Abstract

Holographic recording in thick photopolymer layers is important for application in holographic data storage, volume holographic filters, and correlators. Here, we studied the characteristics of acrylamide-based photopolymer layers ranging in thickness from 250μm to 1mm. For each thickness, samples with three different values of absorbance were studied. By measuring the diffraction efficiency growth of holographically recorded gratings and studying the diffraction patterns obtained, the influence of scattering on the diffraction efficiency of thick volume holographic gratings was analyzed. It was found that, above a particular thickness and absorbance, the diffraction efficiency significantly decreased because of increased holographic scattering. From the diffraction efficiency dependence on absorbance and thickness it is possible to choose photopolymer layer properties that are suitable for a particular holographic application. This study was carried out to determine the highest layer thickness that could be used for phase code multiplexed holographic data storage utilizing thick photopolymer layers as a recording medium. Based on our studies to date we believe that the layer to be used for phase coded reference beam recording with 0.1 absorbance at 532nm can have a thickness up to 450μm. The potential use of thicker layers characterized by low scattering losses is part of our continuing research.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. H. Close, A. D. Jacobson, J. D. Margerum, R. G. Brault, and F. J. McClung, “Hologram recorded on photopolymer materials,” Appl. Phys. Lett. 14, 159-160 (1969).
    [CrossRef]
  2. W. S. Colburn and K. A. Haines, “Volume hologram formation in photopolymer materials,” Appl. Opt. 10, 1636-1641 (1971).
    [CrossRef] [PubMed]
  3. J. M. Moran and I. P. Kaminow, “Properties of holographic gratings photoinduced in polymethyl methacrylate,” Appl. Opt. 12, 1964-1970 (1973).
    [CrossRef] [PubMed]
  4. W. K. Smothers, B. M. Monroe, A. M. Weber, and D. E. Keys, “Photopolymers for holography,” Proc. SPIE 1212, 20-29 (1990).
    [CrossRef]
  5. S. Martin, C. A. Feely, and V. Toal, “Holographic recording characteristics of an acrylamide-based photopolymer,” Appl. Opt. 36, 5757-5768 (1997).
    [CrossRef] [PubMed]
  6. R. Jallapuram, I. Naydenova, S. Martin, R. Howard, V. Toal, S. Frohmann, S. Orlic, and H. J. Eichler, “Acrylamide-based photopolymer for micro holographic data storage,” Opt. Mater. 28, 1329-1333 (2006).
    [CrossRef]
  7. D. A. Walkman, H-Y. S. Li, and M. G. Horner, “Volume shrinkage in slant fringe gratings of a cationic ring-opening holographic recording material,” J. Imaging Sci. Technol. 41, 497-514 (1997).
  8. S. Blaya, R. Mallavia, L. Carretero, A. Fimia, and R. F. Madrigal, “Highly sensitive photopolymerizable dry film for use in real time holography,” Appl. Phys. Lett. 73, 1628-1630 (1998).
    [CrossRef]
  9. J. R. Lawrence, F. T. O'Neill, and J. T. Sheridan, “Photopolymer holographic recording material,” Optik (Jena) 112, 449-463 (2001).
    [CrossRef]
  10. A.Márquez, C. Neipp, A. Beléndez, S. Gallego, M. Ortuño, and I. Pascual, “Edge enhanced imaging with polyvinyl alcohol/acrylamide photopolymer gratings,” Opt. Lett. 28, 1510-1512 (2003).
    [CrossRef] [PubMed]
  11. J. E. Boyd, T. J. Trentler, R. K. Wahi, Y. I. Vega-Cantu, and V. L. Colvin, “Effect of film thickness on the performance of photopolymers as holographic recording materials,” Appl. Opt. 39, 2353-2358 (2000).
    [CrossRef]
  12. C. Zhao, J. Liu, Z. Fu, and R. T. Chen, “Shrinkage-corrected volume holograms based on photpolymeric phase media for surface-normal optical interconnects,” Appl. Phys. Lett. 71, 1464-1466 (1997).
    [CrossRef]
  13. F. T. O'Neill, J. R. Lawrence, and J. T. Sheridan, “Thickness variation of self-processing acrylamide-based photopolymer and reflection holography,” Opt. Eng. 40, 533-539 (2001).
    [CrossRef]
  14. H.J.Coufal, D.Psaltis, and G.T.Sincerbox, eds, Holographic Data Storage (Springer-Verlag, 2000).
  15. A. Pu and D. Psaltis, “High-density recording in photopolymer based holographic three-dimensional disks,” Appl. Opt. 35, 2389-2398 (1996).
    [CrossRef] [PubMed]
  16. U.-S. Rhee, H. J. Caulfield, J. Shamir, C. S. Vikram, and M. M. Mirsalehi, “Characteristics of the DuPont photopolymer for angularly multiplexed page-oriented holographic memories,” Opt. Eng. 32, 1839-1847 (1993).
    [CrossRef]
  17. J. Ashley, M.-P. Bernal, G. W. Burr, H. Coufal, H. Guenther, J. A. Hoffnagle, C. M. Jefferson, B. Marcus, R. M. Macfarlane, R. M. Shelby, and G. T. Sincerbox, “Holographic data storage technology,” IBM J. Res. Dev. 44341-368(2000).
    [CrossRef]
  18. H.-Y. S. Li and D. Psaltis, “Three-dimensional holographic disks,” Appl. Opt. 33, 3764-3774 (1994).
    [CrossRef] [PubMed]
  19. M. Ortuño, S. Gallego, C. García, C. Neipp, A. Beléndez, and I. Pascual, “Optimization of a 1 mm thick PVA/acrylamide recording material to obtain holographic memories: method of preparation and holographic properties,” Appl. Phys. B 76, 851-857 (2003).
    [CrossRef]
  20. M. Ortuño, S. Gallego, C. García, C. Neipp, and I. Pascual, “Holographic characteristics of a 1 mm thick photopolymer to be used in holographic memories,” Appl. Opt. 42, 7008-7012 (2003).
    [CrossRef] [PubMed]
  21. S. Gallego, M. Ortuño, C. Neipp, A. Márquez, A. Beléndez, I. Pascual, J. V. Kelly, and J. T. Sheridan, “Physical and effective optical thickness of holographic diffraction gratings recorded in photopolymers,” Opt. Express 13, 1939-1950 (2005).
    [CrossRef] [PubMed]
  22. G. Zhao and P. Mouroulis, “Diffusion model of hologram formation in dry photopolymer. materials,” J. Mod. Opt. 41, 1929-1934 (1994).
    [CrossRef]
  23. S. Piazzolla and B. Jenkins, “First-harmonic diffusion model for holographic grating formation in photopolymers,” J. Opt. Soc. Am. B 17, 1147-1157 (2000).
    [CrossRef]
  24. I. Naydenova, R. Jallapuram, R. Howard, S. Martin, and V. Toal, “Investigation of the diffusion processes in a self-processing acrylamide-based photopolymer system,” Appl. Opt. 43, 2900-2905 (2004).
    [CrossRef] [PubMed]
  25. S. Gallego, A. Márquez, D. Méndez, M. Ortuño, C. Neipp, E. Fernández, I. Pascual, and A. Beléndez, “Analysis of PVA/AA based photopolymers at the zero spatial frequency limit using interferometric methods,” Appl. Opt. 47, 2557-2563 (2008).
    [CrossRef] [PubMed]
  26. V. Moreau, Y. Renotte, and Y. Lion, “Characterization of DuPont photopolymer: determination of kinetic parameters in a diffusion model,” Appl. Opt. 41, 3427-3435 (2002).
    [CrossRef] [PubMed]
  27. V. L. Colvin, R. G. Larson, A. L. Harris, and M. L. Schilling, “Quantitative model of volume hologram formation in photopolymers,” J. Appl. Phys. 81, 5913-5923 (1997).
    [CrossRef]
  28. L. Carretero, S. Blaya, R. Mallavia, R. F. Madrigal, and A. Fimia, “A theoretical model for noise gratings recorded in acrylamide photopolymer materials used in real-time holography,” J. Mod. Opt. 45, 2345-2354 (1998).
    [CrossRef]
  29. X. A. Beléndez, R. Fuentes, and A. Fimia, “Noise gratings in thick-phase holographic lenses,” J. Opt. Paris 24, 99-105 (1993).
  30. N. Suzuki and Y. Tomita, “Holographic scattering in SiO2 nanoparticle-dispersed photopolymer films,” Appl. Opt. 46, 6809-6814 (2007).
    [CrossRef] [PubMed]
  31. M. A. Ellabban, M. Fally, M. Imlau, T. Woike, R. A. Rupp, and T. Granzow, “Angular and wavelength selectivity of parasitic holograms in cerium doped strontium barium niobate,” J. Appl. Phys. 96, 6987-6993 (2004).
    [CrossRef]
  32. M. A. Ellabban, M. Fally, H. Uršič, and I. Drevenšek-Olenik, “Holographic scattering in photopolymer-dispersed liquid crystals,” Appl. Phys. Lett. 87, 151101 (2005).
    [CrossRef]
  33. M. A. Ellabban, R. A. Rupp, and M. Fally, “Reconstruction of parasitic holograms to characterize photorefractive materials,” Appl. Phys. B 72, 635-640 (2001).
  34. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909-2947 (1969).
  35. M. R. B. Forshaw, “Explanation of the two-ring diffraction phenomenon observed by Moran and Kaminow,” Appl. Opt. 13, 2 (1974).
    [CrossRef] [PubMed]
  36. M. R. B. Forshaw, “Explanation of the Venetial blind effect in holography using the Ewald sphere concept,” Opt. Commun. 8, 201-206 (1973).
    [CrossRef]
  37. R. Magnusson and T. K. Gaylord, “Laser scattering induced holograms in lithium niobate,” Appl. Opt. 13, 1545-1548(1974).
    [CrossRef]

2008 (1)

2007 (1)

2006 (1)

R. Jallapuram, I. Naydenova, S. Martin, R. Howard, V. Toal, S. Frohmann, S. Orlic, and H. J. Eichler, “Acrylamide-based photopolymer for micro holographic data storage,” Opt. Mater. 28, 1329-1333 (2006).
[CrossRef]

2005 (2)

2004 (2)

M. A. Ellabban, M. Fally, M. Imlau, T. Woike, R. A. Rupp, and T. Granzow, “Angular and wavelength selectivity of parasitic holograms in cerium doped strontium barium niobate,” J. Appl. Phys. 96, 6987-6993 (2004).
[CrossRef]

I. Naydenova, R. Jallapuram, R. Howard, S. Martin, and V. Toal, “Investigation of the diffusion processes in a self-processing acrylamide-based photopolymer system,” Appl. Opt. 43, 2900-2905 (2004).
[CrossRef] [PubMed]

2003 (3)

2002 (1)

2001 (3)

J. R. Lawrence, F. T. O'Neill, and J. T. Sheridan, “Photopolymer holographic recording material,” Optik (Jena) 112, 449-463 (2001).
[CrossRef]

M. A. Ellabban, R. A. Rupp, and M. Fally, “Reconstruction of parasitic holograms to characterize photorefractive materials,” Appl. Phys. B 72, 635-640 (2001).

F. T. O'Neill, J. R. Lawrence, and J. T. Sheridan, “Thickness variation of self-processing acrylamide-based photopolymer and reflection holography,” Opt. Eng. 40, 533-539 (2001).
[CrossRef]

2000 (3)

1998 (2)

L. Carretero, S. Blaya, R. Mallavia, R. F. Madrigal, and A. Fimia, “A theoretical model for noise gratings recorded in acrylamide photopolymer materials used in real-time holography,” J. Mod. Opt. 45, 2345-2354 (1998).
[CrossRef]

S. Blaya, R. Mallavia, L. Carretero, A. Fimia, and R. F. Madrigal, “Highly sensitive photopolymerizable dry film for use in real time holography,” Appl. Phys. Lett. 73, 1628-1630 (1998).
[CrossRef]

1997 (4)

S. Martin, C. A. Feely, and V. Toal, “Holographic recording characteristics of an acrylamide-based photopolymer,” Appl. Opt. 36, 5757-5768 (1997).
[CrossRef] [PubMed]

D. A. Walkman, H-Y. S. Li, and M. G. Horner, “Volume shrinkage in slant fringe gratings of a cationic ring-opening holographic recording material,” J. Imaging Sci. Technol. 41, 497-514 (1997).

C. Zhao, J. Liu, Z. Fu, and R. T. Chen, “Shrinkage-corrected volume holograms based on photpolymeric phase media for surface-normal optical interconnects,” Appl. Phys. Lett. 71, 1464-1466 (1997).
[CrossRef]

V. L. Colvin, R. G. Larson, A. L. Harris, and M. L. Schilling, “Quantitative model of volume hologram formation in photopolymers,” J. Appl. Phys. 81, 5913-5923 (1997).
[CrossRef]

1996 (1)

1994 (2)

H.-Y. S. Li and D. Psaltis, “Three-dimensional holographic disks,” Appl. Opt. 33, 3764-3774 (1994).
[CrossRef] [PubMed]

G. Zhao and P. Mouroulis, “Diffusion model of hologram formation in dry photopolymer. materials,” J. Mod. Opt. 41, 1929-1934 (1994).
[CrossRef]

1993 (2)

X. A. Beléndez, R. Fuentes, and A. Fimia, “Noise gratings in thick-phase holographic lenses,” J. Opt. Paris 24, 99-105 (1993).

U.-S. Rhee, H. J. Caulfield, J. Shamir, C. S. Vikram, and M. M. Mirsalehi, “Characteristics of the DuPont photopolymer for angularly multiplexed page-oriented holographic memories,” Opt. Eng. 32, 1839-1847 (1993).
[CrossRef]

1990 (1)

W. K. Smothers, B. M. Monroe, A. M. Weber, and D. E. Keys, “Photopolymers for holography,” Proc. SPIE 1212, 20-29 (1990).
[CrossRef]

1974 (2)

1973 (2)

M. R. B. Forshaw, “Explanation of the Venetial blind effect in holography using the Ewald sphere concept,” Opt. Commun. 8, 201-206 (1973).
[CrossRef]

J. M. Moran and I. P. Kaminow, “Properties of holographic gratings photoinduced in polymethyl methacrylate,” Appl. Opt. 12, 1964-1970 (1973).
[CrossRef] [PubMed]

1971 (1)

1969 (2)

D. H. Close, A. D. Jacobson, J. D. Margerum, R. G. Brault, and F. J. McClung, “Hologram recorded on photopolymer materials,” Appl. Phys. Lett. 14, 159-160 (1969).
[CrossRef]

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909-2947 (1969).

Ashley, J.

J. Ashley, M.-P. Bernal, G. W. Burr, H. Coufal, H. Guenther, J. A. Hoffnagle, C. M. Jefferson, B. Marcus, R. M. Macfarlane, R. M. Shelby, and G. T. Sincerbox, “Holographic data storage technology,” IBM J. Res. Dev. 44341-368(2000).
[CrossRef]

Beléndez, A.

Beléndez, X. A.

X. A. Beléndez, R. Fuentes, and A. Fimia, “Noise gratings in thick-phase holographic lenses,” J. Opt. Paris 24, 99-105 (1993).

Bernal, M.-P.

J. Ashley, M.-P. Bernal, G. W. Burr, H. Coufal, H. Guenther, J. A. Hoffnagle, C. M. Jefferson, B. Marcus, R. M. Macfarlane, R. M. Shelby, and G. T. Sincerbox, “Holographic data storage technology,” IBM J. Res. Dev. 44341-368(2000).
[CrossRef]

Blaya, S.

S. Blaya, R. Mallavia, L. Carretero, A. Fimia, and R. F. Madrigal, “Highly sensitive photopolymerizable dry film for use in real time holography,” Appl. Phys. Lett. 73, 1628-1630 (1998).
[CrossRef]

L. Carretero, S. Blaya, R. Mallavia, R. F. Madrigal, and A. Fimia, “A theoretical model for noise gratings recorded in acrylamide photopolymer materials used in real-time holography,” J. Mod. Opt. 45, 2345-2354 (1998).
[CrossRef]

Boyd, J. E.

Brault, R. G.

D. H. Close, A. D. Jacobson, J. D. Margerum, R. G. Brault, and F. J. McClung, “Hologram recorded on photopolymer materials,” Appl. Phys. Lett. 14, 159-160 (1969).
[CrossRef]

Burr, G. W.

J. Ashley, M.-P. Bernal, G. W. Burr, H. Coufal, H. Guenther, J. A. Hoffnagle, C. M. Jefferson, B. Marcus, R. M. Macfarlane, R. M. Shelby, and G. T. Sincerbox, “Holographic data storage technology,” IBM J. Res. Dev. 44341-368(2000).
[CrossRef]

Carretero, L.

S. Blaya, R. Mallavia, L. Carretero, A. Fimia, and R. F. Madrigal, “Highly sensitive photopolymerizable dry film for use in real time holography,” Appl. Phys. Lett. 73, 1628-1630 (1998).
[CrossRef]

L. Carretero, S. Blaya, R. Mallavia, R. F. Madrigal, and A. Fimia, “A theoretical model for noise gratings recorded in acrylamide photopolymer materials used in real-time holography,” J. Mod. Opt. 45, 2345-2354 (1998).
[CrossRef]

Caulfield, H. J.

U.-S. Rhee, H. J. Caulfield, J. Shamir, C. S. Vikram, and M. M. Mirsalehi, “Characteristics of the DuPont photopolymer for angularly multiplexed page-oriented holographic memories,” Opt. Eng. 32, 1839-1847 (1993).
[CrossRef]

Chen, R. T.

C. Zhao, J. Liu, Z. Fu, and R. T. Chen, “Shrinkage-corrected volume holograms based on photpolymeric phase media for surface-normal optical interconnects,” Appl. Phys. Lett. 71, 1464-1466 (1997).
[CrossRef]

Close, D. H.

D. H. Close, A. D. Jacobson, J. D. Margerum, R. G. Brault, and F. J. McClung, “Hologram recorded on photopolymer materials,” Appl. Phys. Lett. 14, 159-160 (1969).
[CrossRef]

Colburn, W. S.

Colvin, V. L.

J. E. Boyd, T. J. Trentler, R. K. Wahi, Y. I. Vega-Cantu, and V. L. Colvin, “Effect of film thickness on the performance of photopolymers as holographic recording materials,” Appl. Opt. 39, 2353-2358 (2000).
[CrossRef]

V. L. Colvin, R. G. Larson, A. L. Harris, and M. L. Schilling, “Quantitative model of volume hologram formation in photopolymers,” J. Appl. Phys. 81, 5913-5923 (1997).
[CrossRef]

Coufal, H.

J. Ashley, M.-P. Bernal, G. W. Burr, H. Coufal, H. Guenther, J. A. Hoffnagle, C. M. Jefferson, B. Marcus, R. M. Macfarlane, R. M. Shelby, and G. T. Sincerbox, “Holographic data storage technology,” IBM J. Res. Dev. 44341-368(2000).
[CrossRef]

Drevenšek-Olenik, I.

M. A. Ellabban, M. Fally, H. Uršič, and I. Drevenšek-Olenik, “Holographic scattering in photopolymer-dispersed liquid crystals,” Appl. Phys. Lett. 87, 151101 (2005).
[CrossRef]

Eichler, H. J.

R. Jallapuram, I. Naydenova, S. Martin, R. Howard, V. Toal, S. Frohmann, S. Orlic, and H. J. Eichler, “Acrylamide-based photopolymer for micro holographic data storage,” Opt. Mater. 28, 1329-1333 (2006).
[CrossRef]

Ellabban, M. A.

M. A. Ellabban, M. Fally, H. Uršič, and I. Drevenšek-Olenik, “Holographic scattering in photopolymer-dispersed liquid crystals,” Appl. Phys. Lett. 87, 151101 (2005).
[CrossRef]

M. A. Ellabban, M. Fally, M. Imlau, T. Woike, R. A. Rupp, and T. Granzow, “Angular and wavelength selectivity of parasitic holograms in cerium doped strontium barium niobate,” J. Appl. Phys. 96, 6987-6993 (2004).
[CrossRef]

M. A. Ellabban, R. A. Rupp, and M. Fally, “Reconstruction of parasitic holograms to characterize photorefractive materials,” Appl. Phys. B 72, 635-640 (2001).

Fally, M.

M. A. Ellabban, M. Fally, H. Uršič, and I. Drevenšek-Olenik, “Holographic scattering in photopolymer-dispersed liquid crystals,” Appl. Phys. Lett. 87, 151101 (2005).
[CrossRef]

M. A. Ellabban, M. Fally, M. Imlau, T. Woike, R. A. Rupp, and T. Granzow, “Angular and wavelength selectivity of parasitic holograms in cerium doped strontium barium niobate,” J. Appl. Phys. 96, 6987-6993 (2004).
[CrossRef]

M. A. Ellabban, R. A. Rupp, and M. Fally, “Reconstruction of parasitic holograms to characterize photorefractive materials,” Appl. Phys. B 72, 635-640 (2001).

Feely, C. A.

Fernández, E.

Fimia, A.

L. Carretero, S. Blaya, R. Mallavia, R. F. Madrigal, and A. Fimia, “A theoretical model for noise gratings recorded in acrylamide photopolymer materials used in real-time holography,” J. Mod. Opt. 45, 2345-2354 (1998).
[CrossRef]

S. Blaya, R. Mallavia, L. Carretero, A. Fimia, and R. F. Madrigal, “Highly sensitive photopolymerizable dry film for use in real time holography,” Appl. Phys. Lett. 73, 1628-1630 (1998).
[CrossRef]

X. A. Beléndez, R. Fuentes, and A. Fimia, “Noise gratings in thick-phase holographic lenses,” J. Opt. Paris 24, 99-105 (1993).

Forshaw, M. R. B.

M. R. B. Forshaw, “Explanation of the two-ring diffraction phenomenon observed by Moran and Kaminow,” Appl. Opt. 13, 2 (1974).
[CrossRef] [PubMed]

M. R. B. Forshaw, “Explanation of the Venetial blind effect in holography using the Ewald sphere concept,” Opt. Commun. 8, 201-206 (1973).
[CrossRef]

Frohmann, S.

R. Jallapuram, I. Naydenova, S. Martin, R. Howard, V. Toal, S. Frohmann, S. Orlic, and H. J. Eichler, “Acrylamide-based photopolymer for micro holographic data storage,” Opt. Mater. 28, 1329-1333 (2006).
[CrossRef]

Fu, Z.

C. Zhao, J. Liu, Z. Fu, and R. T. Chen, “Shrinkage-corrected volume holograms based on photpolymeric phase media for surface-normal optical interconnects,” Appl. Phys. Lett. 71, 1464-1466 (1997).
[CrossRef]

Fuentes, R.

X. A. Beléndez, R. Fuentes, and A. Fimia, “Noise gratings in thick-phase holographic lenses,” J. Opt. Paris 24, 99-105 (1993).

Gallego, S.

García, C.

M. Ortuño, S. Gallego, C. García, C. Neipp, A. Beléndez, and I. Pascual, “Optimization of a 1 mm thick PVA/acrylamide recording material to obtain holographic memories: method of preparation and holographic properties,” Appl. Phys. B 76, 851-857 (2003).
[CrossRef]

M. Ortuño, S. Gallego, C. García, C. Neipp, and I. Pascual, “Holographic characteristics of a 1 mm thick photopolymer to be used in holographic memories,” Appl. Opt. 42, 7008-7012 (2003).
[CrossRef] [PubMed]

Gaylord, T. K.

Granzow, T.

M. A. Ellabban, M. Fally, M. Imlau, T. Woike, R. A. Rupp, and T. Granzow, “Angular and wavelength selectivity of parasitic holograms in cerium doped strontium barium niobate,” J. Appl. Phys. 96, 6987-6993 (2004).
[CrossRef]

Guenther, H.

J. Ashley, M.-P. Bernal, G. W. Burr, H. Coufal, H. Guenther, J. A. Hoffnagle, C. M. Jefferson, B. Marcus, R. M. Macfarlane, R. M. Shelby, and G. T. Sincerbox, “Holographic data storage technology,” IBM J. Res. Dev. 44341-368(2000).
[CrossRef]

Haines, K. A.

Harris, A. L.

V. L. Colvin, R. G. Larson, A. L. Harris, and M. L. Schilling, “Quantitative model of volume hologram formation in photopolymers,” J. Appl. Phys. 81, 5913-5923 (1997).
[CrossRef]

Hoffnagle, J. A.

J. Ashley, M.-P. Bernal, G. W. Burr, H. Coufal, H. Guenther, J. A. Hoffnagle, C. M. Jefferson, B. Marcus, R. M. Macfarlane, R. M. Shelby, and G. T. Sincerbox, “Holographic data storage technology,” IBM J. Res. Dev. 44341-368(2000).
[CrossRef]

Horner, M. G.

D. A. Walkman, H-Y. S. Li, and M. G. Horner, “Volume shrinkage in slant fringe gratings of a cationic ring-opening holographic recording material,” J. Imaging Sci. Technol. 41, 497-514 (1997).

Howard, R.

R. Jallapuram, I. Naydenova, S. Martin, R. Howard, V. Toal, S. Frohmann, S. Orlic, and H. J. Eichler, “Acrylamide-based photopolymer for micro holographic data storage,” Opt. Mater. 28, 1329-1333 (2006).
[CrossRef]

I. Naydenova, R. Jallapuram, R. Howard, S. Martin, and V. Toal, “Investigation of the diffusion processes in a self-processing acrylamide-based photopolymer system,” Appl. Opt. 43, 2900-2905 (2004).
[CrossRef] [PubMed]

Imlau, M.

M. A. Ellabban, M. Fally, M. Imlau, T. Woike, R. A. Rupp, and T. Granzow, “Angular and wavelength selectivity of parasitic holograms in cerium doped strontium barium niobate,” J. Appl. Phys. 96, 6987-6993 (2004).
[CrossRef]

Jacobson, A. D.

D. H. Close, A. D. Jacobson, J. D. Margerum, R. G. Brault, and F. J. McClung, “Hologram recorded on photopolymer materials,” Appl. Phys. Lett. 14, 159-160 (1969).
[CrossRef]

Jallapuram, R.

R. Jallapuram, I. Naydenova, S. Martin, R. Howard, V. Toal, S. Frohmann, S. Orlic, and H. J. Eichler, “Acrylamide-based photopolymer for micro holographic data storage,” Opt. Mater. 28, 1329-1333 (2006).
[CrossRef]

I. Naydenova, R. Jallapuram, R. Howard, S. Martin, and V. Toal, “Investigation of the diffusion processes in a self-processing acrylamide-based photopolymer system,” Appl. Opt. 43, 2900-2905 (2004).
[CrossRef] [PubMed]

Jefferson, C. M.

J. Ashley, M.-P. Bernal, G. W. Burr, H. Coufal, H. Guenther, J. A. Hoffnagle, C. M. Jefferson, B. Marcus, R. M. Macfarlane, R. M. Shelby, and G. T. Sincerbox, “Holographic data storage technology,” IBM J. Res. Dev. 44341-368(2000).
[CrossRef]

Jenkins, B.

Kaminow, I. P.

Kelly, J. V.

Keys, D. E.

W. K. Smothers, B. M. Monroe, A. M. Weber, and D. E. Keys, “Photopolymers for holography,” Proc. SPIE 1212, 20-29 (1990).
[CrossRef]

Kogelnik, H.

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909-2947 (1969).

Larson, R. G.

V. L. Colvin, R. G. Larson, A. L. Harris, and M. L. Schilling, “Quantitative model of volume hologram formation in photopolymers,” J. Appl. Phys. 81, 5913-5923 (1997).
[CrossRef]

Lawrence, J. R.

J. R. Lawrence, F. T. O'Neill, and J. T. Sheridan, “Photopolymer holographic recording material,” Optik (Jena) 112, 449-463 (2001).
[CrossRef]

F. T. O'Neill, J. R. Lawrence, and J. T. Sheridan, “Thickness variation of self-processing acrylamide-based photopolymer and reflection holography,” Opt. Eng. 40, 533-539 (2001).
[CrossRef]

Li, H.-Y. S.

Li, H-Y. S.

D. A. Walkman, H-Y. S. Li, and M. G. Horner, “Volume shrinkage in slant fringe gratings of a cationic ring-opening holographic recording material,” J. Imaging Sci. Technol. 41, 497-514 (1997).

Lion, Y.

Liu, J.

C. Zhao, J. Liu, Z. Fu, and R. T. Chen, “Shrinkage-corrected volume holograms based on photpolymeric phase media for surface-normal optical interconnects,” Appl. Phys. Lett. 71, 1464-1466 (1997).
[CrossRef]

Macfarlane, R. M.

J. Ashley, M.-P. Bernal, G. W. Burr, H. Coufal, H. Guenther, J. A. Hoffnagle, C. M. Jefferson, B. Marcus, R. M. Macfarlane, R. M. Shelby, and G. T. Sincerbox, “Holographic data storage technology,” IBM J. Res. Dev. 44341-368(2000).
[CrossRef]

Madrigal, R. F.

S. Blaya, R. Mallavia, L. Carretero, A. Fimia, and R. F. Madrigal, “Highly sensitive photopolymerizable dry film for use in real time holography,” Appl. Phys. Lett. 73, 1628-1630 (1998).
[CrossRef]

L. Carretero, S. Blaya, R. Mallavia, R. F. Madrigal, and A. Fimia, “A theoretical model for noise gratings recorded in acrylamide photopolymer materials used in real-time holography,” J. Mod. Opt. 45, 2345-2354 (1998).
[CrossRef]

Magnusson, R.

Mallavia, R.

L. Carretero, S. Blaya, R. Mallavia, R. F. Madrigal, and A. Fimia, “A theoretical model for noise gratings recorded in acrylamide photopolymer materials used in real-time holography,” J. Mod. Opt. 45, 2345-2354 (1998).
[CrossRef]

S. Blaya, R. Mallavia, L. Carretero, A. Fimia, and R. F. Madrigal, “Highly sensitive photopolymerizable dry film for use in real time holography,” Appl. Phys. Lett. 73, 1628-1630 (1998).
[CrossRef]

Marcus, B.

J. Ashley, M.-P. Bernal, G. W. Burr, H. Coufal, H. Guenther, J. A. Hoffnagle, C. M. Jefferson, B. Marcus, R. M. Macfarlane, R. M. Shelby, and G. T. Sincerbox, “Holographic data storage technology,” IBM J. Res. Dev. 44341-368(2000).
[CrossRef]

Margerum, J. D.

D. H. Close, A. D. Jacobson, J. D. Margerum, R. G. Brault, and F. J. McClung, “Hologram recorded on photopolymer materials,” Appl. Phys. Lett. 14, 159-160 (1969).
[CrossRef]

Márquez, A.

Martin, S.

McClung, F. J.

D. H. Close, A. D. Jacobson, J. D. Margerum, R. G. Brault, and F. J. McClung, “Hologram recorded on photopolymer materials,” Appl. Phys. Lett. 14, 159-160 (1969).
[CrossRef]

Méndez, D.

Mirsalehi, M. M.

U.-S. Rhee, H. J. Caulfield, J. Shamir, C. S. Vikram, and M. M. Mirsalehi, “Characteristics of the DuPont photopolymer for angularly multiplexed page-oriented holographic memories,” Opt. Eng. 32, 1839-1847 (1993).
[CrossRef]

Monroe, B. M.

W. K. Smothers, B. M. Monroe, A. M. Weber, and D. E. Keys, “Photopolymers for holography,” Proc. SPIE 1212, 20-29 (1990).
[CrossRef]

Moran, J. M.

Moreau, V.

Mouroulis, P.

G. Zhao and P. Mouroulis, “Diffusion model of hologram formation in dry photopolymer. materials,” J. Mod. Opt. 41, 1929-1934 (1994).
[CrossRef]

Naydenova, I.

R. Jallapuram, I. Naydenova, S. Martin, R. Howard, V. Toal, S. Frohmann, S. Orlic, and H. J. Eichler, “Acrylamide-based photopolymer for micro holographic data storage,” Opt. Mater. 28, 1329-1333 (2006).
[CrossRef]

I. Naydenova, R. Jallapuram, R. Howard, S. Martin, and V. Toal, “Investigation of the diffusion processes in a self-processing acrylamide-based photopolymer system,” Appl. Opt. 43, 2900-2905 (2004).
[CrossRef] [PubMed]

Neipp, C.

O'Neill, F. T.

J. R. Lawrence, F. T. O'Neill, and J. T. Sheridan, “Photopolymer holographic recording material,” Optik (Jena) 112, 449-463 (2001).
[CrossRef]

F. T. O'Neill, J. R. Lawrence, and J. T. Sheridan, “Thickness variation of self-processing acrylamide-based photopolymer and reflection holography,” Opt. Eng. 40, 533-539 (2001).
[CrossRef]

Orlic, S.

R. Jallapuram, I. Naydenova, S. Martin, R. Howard, V. Toal, S. Frohmann, S. Orlic, and H. J. Eichler, “Acrylamide-based photopolymer for micro holographic data storage,” Opt. Mater. 28, 1329-1333 (2006).
[CrossRef]

Ortuño, M.

Pascual, I.

Piazzolla, S.

Psaltis, D.

Pu, A.

Renotte, Y.

Rhee, U.-S.

U.-S. Rhee, H. J. Caulfield, J. Shamir, C. S. Vikram, and M. M. Mirsalehi, “Characteristics of the DuPont photopolymer for angularly multiplexed page-oriented holographic memories,” Opt. Eng. 32, 1839-1847 (1993).
[CrossRef]

Rupp, R. A.

M. A. Ellabban, M. Fally, M. Imlau, T. Woike, R. A. Rupp, and T. Granzow, “Angular and wavelength selectivity of parasitic holograms in cerium doped strontium barium niobate,” J. Appl. Phys. 96, 6987-6993 (2004).
[CrossRef]

M. A. Ellabban, R. A. Rupp, and M. Fally, “Reconstruction of parasitic holograms to characterize photorefractive materials,” Appl. Phys. B 72, 635-640 (2001).

Schilling, M. L.

V. L. Colvin, R. G. Larson, A. L. Harris, and M. L. Schilling, “Quantitative model of volume hologram formation in photopolymers,” J. Appl. Phys. 81, 5913-5923 (1997).
[CrossRef]

Shamir, J.

U.-S. Rhee, H. J. Caulfield, J. Shamir, C. S. Vikram, and M. M. Mirsalehi, “Characteristics of the DuPont photopolymer for angularly multiplexed page-oriented holographic memories,” Opt. Eng. 32, 1839-1847 (1993).
[CrossRef]

Shelby, R. M.

J. Ashley, M.-P. Bernal, G. W. Burr, H. Coufal, H. Guenther, J. A. Hoffnagle, C. M. Jefferson, B. Marcus, R. M. Macfarlane, R. M. Shelby, and G. T. Sincerbox, “Holographic data storage technology,” IBM J. Res. Dev. 44341-368(2000).
[CrossRef]

Sheridan, J. T.

S. Gallego, M. Ortuño, C. Neipp, A. Márquez, A. Beléndez, I. Pascual, J. V. Kelly, and J. T. Sheridan, “Physical and effective optical thickness of holographic diffraction gratings recorded in photopolymers,” Opt. Express 13, 1939-1950 (2005).
[CrossRef] [PubMed]

F. T. O'Neill, J. R. Lawrence, and J. T. Sheridan, “Thickness variation of self-processing acrylamide-based photopolymer and reflection holography,” Opt. Eng. 40, 533-539 (2001).
[CrossRef]

J. R. Lawrence, F. T. O'Neill, and J. T. Sheridan, “Photopolymer holographic recording material,” Optik (Jena) 112, 449-463 (2001).
[CrossRef]

Sincerbox, G. T.

J. Ashley, M.-P. Bernal, G. W. Burr, H. Coufal, H. Guenther, J. A. Hoffnagle, C. M. Jefferson, B. Marcus, R. M. Macfarlane, R. M. Shelby, and G. T. Sincerbox, “Holographic data storage technology,” IBM J. Res. Dev. 44341-368(2000).
[CrossRef]

Smothers, W. K.

W. K. Smothers, B. M. Monroe, A. M. Weber, and D. E. Keys, “Photopolymers for holography,” Proc. SPIE 1212, 20-29 (1990).
[CrossRef]

Suzuki, N.

Toal, V.

Tomita, Y.

Trentler, T. J.

Uršic, H.

M. A. Ellabban, M. Fally, H. Uršič, and I. Drevenšek-Olenik, “Holographic scattering in photopolymer-dispersed liquid crystals,” Appl. Phys. Lett. 87, 151101 (2005).
[CrossRef]

Vega-Cantu, Y. I.

Vikram, C. S.

U.-S. Rhee, H. J. Caulfield, J. Shamir, C. S. Vikram, and M. M. Mirsalehi, “Characteristics of the DuPont photopolymer for angularly multiplexed page-oriented holographic memories,” Opt. Eng. 32, 1839-1847 (1993).
[CrossRef]

Wahi, R. K.

Walkman, D. A.

D. A. Walkman, H-Y. S. Li, and M. G. Horner, “Volume shrinkage in slant fringe gratings of a cationic ring-opening holographic recording material,” J. Imaging Sci. Technol. 41, 497-514 (1997).

Weber, A. M.

W. K. Smothers, B. M. Monroe, A. M. Weber, and D. E. Keys, “Photopolymers for holography,” Proc. SPIE 1212, 20-29 (1990).
[CrossRef]

Woike, T.

M. A. Ellabban, M. Fally, M. Imlau, T. Woike, R. A. Rupp, and T. Granzow, “Angular and wavelength selectivity of parasitic holograms in cerium doped strontium barium niobate,” J. Appl. Phys. 96, 6987-6993 (2004).
[CrossRef]

Zhao, C.

C. Zhao, J. Liu, Z. Fu, and R. T. Chen, “Shrinkage-corrected volume holograms based on photpolymeric phase media for surface-normal optical interconnects,” Appl. Phys. Lett. 71, 1464-1466 (1997).
[CrossRef]

Zhao, G.

G. Zhao and P. Mouroulis, “Diffusion model of hologram formation in dry photopolymer. materials,” J. Mod. Opt. 41, 1929-1934 (1994).
[CrossRef]

Appl. Opt. (13)

W. S. Colburn and K. A. Haines, “Volume hologram formation in photopolymer materials,” Appl. Opt. 10, 1636-1641 (1971).
[CrossRef] [PubMed]

J. M. Moran and I. P. Kaminow, “Properties of holographic gratings photoinduced in polymethyl methacrylate,” Appl. Opt. 12, 1964-1970 (1973).
[CrossRef] [PubMed]

S. Martin, C. A. Feely, and V. Toal, “Holographic recording characteristics of an acrylamide-based photopolymer,” Appl. Opt. 36, 5757-5768 (1997).
[CrossRef] [PubMed]

J. E. Boyd, T. J. Trentler, R. K. Wahi, Y. I. Vega-Cantu, and V. L. Colvin, “Effect of film thickness on the performance of photopolymers as holographic recording materials,” Appl. Opt. 39, 2353-2358 (2000).
[CrossRef]

A. Pu and D. Psaltis, “High-density recording in photopolymer based holographic three-dimensional disks,” Appl. Opt. 35, 2389-2398 (1996).
[CrossRef] [PubMed]

H.-Y. S. Li and D. Psaltis, “Three-dimensional holographic disks,” Appl. Opt. 33, 3764-3774 (1994).
[CrossRef] [PubMed]

M. Ortuño, S. Gallego, C. García, C. Neipp, and I. Pascual, “Holographic characteristics of a 1 mm thick photopolymer to be used in holographic memories,” Appl. Opt. 42, 7008-7012 (2003).
[CrossRef] [PubMed]

I. Naydenova, R. Jallapuram, R. Howard, S. Martin, and V. Toal, “Investigation of the diffusion processes in a self-processing acrylamide-based photopolymer system,” Appl. Opt. 43, 2900-2905 (2004).
[CrossRef] [PubMed]

S. Gallego, A. Márquez, D. Méndez, M. Ortuño, C. Neipp, E. Fernández, I. Pascual, and A. Beléndez, “Analysis of PVA/AA based photopolymers at the zero spatial frequency limit using interferometric methods,” Appl. Opt. 47, 2557-2563 (2008).
[CrossRef] [PubMed]

V. Moreau, Y. Renotte, and Y. Lion, “Characterization of DuPont photopolymer: determination of kinetic parameters in a diffusion model,” Appl. Opt. 41, 3427-3435 (2002).
[CrossRef] [PubMed]

N. Suzuki and Y. Tomita, “Holographic scattering in SiO2 nanoparticle-dispersed photopolymer films,” Appl. Opt. 46, 6809-6814 (2007).
[CrossRef] [PubMed]

M. R. B. Forshaw, “Explanation of the two-ring diffraction phenomenon observed by Moran and Kaminow,” Appl. Opt. 13, 2 (1974).
[CrossRef] [PubMed]

R. Magnusson and T. K. Gaylord, “Laser scattering induced holograms in lithium niobate,” Appl. Opt. 13, 1545-1548(1974).
[CrossRef]

Appl. Phys. B (2)

M. A. Ellabban, R. A. Rupp, and M. Fally, “Reconstruction of parasitic holograms to characterize photorefractive materials,” Appl. Phys. B 72, 635-640 (2001).

M. Ortuño, S. Gallego, C. García, C. Neipp, A. Beléndez, and I. Pascual, “Optimization of a 1 mm thick PVA/acrylamide recording material to obtain holographic memories: method of preparation and holographic properties,” Appl. Phys. B 76, 851-857 (2003).
[CrossRef]

Appl. Phys. Lett. (4)

C. Zhao, J. Liu, Z. Fu, and R. T. Chen, “Shrinkage-corrected volume holograms based on photpolymeric phase media for surface-normal optical interconnects,” Appl. Phys. Lett. 71, 1464-1466 (1997).
[CrossRef]

D. H. Close, A. D. Jacobson, J. D. Margerum, R. G. Brault, and F. J. McClung, “Hologram recorded on photopolymer materials,” Appl. Phys. Lett. 14, 159-160 (1969).
[CrossRef]

S. Blaya, R. Mallavia, L. Carretero, A. Fimia, and R. F. Madrigal, “Highly sensitive photopolymerizable dry film for use in real time holography,” Appl. Phys. Lett. 73, 1628-1630 (1998).
[CrossRef]

M. A. Ellabban, M. Fally, H. Uršič, and I. Drevenšek-Olenik, “Holographic scattering in photopolymer-dispersed liquid crystals,” Appl. Phys. Lett. 87, 151101 (2005).
[CrossRef]

Bell Syst. Tech. J. (1)

H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909-2947 (1969).

IBM J. Res. Dev. (1)

J. Ashley, M.-P. Bernal, G. W. Burr, H. Coufal, H. Guenther, J. A. Hoffnagle, C. M. Jefferson, B. Marcus, R. M. Macfarlane, R. M. Shelby, and G. T. Sincerbox, “Holographic data storage technology,” IBM J. Res. Dev. 44341-368(2000).
[CrossRef]

J. Appl. Phys. (2)

M. A. Ellabban, M. Fally, M. Imlau, T. Woike, R. A. Rupp, and T. Granzow, “Angular and wavelength selectivity of parasitic holograms in cerium doped strontium barium niobate,” J. Appl. Phys. 96, 6987-6993 (2004).
[CrossRef]

V. L. Colvin, R. G. Larson, A. L. Harris, and M. L. Schilling, “Quantitative model of volume hologram formation in photopolymers,” J. Appl. Phys. 81, 5913-5923 (1997).
[CrossRef]

J. Imaging Sci. Technol. (1)

D. A. Walkman, H-Y. S. Li, and M. G. Horner, “Volume shrinkage in slant fringe gratings of a cationic ring-opening holographic recording material,” J. Imaging Sci. Technol. 41, 497-514 (1997).

J. Mod. Opt. (2)

L. Carretero, S. Blaya, R. Mallavia, R. F. Madrigal, and A. Fimia, “A theoretical model for noise gratings recorded in acrylamide photopolymer materials used in real-time holography,” J. Mod. Opt. 45, 2345-2354 (1998).
[CrossRef]

G. Zhao and P. Mouroulis, “Diffusion model of hologram formation in dry photopolymer. materials,” J. Mod. Opt. 41, 1929-1934 (1994).
[CrossRef]

J. Opt. Paris (1)

X. A. Beléndez, R. Fuentes, and A. Fimia, “Noise gratings in thick-phase holographic lenses,” J. Opt. Paris 24, 99-105 (1993).

J. Opt. Soc. Am. B (1)

Opt. Commun. (1)

M. R. B. Forshaw, “Explanation of the Venetial blind effect in holography using the Ewald sphere concept,” Opt. Commun. 8, 201-206 (1973).
[CrossRef]

Opt. Eng. (2)

U.-S. Rhee, H. J. Caulfield, J. Shamir, C. S. Vikram, and M. M. Mirsalehi, “Characteristics of the DuPont photopolymer for angularly multiplexed page-oriented holographic memories,” Opt. Eng. 32, 1839-1847 (1993).
[CrossRef]

F. T. O'Neill, J. R. Lawrence, and J. T. Sheridan, “Thickness variation of self-processing acrylamide-based photopolymer and reflection holography,” Opt. Eng. 40, 533-539 (2001).
[CrossRef]

Opt. Express (1)

Opt. Lett. (1)

Opt. Mater. (1)

R. Jallapuram, I. Naydenova, S. Martin, R. Howard, V. Toal, S. Frohmann, S. Orlic, and H. J. Eichler, “Acrylamide-based photopolymer for micro holographic data storage,” Opt. Mater. 28, 1329-1333 (2006).
[CrossRef]

Optik (Jena) (1)

J. R. Lawrence, F. T. O'Neill, and J. T. Sheridan, “Photopolymer holographic recording material,” Optik (Jena) 112, 449-463 (2001).
[CrossRef]

Proc. SPIE (1)

W. K. Smothers, B. M. Monroe, A. M. Weber, and D. E. Keys, “Photopolymers for holography,” Proc. SPIE 1212, 20-29 (1990).
[CrossRef]

Other (1)

H.J.Coufal, D.Psaltis, and G.T.Sincerbox, eds, Holographic Data Storage (Springer-Verlag, 2000).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Experimental setup: S, shutter; BE, beam expander; BS, beam splitter; M, mirror; D, optical powermeter.

Fig. 2
Fig. 2

Ultraviolet–visible spectra for absorbance A 532 nm = 0.42 at different thicknesses: ▪, 250; ∘. 350; ▴, 450; ∗, 550; +, 800; ♦, 1000 μm . Absorbance of 0.17 and 0.10 shown here for comparison.

Fig. 3
Fig. 3

DE versus exposure time for A 532 nm of (a) 0.10, (b) 0.17, (c), (d) 0.42 for different layer thicknesses: ▪, 250; ∘, 350; ▴, 450; ∗, 550; +, 800; ♦, 1000 μm at 1000   lines / mm and intensity of 5 mW/cm 2 .

Fig. 4
Fig. 4

Maximum of the first-order DE versus A 532 for different layer thicknesses: ▪, 250; ∘, 350; ▴, 450; ∗, 550; +, 800; ♦, 1000 μm .

Fig. 5
Fig. 5

Maximum of the first-order DE versus layer thickness for absorbances: ▪, 0.10; ∘, 0.17; ▴, 0.42.

Fig. 6
Fig. 6

Angular selectivity (Bragg) curves for A 532 nm of (a) (b) 0.10, (c) (d) 0.17, (e) (f) 0.42 for different thicknesses: ▪, 250; ∘, 350; ▴, 450; ∗, 550; +, 800; ♦, 1000 μm of photopolymer layers at an exposure intensity of 5 mW/cm 2 .

Fig. 7
Fig. 7

Scattering versus layer thickness at different optical absorptions at 532 nm .

Fig. 8
Fig. 8

Scattering patterns observed in a two-beam recording setup for A 532 nm of 0.10 (Row I), 0.17 (Row II), and 0.42 (Row III) of layer thicknesses; Column I, 250 μm ; Column II, 450 μm ; Column III, 800 μm with an exposure intensity of 5 mW/cm 2 and an exposure time of 100 s .

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

DE = I 1 I 0 × 100 % ,

Metrics