Abstract

Coherent amplification was observed in an optical structure with multilayer C60 doped nematic films, in which photorefractive gratings working in the Raman–Nath regime were created, leading to an asymmetric energy transfer in two-beam coupling. This multilayer optical structure exhibited exponential dependence of the signal gain on the number of nematic layers when higher-order diffractions were negligibly small. A gain of the 0.1μW signal as high as 4000 was achieved in the six-layer sample at a low dc voltage of 1.2V and a low pump beam power of 8mW. The gain of this ultrahigh sensitive six-layer sample depended strongly on the pump to signal beam power ratio as well as the power of the signal.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. O. Ostroverkhova and W. E. Moerner, “Organic photorefractives: mechanisms, materials, and applications,” Chem. Rev. 104, 3267-3314 (2004).
    [CrossRef] [PubMed]
  2. G. P. Wiederrecht, B. A. Yoon, and M. R. Wasielewski, “High photorefractive gain in nematic liquid crystals doped with electron donor and acceptor molecules,” Science 270, 1794-1797 (1995).
    [CrossRef]
  3. W. Lee and S.-L. Yeh, “Optical amplification in nematics doped with carbon nanotubes,” Appl. Phys. Lett. 79, 4488-4490(2001).
    [CrossRef]
  4. I. C. Khoo, J. Ding, Y. Zhang, K. Chen, and A. Diaz, “Supra-nonlinear photorefractive response of single-walled carbon nanotube- and C60-doped nematic liquid crystal,” Appl. Phys. Lett. 82, 3587-3589 (2003).
    [CrossRef]
  5. M.-R. Lee, J.-R. Wang, C.-R. Lee, and A. Y.-G. Fuh, “Optically switchable biphotonic photorefractive effect in dye-doped liquid crystal films,” Appl. Phys. Lett. 85, 5822-5824 (2004).
    [CrossRef]
  6. E. J. Kim, H. R. Yang, S. J. Lee, G. Y. Kim, and C. H. Kwak, “Orientational photorefractive holograms in porphyrin:Zn-doped nematic liquid crystals,” Opt. Express 16, 17329-17341(2008).
    [CrossRef] [PubMed]
  7. J. Zhang, V. Ostroverkhov, K. D. Singer, V. Reshetnyak, and Yu. Reznikov, “Electrically controlled surface diffraction gratings in nematic liquid crystals,” Opt. Lett. 25, 414-416 (2000).
    [CrossRef]
  8. P. Pagliusi and G. Cipparrone, “Dynamic grating features for the surface-induced photorefractive effect in undoped nematics,” J. Opt. Soc. Am. B 21, 996-1004 (2004)
    [CrossRef]
  9. P. Pagliusi and G. Cipparrone, “Photorefractive effect due to a photoinduced surface-charge modulation in undoped liquid crystals,” Phys. Rev. E 69, 061708 (2004).
    [CrossRef]
  10. M. Kaczmarek, A. Dyadyusha, S. Slussarenko, and I. C. Khoo, “The role of surface charge field in two-beam coupling in liquid crystal cells with photoconducting polymer layers,” J. Appl. Phys. 96, 2616-2623 (2004).
    [CrossRef]
  11. W. Lee and C.-C. Lee, “Two-wave mixing in a nematic liquid-crystal film sandwiched between photoconducting polymeric layers,” Nanotechnology 17, 157-162 (2006).
    [CrossRef]
  12. M. J. Deer, “Demonstration of an Fe doped KNbO3 photorefractive hybrid,” Appl. Phys. Lett. 88, 254107 (2006).
    [CrossRef]
  13. Y.-P. Huang, T.-Y. Tsai, W. Lee, W.-K. Chin, R. Wangberg, and J. Elser, “Photorefractive effect in nematic-clay nanocomposites,” Opt. Express 13, 2058-2063 (2005).
    [CrossRef] [PubMed]
  14. I. C. Khoo, “Orientational photorefractive effect in undoped and CdSe nanorods-doped nematic liquid crystal-bulk and interface contributions,” IEEE J. Sel. Top. Quantum Electron. 12, 443-450 (2006).
    [CrossRef]
  15. G. Cook, A. V. Glushchenko, V. Reshetnyak, A. T. Griffith, M. A. Saleh, and D. R. Evans, “Nanoparticle doped organic-inorganic hybrid photorefractives,” Opt. Express 16, 4015-4022 (2008).
    [CrossRef] [PubMed]
  16. H. Atkuri, G. Cook, D. R. Evans, C.-I. Cheon, A. Glushchenko, V. Reshetnyak, Y. Reznikov, J. West, and K. Zhang, “Preparation of ferroelectric nanoparticles for their use in liquid crystalline colloids,” J. Opt. A Pure Appl. Opt. 11, 024006 (2009).
    [CrossRef]
  17. I. C. Khoo, B. D. Guenther, M. V. Wood, P. Chen, and M.-Y. Shih, “Coherent beam amplification with a photorefractive liquid crystal,” Opt. Lett. 22, 1229-1231 (1997).
    [CrossRef] [PubMed]
  18. J. J. Stankus, S. M. Silence, W. E. Moerner, and G. C. Bjorklund, “Electric-field-switchable stratified volume holograms in photorefractive polymers,” Opt. Lett. 19, 1480-1482 (1994).
    [CrossRef] [PubMed]
  19. A. Grunnet-Jepsen, C. L. Thompson, and W. E. Moerner, “Spontaneous oscillation and self-pumped phase conjugation in a photorefractive polymer optical amplifier,” Science 277, 549-552 (1997).
    [CrossRef]
  20. I. C. Khoo and T. H. Liu, “Theory and experiments on multiwave-mixing- mediated probe-beam amplification,” Phys. Rev. A 39, 4036-4044 (1989).
    [CrossRef] [PubMed]
  21. X. Sun, Y. Pei, F. Yao, J. Zhang, and C. Hou, “Optical amplification in multilayer photorefractive liquid crystal films,” Appl. Phys. Lett. 90, 201115 (2007).
    [CrossRef]
  22. I. C. Khoo, H. Li, and Y. Liang, “Observation of orientational photorefractive effects in nematic liquid crystals,” Opt. Lett. 19, 1723-1725 (1994).
    [CrossRef] [PubMed]

2009

H. Atkuri, G. Cook, D. R. Evans, C.-I. Cheon, A. Glushchenko, V. Reshetnyak, Y. Reznikov, J. West, and K. Zhang, “Preparation of ferroelectric nanoparticles for their use in liquid crystalline colloids,” J. Opt. A Pure Appl. Opt. 11, 024006 (2009).
[CrossRef]

2008

2007

X. Sun, Y. Pei, F. Yao, J. Zhang, and C. Hou, “Optical amplification in multilayer photorefractive liquid crystal films,” Appl. Phys. Lett. 90, 201115 (2007).
[CrossRef]

2006

W. Lee and C.-C. Lee, “Two-wave mixing in a nematic liquid-crystal film sandwiched between photoconducting polymeric layers,” Nanotechnology 17, 157-162 (2006).
[CrossRef]

M. J. Deer, “Demonstration of an Fe doped KNbO3 photorefractive hybrid,” Appl. Phys. Lett. 88, 254107 (2006).
[CrossRef]

I. C. Khoo, “Orientational photorefractive effect in undoped and CdSe nanorods-doped nematic liquid crystal-bulk and interface contributions,” IEEE J. Sel. Top. Quantum Electron. 12, 443-450 (2006).
[CrossRef]

2005

2004

M.-R. Lee, J.-R. Wang, C.-R. Lee, and A. Y.-G. Fuh, “Optically switchable biphotonic photorefractive effect in dye-doped liquid crystal films,” Appl. Phys. Lett. 85, 5822-5824 (2004).
[CrossRef]

P. Pagliusi and G. Cipparrone, “Dynamic grating features for the surface-induced photorefractive effect in undoped nematics,” J. Opt. Soc. Am. B 21, 996-1004 (2004)
[CrossRef]

P. Pagliusi and G. Cipparrone, “Photorefractive effect due to a photoinduced surface-charge modulation in undoped liquid crystals,” Phys. Rev. E 69, 061708 (2004).
[CrossRef]

M. Kaczmarek, A. Dyadyusha, S. Slussarenko, and I. C. Khoo, “The role of surface charge field in two-beam coupling in liquid crystal cells with photoconducting polymer layers,” J. Appl. Phys. 96, 2616-2623 (2004).
[CrossRef]

O. Ostroverkhova and W. E. Moerner, “Organic photorefractives: mechanisms, materials, and applications,” Chem. Rev. 104, 3267-3314 (2004).
[CrossRef] [PubMed]

2003

I. C. Khoo, J. Ding, Y. Zhang, K. Chen, and A. Diaz, “Supra-nonlinear photorefractive response of single-walled carbon nanotube- and C60-doped nematic liquid crystal,” Appl. Phys. Lett. 82, 3587-3589 (2003).
[CrossRef]

2001

W. Lee and S.-L. Yeh, “Optical amplification in nematics doped with carbon nanotubes,” Appl. Phys. Lett. 79, 4488-4490(2001).
[CrossRef]

2000

1997

I. C. Khoo, B. D. Guenther, M. V. Wood, P. Chen, and M.-Y. Shih, “Coherent beam amplification with a photorefractive liquid crystal,” Opt. Lett. 22, 1229-1231 (1997).
[CrossRef] [PubMed]

A. Grunnet-Jepsen, C. L. Thompson, and W. E. Moerner, “Spontaneous oscillation and self-pumped phase conjugation in a photorefractive polymer optical amplifier,” Science 277, 549-552 (1997).
[CrossRef]

1995

G. P. Wiederrecht, B. A. Yoon, and M. R. Wasielewski, “High photorefractive gain in nematic liquid crystals doped with electron donor and acceptor molecules,” Science 270, 1794-1797 (1995).
[CrossRef]

1994

1989

I. C. Khoo and T. H. Liu, “Theory and experiments on multiwave-mixing- mediated probe-beam amplification,” Phys. Rev. A 39, 4036-4044 (1989).
[CrossRef] [PubMed]

Atkuri, H.

H. Atkuri, G. Cook, D. R. Evans, C.-I. Cheon, A. Glushchenko, V. Reshetnyak, Y. Reznikov, J. West, and K. Zhang, “Preparation of ferroelectric nanoparticles for their use in liquid crystalline colloids,” J. Opt. A Pure Appl. Opt. 11, 024006 (2009).
[CrossRef]

Bjorklund, G. C.

Chen, K.

I. C. Khoo, J. Ding, Y. Zhang, K. Chen, and A. Diaz, “Supra-nonlinear photorefractive response of single-walled carbon nanotube- and C60-doped nematic liquid crystal,” Appl. Phys. Lett. 82, 3587-3589 (2003).
[CrossRef]

Chen, P.

Cheon, C.-I.

H. Atkuri, G. Cook, D. R. Evans, C.-I. Cheon, A. Glushchenko, V. Reshetnyak, Y. Reznikov, J. West, and K. Zhang, “Preparation of ferroelectric nanoparticles for their use in liquid crystalline colloids,” J. Opt. A Pure Appl. Opt. 11, 024006 (2009).
[CrossRef]

Chin, W.-K.

Cipparrone, G.

P. Pagliusi and G. Cipparrone, “Dynamic grating features for the surface-induced photorefractive effect in undoped nematics,” J. Opt. Soc. Am. B 21, 996-1004 (2004)
[CrossRef]

P. Pagliusi and G. Cipparrone, “Photorefractive effect due to a photoinduced surface-charge modulation in undoped liquid crystals,” Phys. Rev. E 69, 061708 (2004).
[CrossRef]

Cook, G.

H. Atkuri, G. Cook, D. R. Evans, C.-I. Cheon, A. Glushchenko, V. Reshetnyak, Y. Reznikov, J. West, and K. Zhang, “Preparation of ferroelectric nanoparticles for their use in liquid crystalline colloids,” J. Opt. A Pure Appl. Opt. 11, 024006 (2009).
[CrossRef]

G. Cook, A. V. Glushchenko, V. Reshetnyak, A. T. Griffith, M. A. Saleh, and D. R. Evans, “Nanoparticle doped organic-inorganic hybrid photorefractives,” Opt. Express 16, 4015-4022 (2008).
[CrossRef] [PubMed]

Deer, M. J.

M. J. Deer, “Demonstration of an Fe doped KNbO3 photorefractive hybrid,” Appl. Phys. Lett. 88, 254107 (2006).
[CrossRef]

Diaz, A.

I. C. Khoo, J. Ding, Y. Zhang, K. Chen, and A. Diaz, “Supra-nonlinear photorefractive response of single-walled carbon nanotube- and C60-doped nematic liquid crystal,” Appl. Phys. Lett. 82, 3587-3589 (2003).
[CrossRef]

Ding, J.

I. C. Khoo, J. Ding, Y. Zhang, K. Chen, and A. Diaz, “Supra-nonlinear photorefractive response of single-walled carbon nanotube- and C60-doped nematic liquid crystal,” Appl. Phys. Lett. 82, 3587-3589 (2003).
[CrossRef]

Dyadyusha, A.

M. Kaczmarek, A. Dyadyusha, S. Slussarenko, and I. C. Khoo, “The role of surface charge field in two-beam coupling in liquid crystal cells with photoconducting polymer layers,” J. Appl. Phys. 96, 2616-2623 (2004).
[CrossRef]

Elser, J.

Evans, D. R.

H. Atkuri, G. Cook, D. R. Evans, C.-I. Cheon, A. Glushchenko, V. Reshetnyak, Y. Reznikov, J. West, and K. Zhang, “Preparation of ferroelectric nanoparticles for their use in liquid crystalline colloids,” J. Opt. A Pure Appl. Opt. 11, 024006 (2009).
[CrossRef]

G. Cook, A. V. Glushchenko, V. Reshetnyak, A. T. Griffith, M. A. Saleh, and D. R. Evans, “Nanoparticle doped organic-inorganic hybrid photorefractives,” Opt. Express 16, 4015-4022 (2008).
[CrossRef] [PubMed]

Fuh, A. Y.-G.

M.-R. Lee, J.-R. Wang, C.-R. Lee, and A. Y.-G. Fuh, “Optically switchable biphotonic photorefractive effect in dye-doped liquid crystal films,” Appl. Phys. Lett. 85, 5822-5824 (2004).
[CrossRef]

Glushchenko, A.

H. Atkuri, G. Cook, D. R. Evans, C.-I. Cheon, A. Glushchenko, V. Reshetnyak, Y. Reznikov, J. West, and K. Zhang, “Preparation of ferroelectric nanoparticles for their use in liquid crystalline colloids,” J. Opt. A Pure Appl. Opt. 11, 024006 (2009).
[CrossRef]

Glushchenko, A. V.

Griffith, A. T.

Grunnet-Jepsen, A.

A. Grunnet-Jepsen, C. L. Thompson, and W. E. Moerner, “Spontaneous oscillation and self-pumped phase conjugation in a photorefractive polymer optical amplifier,” Science 277, 549-552 (1997).
[CrossRef]

Guenther, B. D.

Hou, C.

X. Sun, Y. Pei, F. Yao, J. Zhang, and C. Hou, “Optical amplification in multilayer photorefractive liquid crystal films,” Appl. Phys. Lett. 90, 201115 (2007).
[CrossRef]

Huang, Y.-P.

Kaczmarek, M.

M. Kaczmarek, A. Dyadyusha, S. Slussarenko, and I. C. Khoo, “The role of surface charge field in two-beam coupling in liquid crystal cells with photoconducting polymer layers,” J. Appl. Phys. 96, 2616-2623 (2004).
[CrossRef]

Khoo, I. C.

I. C. Khoo, “Orientational photorefractive effect in undoped and CdSe nanorods-doped nematic liquid crystal-bulk and interface contributions,” IEEE J. Sel. Top. Quantum Electron. 12, 443-450 (2006).
[CrossRef]

M. Kaczmarek, A. Dyadyusha, S. Slussarenko, and I. C. Khoo, “The role of surface charge field in two-beam coupling in liquid crystal cells with photoconducting polymer layers,” J. Appl. Phys. 96, 2616-2623 (2004).
[CrossRef]

I. C. Khoo, J. Ding, Y. Zhang, K. Chen, and A. Diaz, “Supra-nonlinear photorefractive response of single-walled carbon nanotube- and C60-doped nematic liquid crystal,” Appl. Phys. Lett. 82, 3587-3589 (2003).
[CrossRef]

I. C. Khoo, B. D. Guenther, M. V. Wood, P. Chen, and M.-Y. Shih, “Coherent beam amplification with a photorefractive liquid crystal,” Opt. Lett. 22, 1229-1231 (1997).
[CrossRef] [PubMed]

I. C. Khoo, H. Li, and Y. Liang, “Observation of orientational photorefractive effects in nematic liquid crystals,” Opt. Lett. 19, 1723-1725 (1994).
[CrossRef] [PubMed]

I. C. Khoo and T. H. Liu, “Theory and experiments on multiwave-mixing- mediated probe-beam amplification,” Phys. Rev. A 39, 4036-4044 (1989).
[CrossRef] [PubMed]

Kim, E. J.

Kim, G. Y.

Kwak, C. H.

Lee, C.-C.

W. Lee and C.-C. Lee, “Two-wave mixing in a nematic liquid-crystal film sandwiched between photoconducting polymeric layers,” Nanotechnology 17, 157-162 (2006).
[CrossRef]

Lee, C.-R.

M.-R. Lee, J.-R. Wang, C.-R. Lee, and A. Y.-G. Fuh, “Optically switchable biphotonic photorefractive effect in dye-doped liquid crystal films,” Appl. Phys. Lett. 85, 5822-5824 (2004).
[CrossRef]

Lee, M.-R.

M.-R. Lee, J.-R. Wang, C.-R. Lee, and A. Y.-G. Fuh, “Optically switchable biphotonic photorefractive effect in dye-doped liquid crystal films,” Appl. Phys. Lett. 85, 5822-5824 (2004).
[CrossRef]

Lee, S. J.

Lee, W.

W. Lee and C.-C. Lee, “Two-wave mixing in a nematic liquid-crystal film sandwiched between photoconducting polymeric layers,” Nanotechnology 17, 157-162 (2006).
[CrossRef]

Y.-P. Huang, T.-Y. Tsai, W. Lee, W.-K. Chin, R. Wangberg, and J. Elser, “Photorefractive effect in nematic-clay nanocomposites,” Opt. Express 13, 2058-2063 (2005).
[CrossRef] [PubMed]

W. Lee and S.-L. Yeh, “Optical amplification in nematics doped with carbon nanotubes,” Appl. Phys. Lett. 79, 4488-4490(2001).
[CrossRef]

Li, H.

Liang, Y.

Liu, T. H.

I. C. Khoo and T. H. Liu, “Theory and experiments on multiwave-mixing- mediated probe-beam amplification,” Phys. Rev. A 39, 4036-4044 (1989).
[CrossRef] [PubMed]

Moerner, W. E.

O. Ostroverkhova and W. E. Moerner, “Organic photorefractives: mechanisms, materials, and applications,” Chem. Rev. 104, 3267-3314 (2004).
[CrossRef] [PubMed]

A. Grunnet-Jepsen, C. L. Thompson, and W. E. Moerner, “Spontaneous oscillation and self-pumped phase conjugation in a photorefractive polymer optical amplifier,” Science 277, 549-552 (1997).
[CrossRef]

J. J. Stankus, S. M. Silence, W. E. Moerner, and G. C. Bjorklund, “Electric-field-switchable stratified volume holograms in photorefractive polymers,” Opt. Lett. 19, 1480-1482 (1994).
[CrossRef] [PubMed]

Ostroverkhov, V.

Ostroverkhova, O.

O. Ostroverkhova and W. E. Moerner, “Organic photorefractives: mechanisms, materials, and applications,” Chem. Rev. 104, 3267-3314 (2004).
[CrossRef] [PubMed]

Pagliusi, P.

P. Pagliusi and G. Cipparrone, “Dynamic grating features for the surface-induced photorefractive effect in undoped nematics,” J. Opt. Soc. Am. B 21, 996-1004 (2004)
[CrossRef]

P. Pagliusi and G. Cipparrone, “Photorefractive effect due to a photoinduced surface-charge modulation in undoped liquid crystals,” Phys. Rev. E 69, 061708 (2004).
[CrossRef]

Pei, Y.

X. Sun, Y. Pei, F. Yao, J. Zhang, and C. Hou, “Optical amplification in multilayer photorefractive liquid crystal films,” Appl. Phys. Lett. 90, 201115 (2007).
[CrossRef]

Reshetnyak, V.

Reznikov, Y.

H. Atkuri, G. Cook, D. R. Evans, C.-I. Cheon, A. Glushchenko, V. Reshetnyak, Y. Reznikov, J. West, and K. Zhang, “Preparation of ferroelectric nanoparticles for their use in liquid crystalline colloids,” J. Opt. A Pure Appl. Opt. 11, 024006 (2009).
[CrossRef]

Reznikov, Yu.

Saleh, M. A.

Shih, M.-Y.

Silence, S. M.

Singer, K. D.

Slussarenko, S.

M. Kaczmarek, A. Dyadyusha, S. Slussarenko, and I. C. Khoo, “The role of surface charge field in two-beam coupling in liquid crystal cells with photoconducting polymer layers,” J. Appl. Phys. 96, 2616-2623 (2004).
[CrossRef]

Stankus, J. J.

Sun, X.

X. Sun, Y. Pei, F. Yao, J. Zhang, and C. Hou, “Optical amplification in multilayer photorefractive liquid crystal films,” Appl. Phys. Lett. 90, 201115 (2007).
[CrossRef]

Thompson, C. L.

A. Grunnet-Jepsen, C. L. Thompson, and W. E. Moerner, “Spontaneous oscillation and self-pumped phase conjugation in a photorefractive polymer optical amplifier,” Science 277, 549-552 (1997).
[CrossRef]

Tsai, T.-Y.

Wang, J.-R.

M.-R. Lee, J.-R. Wang, C.-R. Lee, and A. Y.-G. Fuh, “Optically switchable biphotonic photorefractive effect in dye-doped liquid crystal films,” Appl. Phys. Lett. 85, 5822-5824 (2004).
[CrossRef]

Wangberg, R.

Wasielewski, M. R.

G. P. Wiederrecht, B. A. Yoon, and M. R. Wasielewski, “High photorefractive gain in nematic liquid crystals doped with electron donor and acceptor molecules,” Science 270, 1794-1797 (1995).
[CrossRef]

West, J.

H. Atkuri, G. Cook, D. R. Evans, C.-I. Cheon, A. Glushchenko, V. Reshetnyak, Y. Reznikov, J. West, and K. Zhang, “Preparation of ferroelectric nanoparticles for their use in liquid crystalline colloids,” J. Opt. A Pure Appl. Opt. 11, 024006 (2009).
[CrossRef]

Wiederrecht, G. P.

G. P. Wiederrecht, B. A. Yoon, and M. R. Wasielewski, “High photorefractive gain in nematic liquid crystals doped with electron donor and acceptor molecules,” Science 270, 1794-1797 (1995).
[CrossRef]

Wood, M. V.

Yang, H. R.

Yao, F.

X. Sun, Y. Pei, F. Yao, J. Zhang, and C. Hou, “Optical amplification in multilayer photorefractive liquid crystal films,” Appl. Phys. Lett. 90, 201115 (2007).
[CrossRef]

Yeh, S.-L.

W. Lee and S.-L. Yeh, “Optical amplification in nematics doped with carbon nanotubes,” Appl. Phys. Lett. 79, 4488-4490(2001).
[CrossRef]

Yoon, B. A.

G. P. Wiederrecht, B. A. Yoon, and M. R. Wasielewski, “High photorefractive gain in nematic liquid crystals doped with electron donor and acceptor molecules,” Science 270, 1794-1797 (1995).
[CrossRef]

Zhang, J.

X. Sun, Y. Pei, F. Yao, J. Zhang, and C. Hou, “Optical amplification in multilayer photorefractive liquid crystal films,” Appl. Phys. Lett. 90, 201115 (2007).
[CrossRef]

J. Zhang, V. Ostroverkhov, K. D. Singer, V. Reshetnyak, and Yu. Reznikov, “Electrically controlled surface diffraction gratings in nematic liquid crystals,” Opt. Lett. 25, 414-416 (2000).
[CrossRef]

Zhang, K.

H. Atkuri, G. Cook, D. R. Evans, C.-I. Cheon, A. Glushchenko, V. Reshetnyak, Y. Reznikov, J. West, and K. Zhang, “Preparation of ferroelectric nanoparticles for their use in liquid crystalline colloids,” J. Opt. A Pure Appl. Opt. 11, 024006 (2009).
[CrossRef]

Zhang, Y.

I. C. Khoo, J. Ding, Y. Zhang, K. Chen, and A. Diaz, “Supra-nonlinear photorefractive response of single-walled carbon nanotube- and C60-doped nematic liquid crystal,” Appl. Phys. Lett. 82, 3587-3589 (2003).
[CrossRef]

Appl. Phys. Lett.

W. Lee and S.-L. Yeh, “Optical amplification in nematics doped with carbon nanotubes,” Appl. Phys. Lett. 79, 4488-4490(2001).
[CrossRef]

I. C. Khoo, J. Ding, Y. Zhang, K. Chen, and A. Diaz, “Supra-nonlinear photorefractive response of single-walled carbon nanotube- and C60-doped nematic liquid crystal,” Appl. Phys. Lett. 82, 3587-3589 (2003).
[CrossRef]

M.-R. Lee, J.-R. Wang, C.-R. Lee, and A. Y.-G. Fuh, “Optically switchable biphotonic photorefractive effect in dye-doped liquid crystal films,” Appl. Phys. Lett. 85, 5822-5824 (2004).
[CrossRef]

M. J. Deer, “Demonstration of an Fe doped KNbO3 photorefractive hybrid,” Appl. Phys. Lett. 88, 254107 (2006).
[CrossRef]

X. Sun, Y. Pei, F. Yao, J. Zhang, and C. Hou, “Optical amplification in multilayer photorefractive liquid crystal films,” Appl. Phys. Lett. 90, 201115 (2007).
[CrossRef]

Chem. Rev.

O. Ostroverkhova and W. E. Moerner, “Organic photorefractives: mechanisms, materials, and applications,” Chem. Rev. 104, 3267-3314 (2004).
[CrossRef] [PubMed]

IEEE J. Sel. Top. Quantum Electron.

I. C. Khoo, “Orientational photorefractive effect in undoped and CdSe nanorods-doped nematic liquid crystal-bulk and interface contributions,” IEEE J. Sel. Top. Quantum Electron. 12, 443-450 (2006).
[CrossRef]

J. Appl. Phys.

M. Kaczmarek, A. Dyadyusha, S. Slussarenko, and I. C. Khoo, “The role of surface charge field in two-beam coupling in liquid crystal cells with photoconducting polymer layers,” J. Appl. Phys. 96, 2616-2623 (2004).
[CrossRef]

J. Opt. A Pure Appl. Opt.

H. Atkuri, G. Cook, D. R. Evans, C.-I. Cheon, A. Glushchenko, V. Reshetnyak, Y. Reznikov, J. West, and K. Zhang, “Preparation of ferroelectric nanoparticles for their use in liquid crystalline colloids,” J. Opt. A Pure Appl. Opt. 11, 024006 (2009).
[CrossRef]

J. Opt. Soc. Am. B

Nanotechnology

W. Lee and C.-C. Lee, “Two-wave mixing in a nematic liquid-crystal film sandwiched between photoconducting polymeric layers,” Nanotechnology 17, 157-162 (2006).
[CrossRef]

Opt. Express

Opt. Lett.

Phys. Rev. A

I. C. Khoo and T. H. Liu, “Theory and experiments on multiwave-mixing- mediated probe-beam amplification,” Phys. Rev. A 39, 4036-4044 (1989).
[CrossRef] [PubMed]

Phys. Rev. E

P. Pagliusi and G. Cipparrone, “Photorefractive effect due to a photoinduced surface-charge modulation in undoped liquid crystals,” Phys. Rev. E 69, 061708 (2004).
[CrossRef]

Science

G. P. Wiederrecht, B. A. Yoon, and M. R. Wasielewski, “High photorefractive gain in nematic liquid crystals doped with electron donor and acceptor molecules,” Science 270, 1794-1797 (1995).
[CrossRef]

A. Grunnet-Jepsen, C. L. Thompson, and W. E. Moerner, “Spontaneous oscillation and self-pumped phase conjugation in a photorefractive polymer optical amplifier,” Science 277, 549-552 (1997).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic diagram for two-beam coupling in an optical element structure with a six-layer LC film. The pump beam I 10 and signal beam I 20 were p-polarized 488 nm light from an Ar + laser, and I 21 was the output amplified signal beam. The included angle of the writing beams ( θ 1 θ 2 ) was about 1 ° , and the angle of incidence β of the writing beams in air ( θ 1 / 2 + θ 2 / 2 ) was 45 ° with respect to the surface normal.

Fig. 2
Fig. 2

Signal gain as a function of the number of LC layers in one-, two-, three-, and four-layer samples at applied voltage of 1.2 V for an incident power of I 1 = 2 mW and I 2 = 40 μW . Under the same conditions, the signal gain for the optical element structure with six-layer LC film is given, accompanied by evident higher order diffraction.

Fig. 3
Fig. 3

Signal gain as a function of the pump-beam power at an applied voltage of 1.2 V across each cell.

Fig. 4
Fig. 4

Time evolution of the signal gain at applied voltage of 1.2 V for an incident power of I 1 = 7 mW and I 2 = 0.1 μW .

Metrics