Abstract

We build an experiment of optical tweezers based on the use of an inverted optical microscope for manipulating microsized single crystals, which are made of an organic dye and parallelepiped in shape. The microcrystals are directed so that their long axis is in the axial direction of the trapping beam. Their short axis follows the direction of the linear polarization of the beam. In circular or elliptic polarization, the crystals are spontaneously put in rotation with a high speed of up to 500 turns per second. It is the first time, to the best of our knowledge, that such a result is reported for particles of the size of our crystals. Another surprising result is that the rotation speed was first increased as expected by increasing the incident power, but after passing by a maximum it decreased until the complete stop of rotation, whereas the power continued growing. This evolution was not reversible. Several hypotheses are discussed to explain such behavior.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24, 156-159 (1970).
    [CrossRef]
  2. A. Ashkin, “History of optical trapping and manipulation of small neutral particles, atoms and molecules,” in Single Molecule Spectroscopy, R. Rigler, M. Orrit, and T. Basché, eds. (Springer, 2001), pp. 1-31.
    [CrossRef]
  3. M. J. Lang and S. M. Block, “Ressource letter: LBOT-1: laser based optical tweezers,” Am. J. Phys. 71, 201-215 (2003).
    [CrossRef]
  4. P. Galajda and P. Ormos, “Rotors produced and driven in laser tweezers with reversed direction of rotation,” Appl. Phys. Lett. 80, 4653-4656 (2002).
    [CrossRef]
  5. A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophys. J. 61, 569-582 (1992).
    [CrossRef] [PubMed]
  6. Y. Harada and T. Asakura, “Radiation forces on a dielectric sphere in the Rayleigh scattering regime,” Opt. Commun. 124, 529-541 (1996).
    [CrossRef]
  7. K. F. Ren, G. Greha, and G. Gouesbet, “Radiation pressure forces exerted on a particle arbitrarily located in a Gaussian-beam by using the generalized Lorenz-Mie theory, and associated resonance effects,” Opt. Commun. 108, 343-354 (1994).
    [CrossRef]
  8. P. Viravathana and D. W. M. Marr, “Optical trapping of titania/silica core-shell colloidal particles,” J. Colloid Interface Sci. 221, 301-307 (2000).
    [CrossRef] [PubMed]
  9. M. Rodriguez-Otazo, A. Augier-Calderin, and J.-P. Galaup, “Nanometer gold-silica composite particles manipulated by optical tweezers,” Opt. Commun. (in press).
  10. Y.-R. Chang, L. Hsu, and S. Chi, “Optical trapping of a spherically symmetric sphere in the ray-optics regime: a model for optical tweezers upon cells,” Appl. Opt. 45, 3885-3892 (2006).
    [CrossRef] [PubMed]
  11. Y.-R. Chang, L. Hsu, and S. Chi, “Optical trapping of a spherically symmetric Rayleigh sphere: a model for optical tweezers upon cells,” Opt. Commun. 246, 97-105 (2005).
    [CrossRef]
  12. D. Ganic, X. Gan, and M. Gu, “Exact radiation trapping force calculation based on vectorial diffraction theory,” Opt. Express 12, 2670-2675 (2004).
    [CrossRef] [PubMed]
  13. A. Mazolli, P. A. Maia Neto, and H. M. Nussenzveig, “Theory of trapping forces in optical tweezers,” Proc. R. Soc. London Ser. A 459, 3021-3041 (2003).
    [CrossRef]
  14. N. B. Viana, M. S. Rocha, O. N. Mesquita, A. Mazolli, P. A. Maia Neto, and H. M. Nussenzveig, “Towards absolute calibration of optical tweezers,” Phys. Rev. E 75, 021914 (2007) .
    [CrossRef]
  15. R. C. Gauthier, M. Ashman, and C. P. Grower, “Experimental confirmation of the optical-trapping properties of cylindrical objects,” Appl. Opt. 38, 4861-4869 (1999).
    [CrossRef]
  16. Z. Cheng, P. M. Chaikin, and T. G. Mason, “Light streak tracking of optically trapped thin microdisks,” Phys. Rev. Lett. 89, 108303 (2002).
    [CrossRef] [PubMed]
  17. P. Galajda and P. Ormos, “Orientation of flat particles in optical tweezers by linearly polarized light,” Opt. Express 11, 446-451 (2003).
    [CrossRef] [PubMed]
  18. W. Singer, T. A. Nieminen, U. J. Gibson, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Orientation of optically trapped nonspherical birefringent particles,” Phys. Rev. E 73, 021911 (2006).
    [CrossRef]
  19. C. Starr, W. Dultz, H. P. Wagner, K. Dholakia, and H. Schmitzer, “Optically controlled rotation of PTCDA crystals in optical tweezers,” AIP Conf. Proc. 772, 1099-1100 (2005).
    [CrossRef]
  20. W. Singer, H. Rubinsztein-Dunlop, and U. Gibson, “Manipulation and growth of birefringent protein crystals in optical tweezers,” Opt. Express 12, 941-950 (2001).
  21. M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical alignment and spinning of laser-trapped microscopic particles,” Nature 394, 348-350 (1998).
    [CrossRef]
  22. M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical alignment and spinning of laser-trapped microscopic particles: erratum,” Nature 395, 621 (1998).
    [CrossRef]
  23. A. T. O'Neil and M. J. Padgett, “Rotational control within optical tweezers by use of a rotating aperture,” Opt. Lett. 27, 743-745 (2002).
    [CrossRef]
  24. A. La Porta and M. Wang, “Optical torque wrench: angular trapping, rotation, and torque detection of quartz microparticles,” Phys. Rev. Lett. 92, 190801 (2004).
    [CrossRef] [PubMed]
  25. X. Sun, J. Zhang, X. Li, D. Gong, and H. Lee, “Optical rotation and manipulation of micro-sized LiNbO3 crystals and single-walled carbon nanotubes bundles,” Colloids Surf. A 313-314, 488-491 (2008).
    [CrossRef]
  26. H. Nakanishi and H. Oikawa, “Reprecipitation method for organic nanocrystals, in Single Organic Nanoparticles, H. Masuhara, H. Nakanishi, and K. Sasaki, eds. (Springer Verlag, 2003), pp. 17-31.
    [CrossRef]
  27. F. Bertorelle, D. Lavabre, and S. Fery-Forgues, “Dendrimer-tuned formation of luminescent organic microcrystals,” J. Am. Chem. Soc. 125, 6244-6253 (2003).
    [CrossRef] [PubMed]
  28. F. Bertorelle, F. Rodrigues, and S. Fery-Forgues, “Dendrimer-tuned formation of fluorescent organic microcrystals. Influence of dye hydrophobicity and dendrimer charge,” Langmuir 22, 8523-8531 (2006).
    [CrossRef] [PubMed]
  29. M. Abyan, F. Bertorelle, and S. Fery-Forgues, “Use of linear polymers to control the preparation of luminescent organic microcrystals,” Langmuir 21, 6030-6037 (2005).
    [CrossRef] [PubMed]
  30. L. Bîrlă, F. Bertorelle, F. Rodrigues, S. Badré, R. Pansu, and S. Fery-Forgues, “Effect of DNA on the growth and optical properties of luminescent organic microcrystals,” Langmuir 22, 6256-6265 (2006).
    [CrossRef] [PubMed]
  31. M. Abyan, D. de Caro, and S. Fery-Forgues, “Suspensions of organic microcrystals produced in the presence of polymers: diversity of UV/vis absorption and fluorescence properties according to the preparation conditions,” Langmuir 25, 1651-1658 (2009).
    [CrossRef] [PubMed]
  32. M. Rodriguez-Otazo, “Réalisation de pinces optiques pour la manipulation de nano et micro objets individuels d'intérêt chimique ou biologique,” Ph.D. dissertation (Université de Paris, 2008).
  33. F. Galinier, F. Bertorelle, and S. Fery-Forgues, “Spectrophotometric study of the incorporation of NBD probes in micelles: is a long alkyl chain on the fluorophore an advantage?,” C. R. Acad. Sci. Paris Ser. IIc 4, 941-950 (2001).
    [CrossRef]
  34. R. C. Gauthier, “Theoretical investigation of the optical trapping force and torque on cylindrical micro-objects,” J. Opt. Soc. Am. B 14, 3323-3333 (1997).
    [CrossRef]
  35. E. Higurashi, R. Sawada, and T. Ito, “Optically induced angular alignment of trapped birefringent micro-objects by linearly polarized light,” Phys. Rev. E 59, 3676-3681 (1999).
    [CrossRef]
  36. E. Higurashi, R. Sawada, and T. Ito, “Optically induced angular alignment of birefringent micro-objects by linear polarization,” Appl. Phys. Lett. 73, 3034-3036 (1998).
    [CrossRef]
  37. M. Padgett, S. M. Barnett, and R. Loudon, “The angular momentum of light inside a dielectric,” J. Mod. Opt. 50, 1555-1562 (2003).
  38. R. Loudon and S. M. Barnett, “Theory of the radiation pressure on dielectric slabs, prisms and single surfaces,” Opt. Express 14, 11855-11869 (2006).
    [CrossRef] [PubMed]
  39. M. Mansuripur, “Radiation pressure and the linear momentum of the electromagnetic field,” Opt. Express 12, 5375-5401(2004).
    [CrossRef] [PubMed]
  40. M. Mansuripur, “Angular momentum of circularly polarized light in dielectric media,” Opt. Express 13, 5315-5324(2005).
    [CrossRef] [PubMed]
  41. K. D. Wulff, D. G. Cole, and R. L. Clark, “Controlled rotation of birefringent particles in an optical trap,” Appl. Opt. 47, 6428-6433 (2008).
    [CrossRef] [PubMed]
  42. A. D. Rowe, M. C. Leake, H. Morgan, and R. M. Berry, “Rapid rotation of micron and submicron dielectric particles measured using optical tweezers,” J. Mod. Opt. 50, 1539-1554(2003).
  43. M. E. J. Friese, “Optical angular-momentum transfer to trapped absorbing particles,” Phys. Rev. A 54, 1593-1596 (1996).
    [CrossRef]
  44. E. Higurashi, O. Ohguchi, T. Tamamura, H. Ukita, and R. Sawada, “Optically induced rotation of dissymmetrically shaped fluorinated polyimide micro-objects in optical traps,” J. Appl. Phys. 82, 2773-2779 (1997).
    [CrossRef]
  45. P. Galajda and P. Ormos, “Rotation of microscopic propellers in laser tweezers,” J. Opt. B 4, S78-S81 (2002).
    [CrossRef]

2009 (1)

M. Abyan, D. de Caro, and S. Fery-Forgues, “Suspensions of organic microcrystals produced in the presence of polymers: diversity of UV/vis absorption and fluorescence properties according to the preparation conditions,” Langmuir 25, 1651-1658 (2009).
[CrossRef] [PubMed]

2008 (2)

X. Sun, J. Zhang, X. Li, D. Gong, and H. Lee, “Optical rotation and manipulation of micro-sized LiNbO3 crystals and single-walled carbon nanotubes bundles,” Colloids Surf. A 313-314, 488-491 (2008).
[CrossRef]

K. D. Wulff, D. G. Cole, and R. L. Clark, “Controlled rotation of birefringent particles in an optical trap,” Appl. Opt. 47, 6428-6433 (2008).
[CrossRef] [PubMed]

2007 (1)

N. B. Viana, M. S. Rocha, O. N. Mesquita, A. Mazolli, P. A. Maia Neto, and H. M. Nussenzveig, “Towards absolute calibration of optical tweezers,” Phys. Rev. E 75, 021914 (2007) .
[CrossRef]

2006 (5)

W. Singer, T. A. Nieminen, U. J. Gibson, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Orientation of optically trapped nonspherical birefringent particles,” Phys. Rev. E 73, 021911 (2006).
[CrossRef]

Y.-R. Chang, L. Hsu, and S. Chi, “Optical trapping of a spherically symmetric sphere in the ray-optics regime: a model for optical tweezers upon cells,” Appl. Opt. 45, 3885-3892 (2006).
[CrossRef] [PubMed]

F. Bertorelle, F. Rodrigues, and S. Fery-Forgues, “Dendrimer-tuned formation of fluorescent organic microcrystals. Influence of dye hydrophobicity and dendrimer charge,” Langmuir 22, 8523-8531 (2006).
[CrossRef] [PubMed]

L. Bîrlă, F. Bertorelle, F. Rodrigues, S. Badré, R. Pansu, and S. Fery-Forgues, “Effect of DNA on the growth and optical properties of luminescent organic microcrystals,” Langmuir 22, 6256-6265 (2006).
[CrossRef] [PubMed]

R. Loudon and S. M. Barnett, “Theory of the radiation pressure on dielectric slabs, prisms and single surfaces,” Opt. Express 14, 11855-11869 (2006).
[CrossRef] [PubMed]

2005 (4)

M. Abyan, F. Bertorelle, and S. Fery-Forgues, “Use of linear polymers to control the preparation of luminescent organic microcrystals,” Langmuir 21, 6030-6037 (2005).
[CrossRef] [PubMed]

Y.-R. Chang, L. Hsu, and S. Chi, “Optical trapping of a spherically symmetric Rayleigh sphere: a model for optical tweezers upon cells,” Opt. Commun. 246, 97-105 (2005).
[CrossRef]

C. Starr, W. Dultz, H. P. Wagner, K. Dholakia, and H. Schmitzer, “Optically controlled rotation of PTCDA crystals in optical tweezers,” AIP Conf. Proc. 772, 1099-1100 (2005).
[CrossRef]

M. Mansuripur, “Angular momentum of circularly polarized light in dielectric media,” Opt. Express 13, 5315-5324(2005).
[CrossRef] [PubMed]

2004 (3)

2003 (6)

M. Padgett, S. M. Barnett, and R. Loudon, “The angular momentum of light inside a dielectric,” J. Mod. Opt. 50, 1555-1562 (2003).

P. Galajda and P. Ormos, “Orientation of flat particles in optical tweezers by linearly polarized light,” Opt. Express 11, 446-451 (2003).
[CrossRef] [PubMed]

F. Bertorelle, D. Lavabre, and S. Fery-Forgues, “Dendrimer-tuned formation of luminescent organic microcrystals,” J. Am. Chem. Soc. 125, 6244-6253 (2003).
[CrossRef] [PubMed]

A. Mazolli, P. A. Maia Neto, and H. M. Nussenzveig, “Theory of trapping forces in optical tweezers,” Proc. R. Soc. London Ser. A 459, 3021-3041 (2003).
[CrossRef]

M. J. Lang and S. M. Block, “Ressource letter: LBOT-1: laser based optical tweezers,” Am. J. Phys. 71, 201-215 (2003).
[CrossRef]

A. D. Rowe, M. C. Leake, H. Morgan, and R. M. Berry, “Rapid rotation of micron and submicron dielectric particles measured using optical tweezers,” J. Mod. Opt. 50, 1539-1554(2003).

2002 (4)

P. Galajda and P. Ormos, “Rotation of microscopic propellers in laser tweezers,” J. Opt. B 4, S78-S81 (2002).
[CrossRef]

P. Galajda and P. Ormos, “Rotors produced and driven in laser tweezers with reversed direction of rotation,” Appl. Phys. Lett. 80, 4653-4656 (2002).
[CrossRef]

Z. Cheng, P. M. Chaikin, and T. G. Mason, “Light streak tracking of optically trapped thin microdisks,” Phys. Rev. Lett. 89, 108303 (2002).
[CrossRef] [PubMed]

A. T. O'Neil and M. J. Padgett, “Rotational control within optical tweezers by use of a rotating aperture,” Opt. Lett. 27, 743-745 (2002).
[CrossRef]

2001 (2)

F. Galinier, F. Bertorelle, and S. Fery-Forgues, “Spectrophotometric study of the incorporation of NBD probes in micelles: is a long alkyl chain on the fluorophore an advantage?,” C. R. Acad. Sci. Paris Ser. IIc 4, 941-950 (2001).
[CrossRef]

W. Singer, H. Rubinsztein-Dunlop, and U. Gibson, “Manipulation and growth of birefringent protein crystals in optical tweezers,” Opt. Express 12, 941-950 (2001).

2000 (1)

P. Viravathana and D. W. M. Marr, “Optical trapping of titania/silica core-shell colloidal particles,” J. Colloid Interface Sci. 221, 301-307 (2000).
[CrossRef] [PubMed]

1999 (2)

R. C. Gauthier, M. Ashman, and C. P. Grower, “Experimental confirmation of the optical-trapping properties of cylindrical objects,” Appl. Opt. 38, 4861-4869 (1999).
[CrossRef]

E. Higurashi, R. Sawada, and T. Ito, “Optically induced angular alignment of trapped birefringent micro-objects by linearly polarized light,” Phys. Rev. E 59, 3676-3681 (1999).
[CrossRef]

1998 (3)

E. Higurashi, R. Sawada, and T. Ito, “Optically induced angular alignment of birefringent micro-objects by linear polarization,” Appl. Phys. Lett. 73, 3034-3036 (1998).
[CrossRef]

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical alignment and spinning of laser-trapped microscopic particles,” Nature 394, 348-350 (1998).
[CrossRef]

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical alignment and spinning of laser-trapped microscopic particles: erratum,” Nature 395, 621 (1998).
[CrossRef]

1997 (2)

R. C. Gauthier, “Theoretical investigation of the optical trapping force and torque on cylindrical micro-objects,” J. Opt. Soc. Am. B 14, 3323-3333 (1997).
[CrossRef]

E. Higurashi, O. Ohguchi, T. Tamamura, H. Ukita, and R. Sawada, “Optically induced rotation of dissymmetrically shaped fluorinated polyimide micro-objects in optical traps,” J. Appl. Phys. 82, 2773-2779 (1997).
[CrossRef]

1996 (2)

M. E. J. Friese, “Optical angular-momentum transfer to trapped absorbing particles,” Phys. Rev. A 54, 1593-1596 (1996).
[CrossRef]

Y. Harada and T. Asakura, “Radiation forces on a dielectric sphere in the Rayleigh scattering regime,” Opt. Commun. 124, 529-541 (1996).
[CrossRef]

1994 (1)

K. F. Ren, G. Greha, and G. Gouesbet, “Radiation pressure forces exerted on a particle arbitrarily located in a Gaussian-beam by using the generalized Lorenz-Mie theory, and associated resonance effects,” Opt. Commun. 108, 343-354 (1994).
[CrossRef]

1992 (1)

A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophys. J. 61, 569-582 (1992).
[CrossRef] [PubMed]

1970 (1)

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24, 156-159 (1970).
[CrossRef]

Abyan, M.

M. Abyan, D. de Caro, and S. Fery-Forgues, “Suspensions of organic microcrystals produced in the presence of polymers: diversity of UV/vis absorption and fluorescence properties according to the preparation conditions,” Langmuir 25, 1651-1658 (2009).
[CrossRef] [PubMed]

M. Abyan, F. Bertorelle, and S. Fery-Forgues, “Use of linear polymers to control the preparation of luminescent organic microcrystals,” Langmuir 21, 6030-6037 (2005).
[CrossRef] [PubMed]

Asakura, T.

Y. Harada and T. Asakura, “Radiation forces on a dielectric sphere in the Rayleigh scattering regime,” Opt. Commun. 124, 529-541 (1996).
[CrossRef]

Ashkin, A.

A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophys. J. 61, 569-582 (1992).
[CrossRef] [PubMed]

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24, 156-159 (1970).
[CrossRef]

A. Ashkin, “History of optical trapping and manipulation of small neutral particles, atoms and molecules,” in Single Molecule Spectroscopy, R. Rigler, M. Orrit, and T. Basché, eds. (Springer, 2001), pp. 1-31.
[CrossRef]

Ashman, M.

Augier-Calderin, A.

M. Rodriguez-Otazo, A. Augier-Calderin, and J.-P. Galaup, “Nanometer gold-silica composite particles manipulated by optical tweezers,” Opt. Commun. (in press).

Badré, S.

L. Bîrlă, F. Bertorelle, F. Rodrigues, S. Badré, R. Pansu, and S. Fery-Forgues, “Effect of DNA on the growth and optical properties of luminescent organic microcrystals,” Langmuir 22, 6256-6265 (2006).
[CrossRef] [PubMed]

Barnett, S. M.

R. Loudon and S. M. Barnett, “Theory of the radiation pressure on dielectric slabs, prisms and single surfaces,” Opt. Express 14, 11855-11869 (2006).
[CrossRef] [PubMed]

M. Padgett, S. M. Barnett, and R. Loudon, “The angular momentum of light inside a dielectric,” J. Mod. Opt. 50, 1555-1562 (2003).

Berry, R. M.

A. D. Rowe, M. C. Leake, H. Morgan, and R. M. Berry, “Rapid rotation of micron and submicron dielectric particles measured using optical tweezers,” J. Mod. Opt. 50, 1539-1554(2003).

Bertorelle, F.

F. Bertorelle, F. Rodrigues, and S. Fery-Forgues, “Dendrimer-tuned formation of fluorescent organic microcrystals. Influence of dye hydrophobicity and dendrimer charge,” Langmuir 22, 8523-8531 (2006).
[CrossRef] [PubMed]

L. Bîrlă, F. Bertorelle, F. Rodrigues, S. Badré, R. Pansu, and S. Fery-Forgues, “Effect of DNA on the growth and optical properties of luminescent organic microcrystals,” Langmuir 22, 6256-6265 (2006).
[CrossRef] [PubMed]

M. Abyan, F. Bertorelle, and S. Fery-Forgues, “Use of linear polymers to control the preparation of luminescent organic microcrystals,” Langmuir 21, 6030-6037 (2005).
[CrossRef] [PubMed]

F. Bertorelle, D. Lavabre, and S. Fery-Forgues, “Dendrimer-tuned formation of luminescent organic microcrystals,” J. Am. Chem. Soc. 125, 6244-6253 (2003).
[CrossRef] [PubMed]

F. Galinier, F. Bertorelle, and S. Fery-Forgues, “Spectrophotometric study of the incorporation of NBD probes in micelles: is a long alkyl chain on the fluorophore an advantage?,” C. R. Acad. Sci. Paris Ser. IIc 4, 941-950 (2001).
[CrossRef]

Bîrla, L.

L. Bîrlă, F. Bertorelle, F. Rodrigues, S. Badré, R. Pansu, and S. Fery-Forgues, “Effect of DNA on the growth and optical properties of luminescent organic microcrystals,” Langmuir 22, 6256-6265 (2006).
[CrossRef] [PubMed]

Block, S. M.

M. J. Lang and S. M. Block, “Ressource letter: LBOT-1: laser based optical tweezers,” Am. J. Phys. 71, 201-215 (2003).
[CrossRef]

Chaikin, P. M.

Z. Cheng, P. M. Chaikin, and T. G. Mason, “Light streak tracking of optically trapped thin microdisks,” Phys. Rev. Lett. 89, 108303 (2002).
[CrossRef] [PubMed]

Chang, Y.-R.

Y.-R. Chang, L. Hsu, and S. Chi, “Optical trapping of a spherically symmetric sphere in the ray-optics regime: a model for optical tweezers upon cells,” Appl. Opt. 45, 3885-3892 (2006).
[CrossRef] [PubMed]

Y.-R. Chang, L. Hsu, and S. Chi, “Optical trapping of a spherically symmetric Rayleigh sphere: a model for optical tweezers upon cells,” Opt. Commun. 246, 97-105 (2005).
[CrossRef]

Cheng, Z.

Z. Cheng, P. M. Chaikin, and T. G. Mason, “Light streak tracking of optically trapped thin microdisks,” Phys. Rev. Lett. 89, 108303 (2002).
[CrossRef] [PubMed]

Chi, S.

Y.-R. Chang, L. Hsu, and S. Chi, “Optical trapping of a spherically symmetric sphere in the ray-optics regime: a model for optical tweezers upon cells,” Appl. Opt. 45, 3885-3892 (2006).
[CrossRef] [PubMed]

Y.-R. Chang, L. Hsu, and S. Chi, “Optical trapping of a spherically symmetric Rayleigh sphere: a model for optical tweezers upon cells,” Opt. Commun. 246, 97-105 (2005).
[CrossRef]

Clark, R. L.

Cole, D. G.

de Caro, D.

M. Abyan, D. de Caro, and S. Fery-Forgues, “Suspensions of organic microcrystals produced in the presence of polymers: diversity of UV/vis absorption and fluorescence properties according to the preparation conditions,” Langmuir 25, 1651-1658 (2009).
[CrossRef] [PubMed]

Dholakia, K.

C. Starr, W. Dultz, H. P. Wagner, K. Dholakia, and H. Schmitzer, “Optically controlled rotation of PTCDA crystals in optical tweezers,” AIP Conf. Proc. 772, 1099-1100 (2005).
[CrossRef]

Dultz, W.

C. Starr, W. Dultz, H. P. Wagner, K. Dholakia, and H. Schmitzer, “Optically controlled rotation of PTCDA crystals in optical tweezers,” AIP Conf. Proc. 772, 1099-1100 (2005).
[CrossRef]

Fery-Forgues, S.

M. Abyan, D. de Caro, and S. Fery-Forgues, “Suspensions of organic microcrystals produced in the presence of polymers: diversity of UV/vis absorption and fluorescence properties according to the preparation conditions,” Langmuir 25, 1651-1658 (2009).
[CrossRef] [PubMed]

L. Bîrlă, F. Bertorelle, F. Rodrigues, S. Badré, R. Pansu, and S. Fery-Forgues, “Effect of DNA on the growth and optical properties of luminescent organic microcrystals,” Langmuir 22, 6256-6265 (2006).
[CrossRef] [PubMed]

F. Bertorelle, F. Rodrigues, and S. Fery-Forgues, “Dendrimer-tuned formation of fluorescent organic microcrystals. Influence of dye hydrophobicity and dendrimer charge,” Langmuir 22, 8523-8531 (2006).
[CrossRef] [PubMed]

M. Abyan, F. Bertorelle, and S. Fery-Forgues, “Use of linear polymers to control the preparation of luminescent organic microcrystals,” Langmuir 21, 6030-6037 (2005).
[CrossRef] [PubMed]

F. Bertorelle, D. Lavabre, and S. Fery-Forgues, “Dendrimer-tuned formation of luminescent organic microcrystals,” J. Am. Chem. Soc. 125, 6244-6253 (2003).
[CrossRef] [PubMed]

F. Galinier, F. Bertorelle, and S. Fery-Forgues, “Spectrophotometric study of the incorporation of NBD probes in micelles: is a long alkyl chain on the fluorophore an advantage?,” C. R. Acad. Sci. Paris Ser. IIc 4, 941-950 (2001).
[CrossRef]

Friese, M. E. J.

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical alignment and spinning of laser-trapped microscopic particles,” Nature 394, 348-350 (1998).
[CrossRef]

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical alignment and spinning of laser-trapped microscopic particles: erratum,” Nature 395, 621 (1998).
[CrossRef]

M. E. J. Friese, “Optical angular-momentum transfer to trapped absorbing particles,” Phys. Rev. A 54, 1593-1596 (1996).
[CrossRef]

Galajda, P.

P. Galajda and P. Ormos, “Orientation of flat particles in optical tweezers by linearly polarized light,” Opt. Express 11, 446-451 (2003).
[CrossRef] [PubMed]

P. Galajda and P. Ormos, “Rotors produced and driven in laser tweezers with reversed direction of rotation,” Appl. Phys. Lett. 80, 4653-4656 (2002).
[CrossRef]

P. Galajda and P. Ormos, “Rotation of microscopic propellers in laser tweezers,” J. Opt. B 4, S78-S81 (2002).
[CrossRef]

Galaup, J.-P.

M. Rodriguez-Otazo, A. Augier-Calderin, and J.-P. Galaup, “Nanometer gold-silica composite particles manipulated by optical tweezers,” Opt. Commun. (in press).

Galinier, F.

F. Galinier, F. Bertorelle, and S. Fery-Forgues, “Spectrophotometric study of the incorporation of NBD probes in micelles: is a long alkyl chain on the fluorophore an advantage?,” C. R. Acad. Sci. Paris Ser. IIc 4, 941-950 (2001).
[CrossRef]

Gan, X.

Ganic, D.

Gauthier, R. C.

Gibson, U.

Gibson, U. J.

W. Singer, T. A. Nieminen, U. J. Gibson, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Orientation of optically trapped nonspherical birefringent particles,” Phys. Rev. E 73, 021911 (2006).
[CrossRef]

Gong, D.

X. Sun, J. Zhang, X. Li, D. Gong, and H. Lee, “Optical rotation and manipulation of micro-sized LiNbO3 crystals and single-walled carbon nanotubes bundles,” Colloids Surf. A 313-314, 488-491 (2008).
[CrossRef]

Gouesbet, G.

K. F. Ren, G. Greha, and G. Gouesbet, “Radiation pressure forces exerted on a particle arbitrarily located in a Gaussian-beam by using the generalized Lorenz-Mie theory, and associated resonance effects,” Opt. Commun. 108, 343-354 (1994).
[CrossRef]

Greha, G.

K. F. Ren, G. Greha, and G. Gouesbet, “Radiation pressure forces exerted on a particle arbitrarily located in a Gaussian-beam by using the generalized Lorenz-Mie theory, and associated resonance effects,” Opt. Commun. 108, 343-354 (1994).
[CrossRef]

Grower, C. P.

Gu, M.

Harada, Y.

Y. Harada and T. Asakura, “Radiation forces on a dielectric sphere in the Rayleigh scattering regime,” Opt. Commun. 124, 529-541 (1996).
[CrossRef]

Heckenberg, N. R.

W. Singer, T. A. Nieminen, U. J. Gibson, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Orientation of optically trapped nonspherical birefringent particles,” Phys. Rev. E 73, 021911 (2006).
[CrossRef]

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical alignment and spinning of laser-trapped microscopic particles,” Nature 394, 348-350 (1998).
[CrossRef]

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical alignment and spinning of laser-trapped microscopic particles: erratum,” Nature 395, 621 (1998).
[CrossRef]

Higurashi, E.

E. Higurashi, R. Sawada, and T. Ito, “Optically induced angular alignment of trapped birefringent micro-objects by linearly polarized light,” Phys. Rev. E 59, 3676-3681 (1999).
[CrossRef]

E. Higurashi, R. Sawada, and T. Ito, “Optically induced angular alignment of birefringent micro-objects by linear polarization,” Appl. Phys. Lett. 73, 3034-3036 (1998).
[CrossRef]

E. Higurashi, O. Ohguchi, T. Tamamura, H. Ukita, and R. Sawada, “Optically induced rotation of dissymmetrically shaped fluorinated polyimide micro-objects in optical traps,” J. Appl. Phys. 82, 2773-2779 (1997).
[CrossRef]

Hsu, L.

Y.-R. Chang, L. Hsu, and S. Chi, “Optical trapping of a spherically symmetric sphere in the ray-optics regime: a model for optical tweezers upon cells,” Appl. Opt. 45, 3885-3892 (2006).
[CrossRef] [PubMed]

Y.-R. Chang, L. Hsu, and S. Chi, “Optical trapping of a spherically symmetric Rayleigh sphere: a model for optical tweezers upon cells,” Opt. Commun. 246, 97-105 (2005).
[CrossRef]

Ito, T.

E. Higurashi, R. Sawada, and T. Ito, “Optically induced angular alignment of trapped birefringent micro-objects by linearly polarized light,” Phys. Rev. E 59, 3676-3681 (1999).
[CrossRef]

E. Higurashi, R. Sawada, and T. Ito, “Optically induced angular alignment of birefringent micro-objects by linear polarization,” Appl. Phys. Lett. 73, 3034-3036 (1998).
[CrossRef]

La Porta, A.

A. La Porta and M. Wang, “Optical torque wrench: angular trapping, rotation, and torque detection of quartz microparticles,” Phys. Rev. Lett. 92, 190801 (2004).
[CrossRef] [PubMed]

Lang, M. J.

M. J. Lang and S. M. Block, “Ressource letter: LBOT-1: laser based optical tweezers,” Am. J. Phys. 71, 201-215 (2003).
[CrossRef]

Lavabre, D.

F. Bertorelle, D. Lavabre, and S. Fery-Forgues, “Dendrimer-tuned formation of luminescent organic microcrystals,” J. Am. Chem. Soc. 125, 6244-6253 (2003).
[CrossRef] [PubMed]

Leake, M. C.

A. D. Rowe, M. C. Leake, H. Morgan, and R. M. Berry, “Rapid rotation of micron and submicron dielectric particles measured using optical tweezers,” J. Mod. Opt. 50, 1539-1554(2003).

Lee, H.

X. Sun, J. Zhang, X. Li, D. Gong, and H. Lee, “Optical rotation and manipulation of micro-sized LiNbO3 crystals and single-walled carbon nanotubes bundles,” Colloids Surf. A 313-314, 488-491 (2008).
[CrossRef]

Li, X.

X. Sun, J. Zhang, X. Li, D. Gong, and H. Lee, “Optical rotation and manipulation of micro-sized LiNbO3 crystals and single-walled carbon nanotubes bundles,” Colloids Surf. A 313-314, 488-491 (2008).
[CrossRef]

Loudon, R.

R. Loudon and S. M. Barnett, “Theory of the radiation pressure on dielectric slabs, prisms and single surfaces,” Opt. Express 14, 11855-11869 (2006).
[CrossRef] [PubMed]

M. Padgett, S. M. Barnett, and R. Loudon, “The angular momentum of light inside a dielectric,” J. Mod. Opt. 50, 1555-1562 (2003).

Maia Neto, P. A.

N. B. Viana, M. S. Rocha, O. N. Mesquita, A. Mazolli, P. A. Maia Neto, and H. M. Nussenzveig, “Towards absolute calibration of optical tweezers,” Phys. Rev. E 75, 021914 (2007) .
[CrossRef]

A. Mazolli, P. A. Maia Neto, and H. M. Nussenzveig, “Theory of trapping forces in optical tweezers,” Proc. R. Soc. London Ser. A 459, 3021-3041 (2003).
[CrossRef]

Mansuripur, M.

Marr, D. W. M.

P. Viravathana and D. W. M. Marr, “Optical trapping of titania/silica core-shell colloidal particles,” J. Colloid Interface Sci. 221, 301-307 (2000).
[CrossRef] [PubMed]

Mason, T. G.

Z. Cheng, P. M. Chaikin, and T. G. Mason, “Light streak tracking of optically trapped thin microdisks,” Phys. Rev. Lett. 89, 108303 (2002).
[CrossRef] [PubMed]

Mazolli, A.

N. B. Viana, M. S. Rocha, O. N. Mesquita, A. Mazolli, P. A. Maia Neto, and H. M. Nussenzveig, “Towards absolute calibration of optical tweezers,” Phys. Rev. E 75, 021914 (2007) .
[CrossRef]

A. Mazolli, P. A. Maia Neto, and H. M. Nussenzveig, “Theory of trapping forces in optical tweezers,” Proc. R. Soc. London Ser. A 459, 3021-3041 (2003).
[CrossRef]

Mesquita, O. N.

N. B. Viana, M. S. Rocha, O. N. Mesquita, A. Mazolli, P. A. Maia Neto, and H. M. Nussenzveig, “Towards absolute calibration of optical tweezers,” Phys. Rev. E 75, 021914 (2007) .
[CrossRef]

Morgan, H.

A. D. Rowe, M. C. Leake, H. Morgan, and R. M. Berry, “Rapid rotation of micron and submicron dielectric particles measured using optical tweezers,” J. Mod. Opt. 50, 1539-1554(2003).

Nakanishi, H.

H. Nakanishi and H. Oikawa, “Reprecipitation method for organic nanocrystals, in Single Organic Nanoparticles, H. Masuhara, H. Nakanishi, and K. Sasaki, eds. (Springer Verlag, 2003), pp. 17-31.
[CrossRef]

Nieminen, T. A.

W. Singer, T. A. Nieminen, U. J. Gibson, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Orientation of optically trapped nonspherical birefringent particles,” Phys. Rev. E 73, 021911 (2006).
[CrossRef]

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical alignment and spinning of laser-trapped microscopic particles: erratum,” Nature 395, 621 (1998).
[CrossRef]

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical alignment and spinning of laser-trapped microscopic particles,” Nature 394, 348-350 (1998).
[CrossRef]

Nussenzveig, H. M.

N. B. Viana, M. S. Rocha, O. N. Mesquita, A. Mazolli, P. A. Maia Neto, and H. M. Nussenzveig, “Towards absolute calibration of optical tweezers,” Phys. Rev. E 75, 021914 (2007) .
[CrossRef]

A. Mazolli, P. A. Maia Neto, and H. M. Nussenzveig, “Theory of trapping forces in optical tweezers,” Proc. R. Soc. London Ser. A 459, 3021-3041 (2003).
[CrossRef]

Ohguchi, O.

E. Higurashi, O. Ohguchi, T. Tamamura, H. Ukita, and R. Sawada, “Optically induced rotation of dissymmetrically shaped fluorinated polyimide micro-objects in optical traps,” J. Appl. Phys. 82, 2773-2779 (1997).
[CrossRef]

Oikawa, H.

H. Nakanishi and H. Oikawa, “Reprecipitation method for organic nanocrystals, in Single Organic Nanoparticles, H. Masuhara, H. Nakanishi, and K. Sasaki, eds. (Springer Verlag, 2003), pp. 17-31.
[CrossRef]

O'Neil, A. T.

Ormos, P.

P. Galajda and P. Ormos, “Orientation of flat particles in optical tweezers by linearly polarized light,” Opt. Express 11, 446-451 (2003).
[CrossRef] [PubMed]

P. Galajda and P. Ormos, “Rotors produced and driven in laser tweezers with reversed direction of rotation,” Appl. Phys. Lett. 80, 4653-4656 (2002).
[CrossRef]

P. Galajda and P. Ormos, “Rotation of microscopic propellers in laser tweezers,” J. Opt. B 4, S78-S81 (2002).
[CrossRef]

Padgett, M.

M. Padgett, S. M. Barnett, and R. Loudon, “The angular momentum of light inside a dielectric,” J. Mod. Opt. 50, 1555-1562 (2003).

Padgett, M. J.

Pansu, R.

L. Bîrlă, F. Bertorelle, F. Rodrigues, S. Badré, R. Pansu, and S. Fery-Forgues, “Effect of DNA on the growth and optical properties of luminescent organic microcrystals,” Langmuir 22, 6256-6265 (2006).
[CrossRef] [PubMed]

Ren, K. F.

K. F. Ren, G. Greha, and G. Gouesbet, “Radiation pressure forces exerted on a particle arbitrarily located in a Gaussian-beam by using the generalized Lorenz-Mie theory, and associated resonance effects,” Opt. Commun. 108, 343-354 (1994).
[CrossRef]

Rocha, M. S.

N. B. Viana, M. S. Rocha, O. N. Mesquita, A. Mazolli, P. A. Maia Neto, and H. M. Nussenzveig, “Towards absolute calibration of optical tweezers,” Phys. Rev. E 75, 021914 (2007) .
[CrossRef]

Rodrigues, F.

F. Bertorelle, F. Rodrigues, and S. Fery-Forgues, “Dendrimer-tuned formation of fluorescent organic microcrystals. Influence of dye hydrophobicity and dendrimer charge,” Langmuir 22, 8523-8531 (2006).
[CrossRef] [PubMed]

L. Bîrlă, F. Bertorelle, F. Rodrigues, S. Badré, R. Pansu, and S. Fery-Forgues, “Effect of DNA on the growth and optical properties of luminescent organic microcrystals,” Langmuir 22, 6256-6265 (2006).
[CrossRef] [PubMed]

Rodriguez-Otazo, M.

M. Rodriguez-Otazo, “Réalisation de pinces optiques pour la manipulation de nano et micro objets individuels d'intérêt chimique ou biologique,” Ph.D. dissertation (Université de Paris, 2008).

M. Rodriguez-Otazo, A. Augier-Calderin, and J.-P. Galaup, “Nanometer gold-silica composite particles manipulated by optical tweezers,” Opt. Commun. (in press).

Rowe, A. D.

A. D. Rowe, M. C. Leake, H. Morgan, and R. M. Berry, “Rapid rotation of micron and submicron dielectric particles measured using optical tweezers,” J. Mod. Opt. 50, 1539-1554(2003).

Rubinsztein-Dunlop, H.

W. Singer, T. A. Nieminen, U. J. Gibson, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Orientation of optically trapped nonspherical birefringent particles,” Phys. Rev. E 73, 021911 (2006).
[CrossRef]

W. Singer, H. Rubinsztein-Dunlop, and U. Gibson, “Manipulation and growth of birefringent protein crystals in optical tweezers,” Opt. Express 12, 941-950 (2001).

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical alignment and spinning of laser-trapped microscopic particles,” Nature 394, 348-350 (1998).
[CrossRef]

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical alignment and spinning of laser-trapped microscopic particles: erratum,” Nature 395, 621 (1998).
[CrossRef]

Sawada, R.

E. Higurashi, R. Sawada, and T. Ito, “Optically induced angular alignment of trapped birefringent micro-objects by linearly polarized light,” Phys. Rev. E 59, 3676-3681 (1999).
[CrossRef]

E. Higurashi, R. Sawada, and T. Ito, “Optically induced angular alignment of birefringent micro-objects by linear polarization,” Appl. Phys. Lett. 73, 3034-3036 (1998).
[CrossRef]

E. Higurashi, O. Ohguchi, T. Tamamura, H. Ukita, and R. Sawada, “Optically induced rotation of dissymmetrically shaped fluorinated polyimide micro-objects in optical traps,” J. Appl. Phys. 82, 2773-2779 (1997).
[CrossRef]

Schmitzer, H.

C. Starr, W. Dultz, H. P. Wagner, K. Dholakia, and H. Schmitzer, “Optically controlled rotation of PTCDA crystals in optical tweezers,” AIP Conf. Proc. 772, 1099-1100 (2005).
[CrossRef]

Singer, W.

W. Singer, T. A. Nieminen, U. J. Gibson, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Orientation of optically trapped nonspherical birefringent particles,” Phys. Rev. E 73, 021911 (2006).
[CrossRef]

W. Singer, H. Rubinsztein-Dunlop, and U. Gibson, “Manipulation and growth of birefringent protein crystals in optical tweezers,” Opt. Express 12, 941-950 (2001).

Starr, C.

C. Starr, W. Dultz, H. P. Wagner, K. Dholakia, and H. Schmitzer, “Optically controlled rotation of PTCDA crystals in optical tweezers,” AIP Conf. Proc. 772, 1099-1100 (2005).
[CrossRef]

Sun, X.

X. Sun, J. Zhang, X. Li, D. Gong, and H. Lee, “Optical rotation and manipulation of micro-sized LiNbO3 crystals and single-walled carbon nanotubes bundles,” Colloids Surf. A 313-314, 488-491 (2008).
[CrossRef]

Tamamura, T.

E. Higurashi, O. Ohguchi, T. Tamamura, H. Ukita, and R. Sawada, “Optically induced rotation of dissymmetrically shaped fluorinated polyimide micro-objects in optical traps,” J. Appl. Phys. 82, 2773-2779 (1997).
[CrossRef]

Ukita, H.

E. Higurashi, O. Ohguchi, T. Tamamura, H. Ukita, and R. Sawada, “Optically induced rotation of dissymmetrically shaped fluorinated polyimide micro-objects in optical traps,” J. Appl. Phys. 82, 2773-2779 (1997).
[CrossRef]

Viana, N. B.

N. B. Viana, M. S. Rocha, O. N. Mesquita, A. Mazolli, P. A. Maia Neto, and H. M. Nussenzveig, “Towards absolute calibration of optical tweezers,” Phys. Rev. E 75, 021914 (2007) .
[CrossRef]

Viravathana, P.

P. Viravathana and D. W. M. Marr, “Optical trapping of titania/silica core-shell colloidal particles,” J. Colloid Interface Sci. 221, 301-307 (2000).
[CrossRef] [PubMed]

Wagner, H. P.

C. Starr, W. Dultz, H. P. Wagner, K. Dholakia, and H. Schmitzer, “Optically controlled rotation of PTCDA crystals in optical tweezers,” AIP Conf. Proc. 772, 1099-1100 (2005).
[CrossRef]

Wang, M.

A. La Porta and M. Wang, “Optical torque wrench: angular trapping, rotation, and torque detection of quartz microparticles,” Phys. Rev. Lett. 92, 190801 (2004).
[CrossRef] [PubMed]

Wulff, K. D.

Zhang, J.

X. Sun, J. Zhang, X. Li, D. Gong, and H. Lee, “Optical rotation and manipulation of micro-sized LiNbO3 crystals and single-walled carbon nanotubes bundles,” Colloids Surf. A 313-314, 488-491 (2008).
[CrossRef]

AIP Conf. Proc. (1)

C. Starr, W. Dultz, H. P. Wagner, K. Dholakia, and H. Schmitzer, “Optically controlled rotation of PTCDA crystals in optical tweezers,” AIP Conf. Proc. 772, 1099-1100 (2005).
[CrossRef]

Am. J. Phys. (1)

M. J. Lang and S. M. Block, “Ressource letter: LBOT-1: laser based optical tweezers,” Am. J. Phys. 71, 201-215 (2003).
[CrossRef]

Appl. Opt. (3)

Appl. Phys. Lett. (2)

P. Galajda and P. Ormos, “Rotors produced and driven in laser tweezers with reversed direction of rotation,” Appl. Phys. Lett. 80, 4653-4656 (2002).
[CrossRef]

E. Higurashi, R. Sawada, and T. Ito, “Optically induced angular alignment of birefringent micro-objects by linear polarization,” Appl. Phys. Lett. 73, 3034-3036 (1998).
[CrossRef]

Biophys. J. (1)

A. Ashkin, “Forces of a single-beam gradient laser trap on a dielectric sphere in the ray optics regime,” Biophys. J. 61, 569-582 (1992).
[CrossRef] [PubMed]

C. R. Acad. Sci. Paris Ser. IIc (1)

F. Galinier, F. Bertorelle, and S. Fery-Forgues, “Spectrophotometric study of the incorporation of NBD probes in micelles: is a long alkyl chain on the fluorophore an advantage?,” C. R. Acad. Sci. Paris Ser. IIc 4, 941-950 (2001).
[CrossRef]

Colloids Surf. A (1)

X. Sun, J. Zhang, X. Li, D. Gong, and H. Lee, “Optical rotation and manipulation of micro-sized LiNbO3 crystals and single-walled carbon nanotubes bundles,” Colloids Surf. A 313-314, 488-491 (2008).
[CrossRef]

J. Am. Chem. Soc. (1)

F. Bertorelle, D. Lavabre, and S. Fery-Forgues, “Dendrimer-tuned formation of luminescent organic microcrystals,” J. Am. Chem. Soc. 125, 6244-6253 (2003).
[CrossRef] [PubMed]

J. Appl. Phys. (1)

E. Higurashi, O. Ohguchi, T. Tamamura, H. Ukita, and R. Sawada, “Optically induced rotation of dissymmetrically shaped fluorinated polyimide micro-objects in optical traps,” J. Appl. Phys. 82, 2773-2779 (1997).
[CrossRef]

J. Colloid Interface Sci. (1)

P. Viravathana and D. W. M. Marr, “Optical trapping of titania/silica core-shell colloidal particles,” J. Colloid Interface Sci. 221, 301-307 (2000).
[CrossRef] [PubMed]

J. Mod. Opt. (2)

M. Padgett, S. M. Barnett, and R. Loudon, “The angular momentum of light inside a dielectric,” J. Mod. Opt. 50, 1555-1562 (2003).

A. D. Rowe, M. C. Leake, H. Morgan, and R. M. Berry, “Rapid rotation of micron and submicron dielectric particles measured using optical tweezers,” J. Mod. Opt. 50, 1539-1554(2003).

J. Opt. B (1)

P. Galajda and P. Ormos, “Rotation of microscopic propellers in laser tweezers,” J. Opt. B 4, S78-S81 (2002).
[CrossRef]

J. Opt. Soc. Am. B (1)

Langmuir (4)

F. Bertorelle, F. Rodrigues, and S. Fery-Forgues, “Dendrimer-tuned formation of fluorescent organic microcrystals. Influence of dye hydrophobicity and dendrimer charge,” Langmuir 22, 8523-8531 (2006).
[CrossRef] [PubMed]

M. Abyan, F. Bertorelle, and S. Fery-Forgues, “Use of linear polymers to control the preparation of luminescent organic microcrystals,” Langmuir 21, 6030-6037 (2005).
[CrossRef] [PubMed]

L. Bîrlă, F. Bertorelle, F. Rodrigues, S. Badré, R. Pansu, and S. Fery-Forgues, “Effect of DNA on the growth and optical properties of luminescent organic microcrystals,” Langmuir 22, 6256-6265 (2006).
[CrossRef] [PubMed]

M. Abyan, D. de Caro, and S. Fery-Forgues, “Suspensions of organic microcrystals produced in the presence of polymers: diversity of UV/vis absorption and fluorescence properties according to the preparation conditions,” Langmuir 25, 1651-1658 (2009).
[CrossRef] [PubMed]

Nature (2)

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical alignment and spinning of laser-trapped microscopic particles,” Nature 394, 348-350 (1998).
[CrossRef]

M. E. J. Friese, T. A. Nieminen, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Optical alignment and spinning of laser-trapped microscopic particles: erratum,” Nature 395, 621 (1998).
[CrossRef]

Opt. Commun. (3)

Y. Harada and T. Asakura, “Radiation forces on a dielectric sphere in the Rayleigh scattering regime,” Opt. Commun. 124, 529-541 (1996).
[CrossRef]

K. F. Ren, G. Greha, and G. Gouesbet, “Radiation pressure forces exerted on a particle arbitrarily located in a Gaussian-beam by using the generalized Lorenz-Mie theory, and associated resonance effects,” Opt. Commun. 108, 343-354 (1994).
[CrossRef]

Y.-R. Chang, L. Hsu, and S. Chi, “Optical trapping of a spherically symmetric Rayleigh sphere: a model for optical tweezers upon cells,” Opt. Commun. 246, 97-105 (2005).
[CrossRef]

Opt. Express (6)

Opt. Lett. (1)

Phys. Rev. A (1)

M. E. J. Friese, “Optical angular-momentum transfer to trapped absorbing particles,” Phys. Rev. A 54, 1593-1596 (1996).
[CrossRef]

Phys. Rev. E (3)

E. Higurashi, R. Sawada, and T. Ito, “Optically induced angular alignment of trapped birefringent micro-objects by linearly polarized light,” Phys. Rev. E 59, 3676-3681 (1999).
[CrossRef]

N. B. Viana, M. S. Rocha, O. N. Mesquita, A. Mazolli, P. A. Maia Neto, and H. M. Nussenzveig, “Towards absolute calibration of optical tweezers,” Phys. Rev. E 75, 021914 (2007) .
[CrossRef]

W. Singer, T. A. Nieminen, U. J. Gibson, N. R. Heckenberg, and H. Rubinsztein-Dunlop, “Orientation of optically trapped nonspherical birefringent particles,” Phys. Rev. E 73, 021911 (2006).
[CrossRef]

Phys. Rev. Lett. (3)

Z. Cheng, P. M. Chaikin, and T. G. Mason, “Light streak tracking of optically trapped thin microdisks,” Phys. Rev. Lett. 89, 108303 (2002).
[CrossRef] [PubMed]

A. Ashkin, “Acceleration and trapping of particles by radiation pressure,” Phys. Rev. Lett. 24, 156-159 (1970).
[CrossRef]

A. La Porta and M. Wang, “Optical torque wrench: angular trapping, rotation, and torque detection of quartz microparticles,” Phys. Rev. Lett. 92, 190801 (2004).
[CrossRef] [PubMed]

Proc. R. Soc. London Ser. A (1)

A. Mazolli, P. A. Maia Neto, and H. M. Nussenzveig, “Theory of trapping forces in optical tweezers,” Proc. R. Soc. London Ser. A 459, 3021-3041 (2003).
[CrossRef]

Other (4)

A. Ashkin, “History of optical trapping and manipulation of small neutral particles, atoms and molecules,” in Single Molecule Spectroscopy, R. Rigler, M. Orrit, and T. Basché, eds. (Springer, 2001), pp. 1-31.
[CrossRef]

M. Rodriguez-Otazo, A. Augier-Calderin, and J.-P. Galaup, “Nanometer gold-silica composite particles manipulated by optical tweezers,” Opt. Commun. (in press).

H. Nakanishi and H. Oikawa, “Reprecipitation method for organic nanocrystals, in Single Organic Nanoparticles, H. Masuhara, H. Nakanishi, and K. Sasaki, eds. (Springer Verlag, 2003), pp. 17-31.
[CrossRef]

M. Rodriguez-Otazo, “Réalisation de pinces optiques pour la manipulation de nano et micro objets individuels d'intérêt chimique ou biologique,” Ph.D. dissertation (Université de Paris, 2008).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Scheme of the experimental setup.

Fig. 2
Fig. 2

Topographical image of a microcrystal of 1 ( 6.0 μm × 1.8 μm × 70 μm ) obtained with an AFM microscope.

Fig. 3
Fig. 3

Scheme showing the orientation of the optical axis according to the crystal directions, and the orientation of a dye microcrystal in the optical trap.

Fig. 4
Fig. 4

From top to bottom and left to right: optical microscopy images showing the orientation of a microcrystal upon rotation of the linear polarization of the trapping beam. The crystal is seen by its ( x , y ) face. The rotation angle θ of the λ / 2 retardation plate is indicated.

Fig. 5
Fig. 5

(a) PSD signals associated with the rotation of a crystal at low laser power. Each peak corresponds to a half-turn rotation. (b) Detailed view of particular peaks for different incident laser powers.

Fig. 6
Fig. 6

(a) Rotation signal for a microcrystal under a laser power of 120 mW measured at the laser output and (b) its Fourier transform.

Fig. 7
Fig. 7

(a) Evolution of the rotation speed with respect to the incident laser power. (b) Stability of the rotation speed during the measurement time. The data shown were obtained from two different crystals.

Fig. 8
Fig. 8

Variation of the rotational speed of a microcrystal with monotonic increase of the laser power measured near the front focal plane of the objective. Points are experimental. Points A, B, and C refer to particular experimental conditions. The fitting curve (solid curve) is of the form A + B . P ( 1 ϵ . P ) with A = 20.5 , B = 13.3 and ϵ = 0.017 .

Fig. 9
Fig. 9

Rotation signal (left) and its Fourier transform (right) for experimental conditions corresponding to points A, B, and C specified in Fig. 8.

Fig. 10
Fig. 10

Scheme showing the possible combined movements of rotation and precession for a crystal in the optical trap.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

τ total = τ rotation + τ friction + τ precession .
Ω = τ precession L sin θ = τ precession I ω sin θ .
τ total = I d ω d t ( γ + Ω I sin θ ) ω .
ω ( t ) = P C 2 ( e C t 1 ) ,
C = C 2 C 1 , C 1 = I , C 2 = γ + Ω I sin θ .
ω = P C 2 .
ω = P K ( 1 + ε P ) P K ( 1 ε P ) .

Metrics