1997).
[CrossRef]

N. E. Fisher, J. Surowiec, D. J. Webb, D. A. Jackson, L. R. Gavrilov, J. W. Hand, L. Zhang, and I. Bennion, “In-fibre Bragg gratings for ultrasonic medical applications,” Meas. Sci. Technol. 8, 1050-1054 (1997).
[CrossRef]

Opt. Commun. (2)

M. W. Hathaway, N. E. Fisher, D. J. Webb, C. N. Pannell, D. A. Jackson, L. R. Gavrilov, J. W. Hand, L. Zhang, and I. Bennion, “Combined ultrasound and temperature sensor using a fibre Brag grating,” Opt. Commun. 171, 225-231 (1999).
[CrossRef]

Q. X. Yang, J. Barnes, H. P. Loock, and D. Pedersen, “Time-resolved photoacoustic spectroscopy using fiber Bragg grating acoustic transducers,” Opt. Commun. 276, 97-106(2007).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Sens. Actuators A, Phys. (1)

M. Majumder, T. K. Gangopadhyay, A. K. Chakraborty, K. Dasgupta, and D. K. Bhattacharya, “Fibre Bragg gratings in structural health monitoring--Present status and applications,” Sens. Actuators A, Phys. 147, 150-164 (2008).
[CrossRef]

Struct. Control Health Monit. (1)

A. Hongo, S. Kojima, and S. Komatsuzaki, “Applications of fiber Bragg grating sensors and high-speed interrogation techniques,” Struct. Control Health Monit. 12, 269-282 (2005).
[CrossRef]

Other (2)

R. Hoag, I. Kenzaburo, and K. Katsufumi, “Light responsive transducer for musical instruments,” Canada patent CA921738 (27 February 1973).

R. Kashyap, Fiber Bragg Gratings (Academic, 1999).

Supplementary Material (6)

» Media 1: MP3 (242 KB)     
» Media 2: MP3 (251 KB)     
» Media 3: MP3 (364 KB)     
» Media 4: MP3 (572 KB)     
» Media 5: MP3 (687 KB)     
» Media 6: MP3 (353 KB)     

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Transmission spectra of two different FBGs (top curves) and laser light sources (bottom curves). (a) Laser emission spectrum of the moderately tunable distributed feedback diode laser and transmission of the narrowband FBG. (b) Laser emission of a widely tunable diode laser and transmission of the wideband FBG

Fig. 2
Fig. 2

(a) Sound recording of a plucked E 4 string ( 333 Hz ) of an acoustic guitar using the narrowband FBG (lower curve) and PZT pickups (offset vertically for clarity) (b) Fourier transforms of the above waveforms.

Fig. 3
Fig. 3

Frequency spectra of two sound recordings of the plucked D 3 string of an acoustic guitar. Lower panel: The spectra for the FBG pickup, and the condenser microphone (recorded simultaneously) are offset by 20 dB for clarity: Upper panel: the spectra from the FBG pickup and the PZT pickup were also recorded simultaneously and offset. The fundamental frequency at 147 Hz is indicated by an arrow.

Fig. 4
Fig. 4

(a) Frequency spectra of the overtones of a plucked E 4 string of the acoustic guitar (fundamental frequency 333 Hz ). (b) and (c) show the frequency response as the FBG is moved from a parallel aligned position 2 cm below the bridge of the guitar to a position near the edge of the guitar body 16 cm below the bridge. The position-dependent frequency spectra obtained when using (b) the DFB laser diode are similar to those obtained using (c) a tunable diode laser.

Fig. 5
Fig. 5

(a) Sound recording of a plucked E 4 string of a solid-body guitar using the FBG (lower curve) and magnetic single coil pickups (offset vertically for clarity). (b) Fourier transform of the above waveforms. The fundamental frequency at 333 Hz is indicated by an arrow.

Metrics