Abstract

We present the design and fabrication of a novel dual-function subwavelength fused-silica grating that can be used as a polarization-selective beam splitter. For TM polarization, the grating can be used as a two-port beam splitter at a wavelength of 1550nm with a total diffraction efficiency of 98%. For TE polarization, the grating can function as a high-efficiency grating, and the diffraction efficiency of the -1st order is 95% under Littrow mounting. This dual-function grating design is based on a simplified modal method. By using the rigorous coupled-wave analysis, the optimum grating parameters can be determined. Holographic recording technology and inductively coupled plasma etching are used to manufacture the fused-silica grating. Experimental results are in agreement with the theoretical values.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. Néauport, E. Journot, G. Gaborit, and P. Bouchut, “Design, optical characterization, and operation of large transmission gratings for the laser integration line and laser megajoule facilities,” Appl. Opt. 44, 3143-3152 (2005).
    [CrossRef] [PubMed]
  2. S. Wang, C. Zhou, Y. Zhang, and H. Ru, “Deep-etched high-density fused-silica transmission gratings with high efficiency at a wavelength of 1550 nm,” Appl. Opt. 45, 2567-2571(2006).
    [CrossRef] [PubMed]
  3. P. Lalanne, J. Hazart, P. Chavel, E. Cambril, and H. Launois, “A transmission polarizing beam splitter grating,” J. Opt. A 1, 215-219 (1999).
    [CrossRef]
  4. D. Delbeke, R. Baets, and P. Muys, “Polarization-selective beam splitter based on a highly efficient simple binary diffraction grating,” Appl. Opt. 43, 6157-6165 (2004).
    [CrossRef] [PubMed]
  5. B. Wang, C. Zhou, S. Wang, and J. Feng, “Polarizing beam splitter of a deep-etched fused-silica grating,” Opt. Lett. 32, 1299-1301 (2007).
    [CrossRef] [PubMed]
  6. J. Zheng, C. Zhou, J. Feng, and B. Wang, “Polarizing beam splitter of deep-etched triangular-groove fused-silica gratings,” Opt. Lett. 33, 1554-1556 (2008).
    [CrossRef] [PubMed]
  7. S. Fahr, T. Clausnitzer, E.-B. Kley, and A. Tünnermann, “Reflective diffractive beam splitter for laser interferometers,” Appl. Opt. 46, 6092-6095 (2007).
    [CrossRef] [PubMed]
  8. B. Wang, C. Zhou, J. Feng, H. Ru, and J. Zheng, “Wideband two-port beam splitter of a binary fused-silica phase grating,” Appl. Opt. 47, 4004-4008 (2008).
    [CrossRef] [PubMed]
  9. T. Clausnitzer, J. Limpert, K. Zöllner, H. Zellmer, H.-J. Fuchs, E.-B. Kley, A. Tünnermann, M. Jupé, and D. Ristau, “Highly efficient transmission gratings in fused silica for chirped-pulse amplification systems,” Appl. Opt. 42, 6934-6938(2003).
    [CrossRef] [PubMed]
  10. W. Jia, C. Zhou, J. Feng, and E. Dai, “Miniature pulse compressor of deep-etched gratings,” Appl. Opt. 47, 6058-6063 (2008).
    [CrossRef] [PubMed]
  11. M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A 12, 1068-1076 (1995).
    [CrossRef]
  12. P. Lalanne and G. M. Morris, “Highly improved convergence of the coupled-wave method for TM polarization,” J. Opt. Soc. Am. A 13, 779-784 (1996).
    [CrossRef]
  13. I. C. Botten, M. S. Craig, R. C. McPhedran, J. L. Adams, and J. R. Andrewartha, “The dielectric lamellar diffraction grating,” Opt. Acta 28, 413-428 (1981).
    [CrossRef]
  14. A. V. Tishchenko, “Phenomenological representation of deep and high contrast lamellar gratings by means of the modal method,” Opt. Quantum Electron. 37, 309-330 (2005).
    [CrossRef]
  15. T. Clausnitzer, T. Kämpfe, E.-B. Kley, A. Tünnermann, U. Peschel, A. V. Tishchenko, and O. Parriaux, “An intelligible explanation of highly-efficient diffraction in deep dielectric rectangular transmission gratings,” Opt. Express 13, 10448-10456 (2005).
    [CrossRef] [PubMed]
  16. T. Clausnitzer, T. Kämpfe, E.-B. Kley, A. Tünnermann, A. Tishchenko, and O. Parriaux, “Investigation of the polarization-dependent diffraction of deep dielectric rectangular transmission gratings illuminated in Littrow mounting,” Appl. Opt. 46, 819-826 (2007).
    [CrossRef] [PubMed]
  17. J. Zheng, C. Zhou, B. Wang, and J. Feng, “Beam splitting of low-contrast binary gratings under second Bragg angle incidence,” J. Opt. Soc. Am. A 25, 1075-1083 (2008).
    [CrossRef]
  18. J. Feng, C. Zhou, J. Zheng, and B. Wang, “Modal analysis of deep-etched low-contrast two-port beam splitter grating,” Opt. Commun. 281, 5298-5301 (2008).
    [CrossRef]
  19. A. Taflove and S. C. Hagness, Computational Electrodynamics: the Finite-Difference Time-Domain Method, 2nd ed. (Artech House, 2000).
  20. S. Wang, C. Zhou, H. Ru, and Y. Zhang, “Optimized condition for etching fused-silica phase gratings with inductively coupled plasma technology,” Appl. Opt. 44, 4429-4434 (2005).
    [CrossRef] [PubMed]
  21. J. Feng, C. Zhou, B. Wang, J. Zheng, W. Jia, H. Cao and P. Lv, “Three-port beam splitter of a binary fused-silica grating,” Appl. Opt. 47, 6638-6643 (2008).
    [CrossRef] [PubMed]

2008

2007

2006

2005

2004

2003

1999

P. Lalanne, J. Hazart, P. Chavel, E. Cambril, and H. Launois, “A transmission polarizing beam splitter grating,” J. Opt. A 1, 215-219 (1999).
[CrossRef]

1996

1995

1981

I. C. Botten, M. S. Craig, R. C. McPhedran, J. L. Adams, and J. R. Andrewartha, “The dielectric lamellar diffraction grating,” Opt. Acta 28, 413-428 (1981).
[CrossRef]

Adams, J. L.

I. C. Botten, M. S. Craig, R. C. McPhedran, J. L. Adams, and J. R. Andrewartha, “The dielectric lamellar diffraction grating,” Opt. Acta 28, 413-428 (1981).
[CrossRef]

Andrewartha, J. R.

I. C. Botten, M. S. Craig, R. C. McPhedran, J. L. Adams, and J. R. Andrewartha, “The dielectric lamellar diffraction grating,” Opt. Acta 28, 413-428 (1981).
[CrossRef]

Baets, R.

Botten, I. C.

I. C. Botten, M. S. Craig, R. C. McPhedran, J. L. Adams, and J. R. Andrewartha, “The dielectric lamellar diffraction grating,” Opt. Acta 28, 413-428 (1981).
[CrossRef]

Bouchut, P.

Cambril, E.

P. Lalanne, J. Hazart, P. Chavel, E. Cambril, and H. Launois, “A transmission polarizing beam splitter grating,” J. Opt. A 1, 215-219 (1999).
[CrossRef]

Cao, H.

Chavel, P.

P. Lalanne, J. Hazart, P. Chavel, E. Cambril, and H. Launois, “A transmission polarizing beam splitter grating,” J. Opt. A 1, 215-219 (1999).
[CrossRef]

Clausnitzer, T.

Craig, M. S.

I. C. Botten, M. S. Craig, R. C. McPhedran, J. L. Adams, and J. R. Andrewartha, “The dielectric lamellar diffraction grating,” Opt. Acta 28, 413-428 (1981).
[CrossRef]

Dai, E.

Delbeke, D.

Fahr, S.

Feng, J.

Fuchs, H.-J.

Gaborit, G.

Gaylord, T. K.

Grann, E. B.

Hagness, S. C.

A. Taflove and S. C. Hagness, Computational Electrodynamics: the Finite-Difference Time-Domain Method, 2nd ed. (Artech House, 2000).

Hazart, J.

P. Lalanne, J. Hazart, P. Chavel, E. Cambril, and H. Launois, “A transmission polarizing beam splitter grating,” J. Opt. A 1, 215-219 (1999).
[CrossRef]

Jia, W.

Journot, E.

Jupé, M.

Kämpfe, T.

Kley, E.-B.

Lalanne, P.

P. Lalanne, J. Hazart, P. Chavel, E. Cambril, and H. Launois, “A transmission polarizing beam splitter grating,” J. Opt. A 1, 215-219 (1999).
[CrossRef]

P. Lalanne and G. M. Morris, “Highly improved convergence of the coupled-wave method for TM polarization,” J. Opt. Soc. Am. A 13, 779-784 (1996).
[CrossRef]

Launois, H.

P. Lalanne, J. Hazart, P. Chavel, E. Cambril, and H. Launois, “A transmission polarizing beam splitter grating,” J. Opt. A 1, 215-219 (1999).
[CrossRef]

Limpert, J.

Lv, P.

McPhedran, R. C.

I. C. Botten, M. S. Craig, R. C. McPhedran, J. L. Adams, and J. R. Andrewartha, “The dielectric lamellar diffraction grating,” Opt. Acta 28, 413-428 (1981).
[CrossRef]

Moharam, M. G.

Morris, G. M.

Muys, P.

Néauport, J.

Parriaux, O.

Peschel, U.

Pommet, D. A.

Ristau, D.

Ru, H.

Taflove, A.

A. Taflove and S. C. Hagness, Computational Electrodynamics: the Finite-Difference Time-Domain Method, 2nd ed. (Artech House, 2000).

Tishchenko, A.

Tishchenko, A. V.

Tünnermann, A.

Wang, B.

Wang, S.

Zellmer, H.

Zhang, Y.

Zheng, J.

Zhou, C.

J. Zheng, C. Zhou, B. Wang, and J. Feng, “Beam splitting of low-contrast binary gratings under second Bragg angle incidence,” J. Opt. Soc. Am. A 25, 1075-1083 (2008).
[CrossRef]

W. Jia, C. Zhou, J. Feng, and E. Dai, “Miniature pulse compressor of deep-etched gratings,” Appl. Opt. 47, 6058-6063 (2008).
[CrossRef] [PubMed]

J. Zheng, C. Zhou, J. Feng, and B. Wang, “Polarizing beam splitter of deep-etched triangular-groove fused-silica gratings,” Opt. Lett. 33, 1554-1556 (2008).
[CrossRef] [PubMed]

B. Wang, C. Zhou, J. Feng, H. Ru, and J. Zheng, “Wideband two-port beam splitter of a binary fused-silica phase grating,” Appl. Opt. 47, 4004-4008 (2008).
[CrossRef] [PubMed]

J. Feng, C. Zhou, B. Wang, J. Zheng, W. Jia, H. Cao and P. Lv, “Three-port beam splitter of a binary fused-silica grating,” Appl. Opt. 47, 6638-6643 (2008).
[CrossRef] [PubMed]

J. Feng, C. Zhou, J. Zheng, and B. Wang, “Modal analysis of deep-etched low-contrast two-port beam splitter grating,” Opt. Commun. 281, 5298-5301 (2008).
[CrossRef]

B. Wang, C. Zhou, S. Wang, and J. Feng, “Polarizing beam splitter of a deep-etched fused-silica grating,” Opt. Lett. 32, 1299-1301 (2007).
[CrossRef] [PubMed]

S. Wang, C. Zhou, Y. Zhang, and H. Ru, “Deep-etched high-density fused-silica transmission gratings with high efficiency at a wavelength of 1550 nm,” Appl. Opt. 45, 2567-2571(2006).
[CrossRef] [PubMed]

S. Wang, C. Zhou, H. Ru, and Y. Zhang, “Optimized condition for etching fused-silica phase gratings with inductively coupled plasma technology,” Appl. Opt. 44, 4429-4434 (2005).
[CrossRef] [PubMed]

Zöllner, K.

Appl. Opt.

S. Fahr, T. Clausnitzer, E.-B. Kley, and A. Tünnermann, “Reflective diffractive beam splitter for laser interferometers,” Appl. Opt. 46, 6092-6095 (2007).
[CrossRef] [PubMed]

B. Wang, C. Zhou, J. Feng, H. Ru, and J. Zheng, “Wideband two-port beam splitter of a binary fused-silica phase grating,” Appl. Opt. 47, 4004-4008 (2008).
[CrossRef] [PubMed]

T. Clausnitzer, J. Limpert, K. Zöllner, H. Zellmer, H.-J. Fuchs, E.-B. Kley, A. Tünnermann, M. Jupé, and D. Ristau, “Highly efficient transmission gratings in fused silica for chirped-pulse amplification systems,” Appl. Opt. 42, 6934-6938(2003).
[CrossRef] [PubMed]

W. Jia, C. Zhou, J. Feng, and E. Dai, “Miniature pulse compressor of deep-etched gratings,” Appl. Opt. 47, 6058-6063 (2008).
[CrossRef] [PubMed]

J. Néauport, E. Journot, G. Gaborit, and P. Bouchut, “Design, optical characterization, and operation of large transmission gratings for the laser integration line and laser megajoule facilities,” Appl. Opt. 44, 3143-3152 (2005).
[CrossRef] [PubMed]

S. Wang, C. Zhou, Y. Zhang, and H. Ru, “Deep-etched high-density fused-silica transmission gratings with high efficiency at a wavelength of 1550 nm,” Appl. Opt. 45, 2567-2571(2006).
[CrossRef] [PubMed]

D. Delbeke, R. Baets, and P. Muys, “Polarization-selective beam splitter based on a highly efficient simple binary diffraction grating,” Appl. Opt. 43, 6157-6165 (2004).
[CrossRef] [PubMed]

T. Clausnitzer, T. Kämpfe, E.-B. Kley, A. Tünnermann, A. Tishchenko, and O. Parriaux, “Investigation of the polarization-dependent diffraction of deep dielectric rectangular transmission gratings illuminated in Littrow mounting,” Appl. Opt. 46, 819-826 (2007).
[CrossRef] [PubMed]

S. Wang, C. Zhou, H. Ru, and Y. Zhang, “Optimized condition for etching fused-silica phase gratings with inductively coupled plasma technology,” Appl. Opt. 44, 4429-4434 (2005).
[CrossRef] [PubMed]

J. Feng, C. Zhou, B. Wang, J. Zheng, W. Jia, H. Cao and P. Lv, “Three-port beam splitter of a binary fused-silica grating,” Appl. Opt. 47, 6638-6643 (2008).
[CrossRef] [PubMed]

J. Opt. A

P. Lalanne, J. Hazart, P. Chavel, E. Cambril, and H. Launois, “A transmission polarizing beam splitter grating,” J. Opt. A 1, 215-219 (1999).
[CrossRef]

J. Opt. Soc. Am. A

Opt. Acta

I. C. Botten, M. S. Craig, R. C. McPhedran, J. L. Adams, and J. R. Andrewartha, “The dielectric lamellar diffraction grating,” Opt. Acta 28, 413-428 (1981).
[CrossRef]

Opt. Commun.

J. Feng, C. Zhou, J. Zheng, and B. Wang, “Modal analysis of deep-etched low-contrast two-port beam splitter grating,” Opt. Commun. 281, 5298-5301 (2008).
[CrossRef]

Opt. Express

Opt. Lett.

Opt. Quantum Electron.

A. V. Tishchenko, “Phenomenological representation of deep and high contrast lamellar gratings by means of the modal method,” Opt. Quantum Electron. 37, 309-330 (2005).
[CrossRef]

Other

A. Taflove and S. C. Hagness, Computational Electrodynamics: the Finite-Difference Time-Domain Method, 2nd ed. (Artech House, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic illustration of a dual-function beam splitter grating. The incident TE-polarized wave is diffracted mainly into the 1 st order, and the incident TM-polarized wave is equally distributed into the 0th and 1 st diffractive orders.

Fig. 2
Fig. 2

(a) Propagating effective indices that vary with the grating period for both polarizations. (b) Ratio of TM polarization phase difference Δ φ TM to TE polarization phase difference Δ φ TE as a function of grating period. Both are calculated at a wavelength of 1550 nm .

Fig. 3
Fig. 3

(a) Contour of the efficiency ratio between the 1 st and the 0th diffractive orders versus grating period and groove depth for TM polarization. (b) Contour of the 1 st diffraction efficiency for TE polarization. Both are calculated at a wavelength of 1550 nm , and the dotted lines indicate the optimized values for experimental implementation.

Fig. 4
Fig. 4

Near-field distribution for the dual-function grating with period Λ = 1216 nm and depth h = 2.314 μm by using the FDTD method at a wavelength of 1550 nm . The incident light is from the bottom and output waves travel upward through the grating. (a) Amplitude of the output magnetic field for TM polarization, indicating the two-beam interference that is due to the propagation of two equally split beams of the grating. (b) Real part of the output electric field for TE polarization, indicating the highly efficient diffraction at the 1 st order direction of the grating.

Fig. 5
Fig. 5

Diffraction efficiency of the designed grating as a function of incident wavelength under Littrow mounting.

Fig. 6
Fig. 6

Scanning electron micrograph image of the manufactured grating.

Fig. 7
Fig. 7

Theoretical (solid curves) and experimental (dashed curves) diffraction efficiencies of the manufactured grating at different incident angles.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

η 0 = cos 2 Δ φ 2 ,
η 1 = sin 2 Δ φ 2 ,
Δ φ = ( n e 0 n e 1 ) k 0 h ,
Δ φ TM Δ φ TE = n e 0 _ TM n e 1 _ TM n e 0 _ TE - n e 1 _ TE = 2 l 1 2 ( 2 m 1 ) ,

Metrics