Abstract

Relaxor lead lanthanum zirconate titanate (PLZT) thin films, with compositions of (7/65/35), (8/65/35), and (9/65/35), have been investigated as optical waveguides. Resonant structures were observed in the reflected light beam that passes through these thin films after coupling with a laser-inscribed azo polymer surface relief diffraction grating. The temperature was then varied on the PLZT thin films between 20 and 70°C, and a shift in the above resonance peaks was observed that is due to a change in the refractive index of the samples. The temperature dependence of the refractive index of the tested PLZT thin films was subsequently plotted and was found to decrease linearly with an increase in temperature at different rates for all the thin-film compositions tested.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Ishida, H. Matsunami, and T. Tanaka, “Preparation and properties of ferroelectric PLZT thin films by rf sputtering,” J. Appl. Phys. 48, 951-953 (1977).
    [CrossRef]
  2. M. Ishida, H. Matsunami, and T. Tanaka, “Electro-optic effects of PLZT thin films,” Appl. Phys. Lett. 31, 433-434 (1977).
    [CrossRef]
  3. T. Kawaguchi, H. Adachi, K. Setsune, O. Yamazaki, and K. Wasa, “PLZT thin-film waveguides,” Appl. Opt. 23, 2187-2191 (1984).
    [CrossRef] [PubMed]
  4. S. Krishnakumar, V. H. Ozguz, C. Fan, C. Cozzolino, S. C. Esener, and S. H. Lee, “Deposition and characterization of thin ferroelectric lead lanthanum zirconate titanate (PLZT) films on sapphire for spatial light modulators applications,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 38, 585-590(1991).
    [CrossRef] [PubMed]
  5. H. Adachi and K. Wasa, “Sputtering preparation of ferroelectric PLZT thin films and their optical applications,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 38, 645-655(1991).
    [CrossRef] [PubMed]
  6. F. Wang, K. K. Li, V. Fuflyigin, H. Jiang, J. Zhao, P. Norris, and D. Goldstein, “Thin ferroelectric interferometer for spatial light modulations,” Appl. Opt. 37, 7490-7495 (1998).
    [CrossRef]
  7. G. H. Jin, Y. K. Zou, V. Fuflyigin, S. W. Liu, Y. L. Lu, J. Zhao, and M. Cronin-Golomb, “PLZT film waveguide Mach-Zehnder electrooptic modulator,” J. Lightwave Technol. 18, 807-812(2000).
    [CrossRef]
  8. K. Sato, M. Ishii, K. Kurihara, and M. Kondo, “Crystal orientation dependence of the electro-optic effect in epitaxial lanthanum-modified lead zirconate titanate films,” Appl. Phys. Lett. 87, 251927 (2005).
    [CrossRef]
  9. W. Leng, C. Yang, J. Zhang, H. Chen, W. Hu, H. Ji, J. Tang, W. Qin, J. Li, H. Lin, and L. Gao, “Nonlinear optical properties of the lanthanum-modified lead zirconate titanate ferroelectric thin films using Z-scan technique,” Jpn. J. Appl. Phys. 46, L7-L9 (2007).
    [CrossRef]
  10. V. Bobnar, Z. Kutnjak, R. Pirc, and A. Levstik, “Electric-field-temperature phase diagram of the relaxor ferroelectric lanthanum-modified lead zirconate titanate,” Phys. Rev. B 60, 6420-6427 (1999).
    [CrossRef]
  11. R. Johannes and W. Haas, “Temperature dependence of the refractive index nc in SbSI through the ferroelectric-paraelectric transition,” Appl. Opt. 6, 1059-1061 (1967).
    [CrossRef] [PubMed]
  12. W. Jantsch, “Anomalies of the refractive index and the optical energy gap of ferroelectric Pb1−xGexTe,” Z. Phys. B 40, 193-198 (1980).
    [CrossRef]
  13. V. D. Antsigin, E. G. Kostosov, V. K. Malinovsky, and L. N. Sterelyukhina, “Electrooptics of thin ferroelectric films,” Ferroelectrics 38, 761-763 (1981).
    [CrossRef]
  14. M.-S Ho, A. Natansohn, and P. Rochon, “Azo polymers for reversible optical storage. 9. Copolymers containing two types of azobenzene side groups,” Macromolecules 29, 44-49(1996).
    [CrossRef]
  15. P. Rochon, J. Mao, A. Natansohn, and E. Batalla, “Optically induced high efficiency gratings in azo polymer films,” Polym. Prepr. Am. Chem. Soc. Div. Polym. Chem. 35, 154-155(1994).
  16. D. Marcuse, Geometrical Optics Treatment of Slab Waveguides (Academic, 1991), pp. 3-7.
  17. C. R. Pollock, Fundamentals of Optoelectronics (Richard D. Irwin, 1994).
  18. R. J. Stockermans and P. L. Rochon, “Narrow-band resonant grating waveguide filters constructed with azobenzene polymers,” Appl. Opt. 38, 3714-3719 (1999).
    [CrossRef]
  19. G. H. Haertling, “Improved hot-pressed electrooptic ceramics in the (Pb,La)(Zr,Ti)O3 system,” J. Am. Ceram. Soc. 54, 303-309 (1971).
    [CrossRef]
  20. G. H. Haertling and C. E. Land, “Hot-pressed (Pb,La)(Zr,Ti)O3 ferroelectric ceramics for electrooptic applications,” J. Am. Ceram. Soc. 54, 1-11 (1971).
    [CrossRef]
  21. R. G. Sabat and P. Rochon, “Interferometric determination of the temperature dependence of the refractive index of relaxor PLZT ceramics under DC bias,” Opt. Mater. 10.1016/j.optmat.2009.02.001 (2009).
    [CrossRef]
  22. E. A. Falcão, J. R. D. Pereira, I. A. Santos, A. R. Nunes, A. N. Medina, A. C. Bento, M. L. Baesso, D. Garcia, and J. A. Eiras, “Thermo optical properties of transparent PLZT 10/65/35 ceramics,” Ferroelectrics 336, 191-196 (2006).
    [CrossRef]
  23. R. G. Sabat, P. Rochon, and B. K. Mukherjee, “Quasistatic dielectric and strain characterization of transparent relaxor ferroelectric lead lanthanum zirconate titanate ceramics,” J. Appl. Phys. 104, 054115 (2008).
    [CrossRef]
  24. Q. Tan and D. Viehland, “ac-field-dependent structure-property relationships in La-modified lead zirconate titanate: induced relaxor behavior and domain breakdown in soft ferroelectrics,” Phys. Rev. B 53, 14103-14111 (1996).
    [CrossRef]
  25. V. Bobnar, Z. Kutnjak, R. Pirc, and A. Levstik, “Relaxor freezing and electric-field--induced ferroelectric transition in a lanthanum lead zirconate titanate ceramics,” Europhys. Lett. 48, 326-331 (1999).
    [CrossRef]

2009 (1)

R. G. Sabat and P. Rochon, “Interferometric determination of the temperature dependence of the refractive index of relaxor PLZT ceramics under DC bias,” Opt. Mater. 10.1016/j.optmat.2009.02.001 (2009).
[CrossRef]

2008 (1)

R. G. Sabat, P. Rochon, and B. K. Mukherjee, “Quasistatic dielectric and strain characterization of transparent relaxor ferroelectric lead lanthanum zirconate titanate ceramics,” J. Appl. Phys. 104, 054115 (2008).
[CrossRef]

2007 (1)

W. Leng, C. Yang, J. Zhang, H. Chen, W. Hu, H. Ji, J. Tang, W. Qin, J. Li, H. Lin, and L. Gao, “Nonlinear optical properties of the lanthanum-modified lead zirconate titanate ferroelectric thin films using Z-scan technique,” Jpn. J. Appl. Phys. 46, L7-L9 (2007).
[CrossRef]

2006 (1)

E. A. Falcão, J. R. D. Pereira, I. A. Santos, A. R. Nunes, A. N. Medina, A. C. Bento, M. L. Baesso, D. Garcia, and J. A. Eiras, “Thermo optical properties of transparent PLZT 10/65/35 ceramics,” Ferroelectrics 336, 191-196 (2006).
[CrossRef]

2005 (1)

K. Sato, M. Ishii, K. Kurihara, and M. Kondo, “Crystal orientation dependence of the electro-optic effect in epitaxial lanthanum-modified lead zirconate titanate films,” Appl. Phys. Lett. 87, 251927 (2005).
[CrossRef]

2000 (1)

1999 (3)

R. J. Stockermans and P. L. Rochon, “Narrow-band resonant grating waveguide filters constructed with azobenzene polymers,” Appl. Opt. 38, 3714-3719 (1999).
[CrossRef]

V. Bobnar, Z. Kutnjak, R. Pirc, and A. Levstik, “Relaxor freezing and electric-field--induced ferroelectric transition in a lanthanum lead zirconate titanate ceramics,” Europhys. Lett. 48, 326-331 (1999).
[CrossRef]

V. Bobnar, Z. Kutnjak, R. Pirc, and A. Levstik, “Electric-field-temperature phase diagram of the relaxor ferroelectric lanthanum-modified lead zirconate titanate,” Phys. Rev. B 60, 6420-6427 (1999).
[CrossRef]

1998 (1)

1996 (2)

Q. Tan and D. Viehland, “ac-field-dependent structure-property relationships in La-modified lead zirconate titanate: induced relaxor behavior and domain breakdown in soft ferroelectrics,” Phys. Rev. B 53, 14103-14111 (1996).
[CrossRef]

M.-S Ho, A. Natansohn, and P. Rochon, “Azo polymers for reversible optical storage. 9. Copolymers containing two types of azobenzene side groups,” Macromolecules 29, 44-49(1996).
[CrossRef]

1994 (1)

P. Rochon, J. Mao, A. Natansohn, and E. Batalla, “Optically induced high efficiency gratings in azo polymer films,” Polym. Prepr. Am. Chem. Soc. Div. Polym. Chem. 35, 154-155(1994).

1991 (2)

S. Krishnakumar, V. H. Ozguz, C. Fan, C. Cozzolino, S. C. Esener, and S. H. Lee, “Deposition and characterization of thin ferroelectric lead lanthanum zirconate titanate (PLZT) films on sapphire for spatial light modulators applications,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 38, 585-590(1991).
[CrossRef] [PubMed]

H. Adachi and K. Wasa, “Sputtering preparation of ferroelectric PLZT thin films and their optical applications,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 38, 645-655(1991).
[CrossRef] [PubMed]

1984 (1)

1981 (1)

V. D. Antsigin, E. G. Kostosov, V. K. Malinovsky, and L. N. Sterelyukhina, “Electrooptics of thin ferroelectric films,” Ferroelectrics 38, 761-763 (1981).
[CrossRef]

1980 (1)

W. Jantsch, “Anomalies of the refractive index and the optical energy gap of ferroelectric Pb1−xGexTe,” Z. Phys. B 40, 193-198 (1980).
[CrossRef]

1977 (2)

M. Ishida, H. Matsunami, and T. Tanaka, “Preparation and properties of ferroelectric PLZT thin films by rf sputtering,” J. Appl. Phys. 48, 951-953 (1977).
[CrossRef]

M. Ishida, H. Matsunami, and T. Tanaka, “Electro-optic effects of PLZT thin films,” Appl. Phys. Lett. 31, 433-434 (1977).
[CrossRef]

1971 (2)

G. H. Haertling, “Improved hot-pressed electrooptic ceramics in the (Pb,La)(Zr,Ti)O3 system,” J. Am. Ceram. Soc. 54, 303-309 (1971).
[CrossRef]

G. H. Haertling and C. E. Land, “Hot-pressed (Pb,La)(Zr,Ti)O3 ferroelectric ceramics for electrooptic applications,” J. Am. Ceram. Soc. 54, 1-11 (1971).
[CrossRef]

1967 (1)

Adachi, H.

H. Adachi and K. Wasa, “Sputtering preparation of ferroelectric PLZT thin films and their optical applications,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 38, 645-655(1991).
[CrossRef] [PubMed]

T. Kawaguchi, H. Adachi, K. Setsune, O. Yamazaki, and K. Wasa, “PLZT thin-film waveguides,” Appl. Opt. 23, 2187-2191 (1984).
[CrossRef] [PubMed]

Antsigin, V. D.

V. D. Antsigin, E. G. Kostosov, V. K. Malinovsky, and L. N. Sterelyukhina, “Electrooptics of thin ferroelectric films,” Ferroelectrics 38, 761-763 (1981).
[CrossRef]

Baesso, M. L.

E. A. Falcão, J. R. D. Pereira, I. A. Santos, A. R. Nunes, A. N. Medina, A. C. Bento, M. L. Baesso, D. Garcia, and J. A. Eiras, “Thermo optical properties of transparent PLZT 10/65/35 ceramics,” Ferroelectrics 336, 191-196 (2006).
[CrossRef]

Batalla, E.

P. Rochon, J. Mao, A. Natansohn, and E. Batalla, “Optically induced high efficiency gratings in azo polymer films,” Polym. Prepr. Am. Chem. Soc. Div. Polym. Chem. 35, 154-155(1994).

Bento, A. C.

E. A. Falcão, J. R. D. Pereira, I. A. Santos, A. R. Nunes, A. N. Medina, A. C. Bento, M. L. Baesso, D. Garcia, and J. A. Eiras, “Thermo optical properties of transparent PLZT 10/65/35 ceramics,” Ferroelectrics 336, 191-196 (2006).
[CrossRef]

Bobnar, V.

V. Bobnar, Z. Kutnjak, R. Pirc, and A. Levstik, “Relaxor freezing and electric-field--induced ferroelectric transition in a lanthanum lead zirconate titanate ceramics,” Europhys. Lett. 48, 326-331 (1999).
[CrossRef]

V. Bobnar, Z. Kutnjak, R. Pirc, and A. Levstik, “Electric-field-temperature phase diagram of the relaxor ferroelectric lanthanum-modified lead zirconate titanate,” Phys. Rev. B 60, 6420-6427 (1999).
[CrossRef]

Chen, H.

W. Leng, C. Yang, J. Zhang, H. Chen, W. Hu, H. Ji, J. Tang, W. Qin, J. Li, H. Lin, and L. Gao, “Nonlinear optical properties of the lanthanum-modified lead zirconate titanate ferroelectric thin films using Z-scan technique,” Jpn. J. Appl. Phys. 46, L7-L9 (2007).
[CrossRef]

Cozzolino, C.

S. Krishnakumar, V. H. Ozguz, C. Fan, C. Cozzolino, S. C. Esener, and S. H. Lee, “Deposition and characterization of thin ferroelectric lead lanthanum zirconate titanate (PLZT) films on sapphire for spatial light modulators applications,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 38, 585-590(1991).
[CrossRef] [PubMed]

Cronin-Golomb, M.

Eiras, J. A.

E. A. Falcão, J. R. D. Pereira, I. A. Santos, A. R. Nunes, A. N. Medina, A. C. Bento, M. L. Baesso, D. Garcia, and J. A. Eiras, “Thermo optical properties of transparent PLZT 10/65/35 ceramics,” Ferroelectrics 336, 191-196 (2006).
[CrossRef]

Esener, S. C.

S. Krishnakumar, V. H. Ozguz, C. Fan, C. Cozzolino, S. C. Esener, and S. H. Lee, “Deposition and characterization of thin ferroelectric lead lanthanum zirconate titanate (PLZT) films on sapphire for spatial light modulators applications,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 38, 585-590(1991).
[CrossRef] [PubMed]

Falcão, E. A.

E. A. Falcão, J. R. D. Pereira, I. A. Santos, A. R. Nunes, A. N. Medina, A. C. Bento, M. L. Baesso, D. Garcia, and J. A. Eiras, “Thermo optical properties of transparent PLZT 10/65/35 ceramics,” Ferroelectrics 336, 191-196 (2006).
[CrossRef]

Fan, C.

S. Krishnakumar, V. H. Ozguz, C. Fan, C. Cozzolino, S. C. Esener, and S. H. Lee, “Deposition and characterization of thin ferroelectric lead lanthanum zirconate titanate (PLZT) films on sapphire for spatial light modulators applications,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 38, 585-590(1991).
[CrossRef] [PubMed]

Fuflyigin, V.

Gao, L.

W. Leng, C. Yang, J. Zhang, H. Chen, W. Hu, H. Ji, J. Tang, W. Qin, J. Li, H. Lin, and L. Gao, “Nonlinear optical properties of the lanthanum-modified lead zirconate titanate ferroelectric thin films using Z-scan technique,” Jpn. J. Appl. Phys. 46, L7-L9 (2007).
[CrossRef]

Garcia, D.

E. A. Falcão, J. R. D. Pereira, I. A. Santos, A. R. Nunes, A. N. Medina, A. C. Bento, M. L. Baesso, D. Garcia, and J. A. Eiras, “Thermo optical properties of transparent PLZT 10/65/35 ceramics,” Ferroelectrics 336, 191-196 (2006).
[CrossRef]

Goldstein, D.

Haas, W.

Haertling, G. H.

G. H. Haertling, “Improved hot-pressed electrooptic ceramics in the (Pb,La)(Zr,Ti)O3 system,” J. Am. Ceram. Soc. 54, 303-309 (1971).
[CrossRef]

G. H. Haertling and C. E. Land, “Hot-pressed (Pb,La)(Zr,Ti)O3 ferroelectric ceramics for electrooptic applications,” J. Am. Ceram. Soc. 54, 1-11 (1971).
[CrossRef]

Ho, M.-S

M.-S Ho, A. Natansohn, and P. Rochon, “Azo polymers for reversible optical storage. 9. Copolymers containing two types of azobenzene side groups,” Macromolecules 29, 44-49(1996).
[CrossRef]

Hu, W.

W. Leng, C. Yang, J. Zhang, H. Chen, W. Hu, H. Ji, J. Tang, W. Qin, J. Li, H. Lin, and L. Gao, “Nonlinear optical properties of the lanthanum-modified lead zirconate titanate ferroelectric thin films using Z-scan technique,” Jpn. J. Appl. Phys. 46, L7-L9 (2007).
[CrossRef]

Ishida, M.

M. Ishida, H. Matsunami, and T. Tanaka, “Preparation and properties of ferroelectric PLZT thin films by rf sputtering,” J. Appl. Phys. 48, 951-953 (1977).
[CrossRef]

M. Ishida, H. Matsunami, and T. Tanaka, “Electro-optic effects of PLZT thin films,” Appl. Phys. Lett. 31, 433-434 (1977).
[CrossRef]

Ishii, M.

K. Sato, M. Ishii, K. Kurihara, and M. Kondo, “Crystal orientation dependence of the electro-optic effect in epitaxial lanthanum-modified lead zirconate titanate films,” Appl. Phys. Lett. 87, 251927 (2005).
[CrossRef]

Jantsch, W.

W. Jantsch, “Anomalies of the refractive index and the optical energy gap of ferroelectric Pb1−xGexTe,” Z. Phys. B 40, 193-198 (1980).
[CrossRef]

Ji, H.

W. Leng, C. Yang, J. Zhang, H. Chen, W. Hu, H. Ji, J. Tang, W. Qin, J. Li, H. Lin, and L. Gao, “Nonlinear optical properties of the lanthanum-modified lead zirconate titanate ferroelectric thin films using Z-scan technique,” Jpn. J. Appl. Phys. 46, L7-L9 (2007).
[CrossRef]

Jiang, H.

Jin, G. H.

Johannes, R.

Kawaguchi, T.

Kondo, M.

K. Sato, M. Ishii, K. Kurihara, and M. Kondo, “Crystal orientation dependence of the electro-optic effect in epitaxial lanthanum-modified lead zirconate titanate films,” Appl. Phys. Lett. 87, 251927 (2005).
[CrossRef]

Kostosov, E. G.

V. D. Antsigin, E. G. Kostosov, V. K. Malinovsky, and L. N. Sterelyukhina, “Electrooptics of thin ferroelectric films,” Ferroelectrics 38, 761-763 (1981).
[CrossRef]

Krishnakumar, S.

S. Krishnakumar, V. H. Ozguz, C. Fan, C. Cozzolino, S. C. Esener, and S. H. Lee, “Deposition and characterization of thin ferroelectric lead lanthanum zirconate titanate (PLZT) films on sapphire for spatial light modulators applications,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 38, 585-590(1991).
[CrossRef] [PubMed]

Kurihara, K.

K. Sato, M. Ishii, K. Kurihara, and M. Kondo, “Crystal orientation dependence of the electro-optic effect in epitaxial lanthanum-modified lead zirconate titanate films,” Appl. Phys. Lett. 87, 251927 (2005).
[CrossRef]

Kutnjak, Z.

V. Bobnar, Z. Kutnjak, R. Pirc, and A. Levstik, “Electric-field-temperature phase diagram of the relaxor ferroelectric lanthanum-modified lead zirconate titanate,” Phys. Rev. B 60, 6420-6427 (1999).
[CrossRef]

V. Bobnar, Z. Kutnjak, R. Pirc, and A. Levstik, “Relaxor freezing and electric-field--induced ferroelectric transition in a lanthanum lead zirconate titanate ceramics,” Europhys. Lett. 48, 326-331 (1999).
[CrossRef]

Land, C. E.

G. H. Haertling and C. E. Land, “Hot-pressed (Pb,La)(Zr,Ti)O3 ferroelectric ceramics for electrooptic applications,” J. Am. Ceram. Soc. 54, 1-11 (1971).
[CrossRef]

Lee, S. H.

S. Krishnakumar, V. H. Ozguz, C. Fan, C. Cozzolino, S. C. Esener, and S. H. Lee, “Deposition and characterization of thin ferroelectric lead lanthanum zirconate titanate (PLZT) films on sapphire for spatial light modulators applications,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 38, 585-590(1991).
[CrossRef] [PubMed]

Leng, W.

W. Leng, C. Yang, J. Zhang, H. Chen, W. Hu, H. Ji, J. Tang, W. Qin, J. Li, H. Lin, and L. Gao, “Nonlinear optical properties of the lanthanum-modified lead zirconate titanate ferroelectric thin films using Z-scan technique,” Jpn. J. Appl. Phys. 46, L7-L9 (2007).
[CrossRef]

Levstik, A.

V. Bobnar, Z. Kutnjak, R. Pirc, and A. Levstik, “Relaxor freezing and electric-field--induced ferroelectric transition in a lanthanum lead zirconate titanate ceramics,” Europhys. Lett. 48, 326-331 (1999).
[CrossRef]

V. Bobnar, Z. Kutnjak, R. Pirc, and A. Levstik, “Electric-field-temperature phase diagram of the relaxor ferroelectric lanthanum-modified lead zirconate titanate,” Phys. Rev. B 60, 6420-6427 (1999).
[CrossRef]

Li, J.

W. Leng, C. Yang, J. Zhang, H. Chen, W. Hu, H. Ji, J. Tang, W. Qin, J. Li, H. Lin, and L. Gao, “Nonlinear optical properties of the lanthanum-modified lead zirconate titanate ferroelectric thin films using Z-scan technique,” Jpn. J. Appl. Phys. 46, L7-L9 (2007).
[CrossRef]

Li, K. K.

Lin, H.

W. Leng, C. Yang, J. Zhang, H. Chen, W. Hu, H. Ji, J. Tang, W. Qin, J. Li, H. Lin, and L. Gao, “Nonlinear optical properties of the lanthanum-modified lead zirconate titanate ferroelectric thin films using Z-scan technique,” Jpn. J. Appl. Phys. 46, L7-L9 (2007).
[CrossRef]

Liu, S. W.

Lu, Y. L.

Malinovsky, V. K.

V. D. Antsigin, E. G. Kostosov, V. K. Malinovsky, and L. N. Sterelyukhina, “Electrooptics of thin ferroelectric films,” Ferroelectrics 38, 761-763 (1981).
[CrossRef]

Mao, J.

P. Rochon, J. Mao, A. Natansohn, and E. Batalla, “Optically induced high efficiency gratings in azo polymer films,” Polym. Prepr. Am. Chem. Soc. Div. Polym. Chem. 35, 154-155(1994).

Marcuse, D.

D. Marcuse, Geometrical Optics Treatment of Slab Waveguides (Academic, 1991), pp. 3-7.

Matsunami, H.

M. Ishida, H. Matsunami, and T. Tanaka, “Electro-optic effects of PLZT thin films,” Appl. Phys. Lett. 31, 433-434 (1977).
[CrossRef]

M. Ishida, H. Matsunami, and T. Tanaka, “Preparation and properties of ferroelectric PLZT thin films by rf sputtering,” J. Appl. Phys. 48, 951-953 (1977).
[CrossRef]

Medina, A. N.

E. A. Falcão, J. R. D. Pereira, I. A. Santos, A. R. Nunes, A. N. Medina, A. C. Bento, M. L. Baesso, D. Garcia, and J. A. Eiras, “Thermo optical properties of transparent PLZT 10/65/35 ceramics,” Ferroelectrics 336, 191-196 (2006).
[CrossRef]

Mukherjee, B. K.

R. G. Sabat, P. Rochon, and B. K. Mukherjee, “Quasistatic dielectric and strain characterization of transparent relaxor ferroelectric lead lanthanum zirconate titanate ceramics,” J. Appl. Phys. 104, 054115 (2008).
[CrossRef]

Natansohn, A.

M.-S Ho, A. Natansohn, and P. Rochon, “Azo polymers for reversible optical storage. 9. Copolymers containing two types of azobenzene side groups,” Macromolecules 29, 44-49(1996).
[CrossRef]

P. Rochon, J. Mao, A. Natansohn, and E. Batalla, “Optically induced high efficiency gratings in azo polymer films,” Polym. Prepr. Am. Chem. Soc. Div. Polym. Chem. 35, 154-155(1994).

Norris, P.

Nunes, A. R.

E. A. Falcão, J. R. D. Pereira, I. A. Santos, A. R. Nunes, A. N. Medina, A. C. Bento, M. L. Baesso, D. Garcia, and J. A. Eiras, “Thermo optical properties of transparent PLZT 10/65/35 ceramics,” Ferroelectrics 336, 191-196 (2006).
[CrossRef]

Ozguz, V. H.

S. Krishnakumar, V. H. Ozguz, C. Fan, C. Cozzolino, S. C. Esener, and S. H. Lee, “Deposition and characterization of thin ferroelectric lead lanthanum zirconate titanate (PLZT) films on sapphire for spatial light modulators applications,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 38, 585-590(1991).
[CrossRef] [PubMed]

Pereira, J. R. D.

E. A. Falcão, J. R. D. Pereira, I. A. Santos, A. R. Nunes, A. N. Medina, A. C. Bento, M. L. Baesso, D. Garcia, and J. A. Eiras, “Thermo optical properties of transparent PLZT 10/65/35 ceramics,” Ferroelectrics 336, 191-196 (2006).
[CrossRef]

Pirc, R.

V. Bobnar, Z. Kutnjak, R. Pirc, and A. Levstik, “Relaxor freezing and electric-field--induced ferroelectric transition in a lanthanum lead zirconate titanate ceramics,” Europhys. Lett. 48, 326-331 (1999).
[CrossRef]

V. Bobnar, Z. Kutnjak, R. Pirc, and A. Levstik, “Electric-field-temperature phase diagram of the relaxor ferroelectric lanthanum-modified lead zirconate titanate,” Phys. Rev. B 60, 6420-6427 (1999).
[CrossRef]

Pollock, C. R.

C. R. Pollock, Fundamentals of Optoelectronics (Richard D. Irwin, 1994).

Qin, W.

W. Leng, C. Yang, J. Zhang, H. Chen, W. Hu, H. Ji, J. Tang, W. Qin, J. Li, H. Lin, and L. Gao, “Nonlinear optical properties of the lanthanum-modified lead zirconate titanate ferroelectric thin films using Z-scan technique,” Jpn. J. Appl. Phys. 46, L7-L9 (2007).
[CrossRef]

Rochon, P.

R. G. Sabat and P. Rochon, “Interferometric determination of the temperature dependence of the refractive index of relaxor PLZT ceramics under DC bias,” Opt. Mater. 10.1016/j.optmat.2009.02.001 (2009).
[CrossRef]

R. G. Sabat, P. Rochon, and B. K. Mukherjee, “Quasistatic dielectric and strain characterization of transparent relaxor ferroelectric lead lanthanum zirconate titanate ceramics,” J. Appl. Phys. 104, 054115 (2008).
[CrossRef]

M.-S Ho, A. Natansohn, and P. Rochon, “Azo polymers for reversible optical storage. 9. Copolymers containing two types of azobenzene side groups,” Macromolecules 29, 44-49(1996).
[CrossRef]

P. Rochon, J. Mao, A. Natansohn, and E. Batalla, “Optically induced high efficiency gratings in azo polymer films,” Polym. Prepr. Am. Chem. Soc. Div. Polym. Chem. 35, 154-155(1994).

Rochon, P. L.

Sabat, R. G.

R. G. Sabat and P. Rochon, “Interferometric determination of the temperature dependence of the refractive index of relaxor PLZT ceramics under DC bias,” Opt. Mater. 10.1016/j.optmat.2009.02.001 (2009).
[CrossRef]

R. G. Sabat, P. Rochon, and B. K. Mukherjee, “Quasistatic dielectric and strain characterization of transparent relaxor ferroelectric lead lanthanum zirconate titanate ceramics,” J. Appl. Phys. 104, 054115 (2008).
[CrossRef]

Santos, I. A.

E. A. Falcão, J. R. D. Pereira, I. A. Santos, A. R. Nunes, A. N. Medina, A. C. Bento, M. L. Baesso, D. Garcia, and J. A. Eiras, “Thermo optical properties of transparent PLZT 10/65/35 ceramics,” Ferroelectrics 336, 191-196 (2006).
[CrossRef]

Sato, K.

K. Sato, M. Ishii, K. Kurihara, and M. Kondo, “Crystal orientation dependence of the electro-optic effect in epitaxial lanthanum-modified lead zirconate titanate films,” Appl. Phys. Lett. 87, 251927 (2005).
[CrossRef]

Setsune, K.

Sterelyukhina, L. N.

V. D. Antsigin, E. G. Kostosov, V. K. Malinovsky, and L. N. Sterelyukhina, “Electrooptics of thin ferroelectric films,” Ferroelectrics 38, 761-763 (1981).
[CrossRef]

Stockermans, R. J.

Tan, Q.

Q. Tan and D. Viehland, “ac-field-dependent structure-property relationships in La-modified lead zirconate titanate: induced relaxor behavior and domain breakdown in soft ferroelectrics,” Phys. Rev. B 53, 14103-14111 (1996).
[CrossRef]

Tanaka, T.

M. Ishida, H. Matsunami, and T. Tanaka, “Preparation and properties of ferroelectric PLZT thin films by rf sputtering,” J. Appl. Phys. 48, 951-953 (1977).
[CrossRef]

M. Ishida, H. Matsunami, and T. Tanaka, “Electro-optic effects of PLZT thin films,” Appl. Phys. Lett. 31, 433-434 (1977).
[CrossRef]

Tang, J.

W. Leng, C. Yang, J. Zhang, H. Chen, W. Hu, H. Ji, J. Tang, W. Qin, J. Li, H. Lin, and L. Gao, “Nonlinear optical properties of the lanthanum-modified lead zirconate titanate ferroelectric thin films using Z-scan technique,” Jpn. J. Appl. Phys. 46, L7-L9 (2007).
[CrossRef]

Viehland, D.

Q. Tan and D. Viehland, “ac-field-dependent structure-property relationships in La-modified lead zirconate titanate: induced relaxor behavior and domain breakdown in soft ferroelectrics,” Phys. Rev. B 53, 14103-14111 (1996).
[CrossRef]

Wang, F.

Wasa, K.

H. Adachi and K. Wasa, “Sputtering preparation of ferroelectric PLZT thin films and their optical applications,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 38, 645-655(1991).
[CrossRef] [PubMed]

T. Kawaguchi, H. Adachi, K. Setsune, O. Yamazaki, and K. Wasa, “PLZT thin-film waveguides,” Appl. Opt. 23, 2187-2191 (1984).
[CrossRef] [PubMed]

Yamazaki, O.

Yang, C.

W. Leng, C. Yang, J. Zhang, H. Chen, W. Hu, H. Ji, J. Tang, W. Qin, J. Li, H. Lin, and L. Gao, “Nonlinear optical properties of the lanthanum-modified lead zirconate titanate ferroelectric thin films using Z-scan technique,” Jpn. J. Appl. Phys. 46, L7-L9 (2007).
[CrossRef]

Zhang, J.

W. Leng, C. Yang, J. Zhang, H. Chen, W. Hu, H. Ji, J. Tang, W. Qin, J. Li, H. Lin, and L. Gao, “Nonlinear optical properties of the lanthanum-modified lead zirconate titanate ferroelectric thin films using Z-scan technique,” Jpn. J. Appl. Phys. 46, L7-L9 (2007).
[CrossRef]

Zhao, J.

Zou, Y. K.

Appl. Opt. (4)

Appl. Phys. Lett. (2)

M. Ishida, H. Matsunami, and T. Tanaka, “Electro-optic effects of PLZT thin films,” Appl. Phys. Lett. 31, 433-434 (1977).
[CrossRef]

K. Sato, M. Ishii, K. Kurihara, and M. Kondo, “Crystal orientation dependence of the electro-optic effect in epitaxial lanthanum-modified lead zirconate titanate films,” Appl. Phys. Lett. 87, 251927 (2005).
[CrossRef]

Europhys. Lett. (1)

V. Bobnar, Z. Kutnjak, R. Pirc, and A. Levstik, “Relaxor freezing and electric-field--induced ferroelectric transition in a lanthanum lead zirconate titanate ceramics,” Europhys. Lett. 48, 326-331 (1999).
[CrossRef]

Ferroelectrics (2)

E. A. Falcão, J. R. D. Pereira, I. A. Santos, A. R. Nunes, A. N. Medina, A. C. Bento, M. L. Baesso, D. Garcia, and J. A. Eiras, “Thermo optical properties of transparent PLZT 10/65/35 ceramics,” Ferroelectrics 336, 191-196 (2006).
[CrossRef]

V. D. Antsigin, E. G. Kostosov, V. K. Malinovsky, and L. N. Sterelyukhina, “Electrooptics of thin ferroelectric films,” Ferroelectrics 38, 761-763 (1981).
[CrossRef]

IEEE Trans. Ultrason. Ferroelectr. Freq. Control (2)

S. Krishnakumar, V. H. Ozguz, C. Fan, C. Cozzolino, S. C. Esener, and S. H. Lee, “Deposition and characterization of thin ferroelectric lead lanthanum zirconate titanate (PLZT) films on sapphire for spatial light modulators applications,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 38, 585-590(1991).
[CrossRef] [PubMed]

H. Adachi and K. Wasa, “Sputtering preparation of ferroelectric PLZT thin films and their optical applications,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 38, 645-655(1991).
[CrossRef] [PubMed]

J. Am. Ceram. Soc. (2)

G. H. Haertling, “Improved hot-pressed electrooptic ceramics in the (Pb,La)(Zr,Ti)O3 system,” J. Am. Ceram. Soc. 54, 303-309 (1971).
[CrossRef]

G. H. Haertling and C. E. Land, “Hot-pressed (Pb,La)(Zr,Ti)O3 ferroelectric ceramics for electrooptic applications,” J. Am. Ceram. Soc. 54, 1-11 (1971).
[CrossRef]

J. Appl. Phys. (2)

R. G. Sabat, P. Rochon, and B. K. Mukherjee, “Quasistatic dielectric and strain characterization of transparent relaxor ferroelectric lead lanthanum zirconate titanate ceramics,” J. Appl. Phys. 104, 054115 (2008).
[CrossRef]

M. Ishida, H. Matsunami, and T. Tanaka, “Preparation and properties of ferroelectric PLZT thin films by rf sputtering,” J. Appl. Phys. 48, 951-953 (1977).
[CrossRef]

J. Lightwave Technol. (1)

Jpn. J. Appl. Phys. (1)

W. Leng, C. Yang, J. Zhang, H. Chen, W. Hu, H. Ji, J. Tang, W. Qin, J. Li, H. Lin, and L. Gao, “Nonlinear optical properties of the lanthanum-modified lead zirconate titanate ferroelectric thin films using Z-scan technique,” Jpn. J. Appl. Phys. 46, L7-L9 (2007).
[CrossRef]

Macromolecules (1)

M.-S Ho, A. Natansohn, and P. Rochon, “Azo polymers for reversible optical storage. 9. Copolymers containing two types of azobenzene side groups,” Macromolecules 29, 44-49(1996).
[CrossRef]

Opt. Mater. (1)

R. G. Sabat and P. Rochon, “Interferometric determination of the temperature dependence of the refractive index of relaxor PLZT ceramics under DC bias,” Opt. Mater. 10.1016/j.optmat.2009.02.001 (2009).
[CrossRef]

Phys. Rev. B (2)

Q. Tan and D. Viehland, “ac-field-dependent structure-property relationships in La-modified lead zirconate titanate: induced relaxor behavior and domain breakdown in soft ferroelectrics,” Phys. Rev. B 53, 14103-14111 (1996).
[CrossRef]

V. Bobnar, Z. Kutnjak, R. Pirc, and A. Levstik, “Electric-field-temperature phase diagram of the relaxor ferroelectric lanthanum-modified lead zirconate titanate,” Phys. Rev. B 60, 6420-6427 (1999).
[CrossRef]

Polym. Prepr. Am. Chem. Soc. Div. Polym. Chem. (1)

P. Rochon, J. Mao, A. Natansohn, and E. Batalla, “Optically induced high efficiency gratings in azo polymer films,” Polym. Prepr. Am. Chem. Soc. Div. Polym. Chem. 35, 154-155(1994).

Z. Phys. B (1)

W. Jantsch, “Anomalies of the refractive index and the optical energy gap of ferroelectric Pb1−xGexTe,” Z. Phys. B 40, 193-198 (1980).
[CrossRef]

Other (2)

D. Marcuse, Geometrical Optics Treatment of Slab Waveguides (Academic, 1991), pp. 3-7.

C. R. Pollock, Fundamentals of Optoelectronics (Richard D. Irwin, 1994).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Atomic force microscope picture of a surface relief diffraction grating with 750 nm spacing.

Fig. 2
Fig. 2

Side view of the tested PLZT samples.

Fig. 3
Fig. 3

Normalized intensity as a function of wavelength for PLZT ( 8 / 65 / 35 ) thin film.

Fig. 4
Fig. 4

β forward 2 β backward 2 as a function of k 0 forward 2 k 0 backward 2 for various composition PLZT thin films.

Fig. 5
Fig. 5

Measured intensity as a function of incident angle θ i at different grating spacing for thin-film PLZT: (a)  ( 7 / 65 / 35 ) , (b)  ( 8 / 65 / 35 ) , (c)  ( 9 / 65 / 35 ) .

Fig. 6
Fig. 6

Measured intensity as a function of incident angle θ i at different temperatures for thin-film PLZT: (a)  ( 7 / 65 / 35 ) , (b)  ( 8 / 65 / 35 ) , (c)  ( 9 / 65 / 35 ) .

Fig. 7
Fig. 7

Refractive-index change as a function of temperature for thin-film PLZT: (a)  ( 7 / 65 / 35 ) , (b)  ( 8 / 65 / 35 ) , (c)  ( 9 / 65 / 35 ) .

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

k 0 n sin θ m = k 0 sin θ i + 2 π m Λ ,
κ = k 0 n cos θ ± 1 ,
β = k 0 n sin θ ± 1 = k 0 sin θ i ± 2 π Λ .
β 2 + κ 2 = k 0 2 n 2 .
β forward 2 β backward 2 = ( k 0 forward 2 k 0 backward 2 ) n 2 .
n 1 2 = β 1 2 k 0 2 + κ 1 2 k 0 2 ,
n 2 2 = β 2 2 k 0 2 + κ 2 2 k 0 2 ,
Δ n = 1 2 n ave [ ( sin 2 θ i 2 sin 2 θ i 1 ) + 2 λ Λ ( ± sin θ i 2 sin θ i 1 ) + λ 2 4 π 2 ( κ 2 2 κ 1 2 ) ] ,

Metrics