Abstract

We report the fabrication and optical properties of planar and channel waveguides on z-cut near- stoichiometric LiNbO3 crystal formed by 6.0MeV O3+ implantation at a dose of 5×1014ions/cm2. The properties of the planar waveguide are characterized by use of prism coupling and the reflectivity calculation method. It is found that the effective refractive indices of the transverse magnetic modes increase but the transverse electric ones decrease when an appropriate heat annealing treatment is performed. We also find that only transverse magnetic polarized light could be guided in this waveguide effectively, although the dark mode could be detected in both the transverse electric and the transverse magnetic directions.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Arizmendi, “Photonic applications of lithium niobate crystals,” Phys. Status Solidi A 201, 253-283 (2004).
    [CrossRef]
  2. A. M. Prokhorov and Yu. S. Kuz'minov, Physics and Chemistry of Crystalline Lithium Niobate (Hilger, 1990).
  3. C. S. Tsai, “Integrated acousto-optic circuits and applications,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 39, 529-533(1992).
    [CrossRef] [PubMed]
  4. B. M. Park, K. Kitamura, K. Terabe, Y. Furukara, Y. Ji, and E. Suzuki, “Mechanical twinning in stoichiometric lithium niobate single crystal,” J. Cryst. Growth 180, 101-104 (1997).
    [CrossRef]
  5. F. Abdi, M. Aillerie, P. Bourson, M. D. Fontana, and K. Polgar, “Electro-optic properties in pure LiNbO3 crystals from the congruent to the stoichiometric composition,” J. Appl. Phys. 84, 2251-2254 (1998).
    [CrossRef]
  6. F, Chen, X.-L. Wang, and K.-M. Wang, “Development of ion-implanted optical waveguides in optical materials,” Opt. Mater. 29, 1523-1542 (2007).
    [CrossRef]
  7. P. Bindner, A. Boudrioua, J. C. Looulergue, and P. Moretti, “Formation of planar optical waveguides in potassium titanyl phosphate by double implantation of protons,” Appl. Phys. Lett. 79, 2558-2560 (2001).
    [CrossRef]
  8. D. Fluck, T. Pliska, P. Günter, St. Bauer, L. Becker, and Ch. Buchal, “Blue-light second-harmonic generation in ion-implanted KNbO3 channel waveguides of new design,” Appl. Phys. Lett. 69, 4133-4135 (1996).
    [CrossRef]
  9. L. Laversenne, P. Hoffmann, M. Pollnau, P. Moretti, and J. Mugnier, “Designable buried waveguides in sapphire by proton implantation,” Appl. Phys. Lett. 85, 5167-5169 (2004).
    [CrossRef]
  10. A. Boudrioua, B. Vincent, R. Kremer, P. Moretti, and S. Tascu, “Linear and nonlinear optical properties of implanted Ca4GdO(BO3)3,” J. Opt. Soc. Am. B 22, 2192-2199 (2005).
    [CrossRef]
  11. D. Kip, S. Aulkemeyer, and P. Moretti, “Low-loss planar optical waveguides in strontium barium niobate crystals formed by ion-beam implantation,” Opt. Lett. 20, 1256-1258 (1995).
    [CrossRef] [PubMed]
  12. G. G. Bentini, M. Bianconi, L. Correra, M. Chiarini, P. Mazzoldi, C. Sada, N. Argiolas, M. Bazzan, and R. Guzzi, “Damage effects produced in the near-surface region of x-cut LiNbO3 by low dose, high energy implantation of nitrogen, oxygen, and fluorine ions,” J. Appl. Phys. 96, 242-247 (2004).
    [CrossRef]
  13. G. V. Vazquez, J. Richards, G. Lifante, M. Domenech, and E. Cantelar, “Low dose carbon implanted waveguides in Nd:YAG,” Opt. Express 11, 1291-1296 (2003).
    [CrossRef] [PubMed]
  14. M. Bianconi, N. Argiolas, M. Bazzan, G. G. Bentini, M. Chiarini, A. Cerutti, P. Mazzoldi, G. Pennestrì, and C. Sada, “On the dynamics of the damage growth in 5 MeV oxygen-implanted lithium niobate,” Appl. Phys. Lett. 87, 072901 (2005).
    [CrossRef]
  15. S.-L. Li, K.-M. Wang, F. Chen, X.-L. Wang, G. Fu, D.-Y. Shen, H.-J. Ma, and R. Nie, “Monomode optical waveguide excited at 1540 nm in LiNbO3 formed by MeV carbon ion implantation at low doses,” Opt. Express 12, 747-752 (2004).
    [CrossRef] [PubMed]
  16. G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, “Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in X-cut LiNbO3: Planar optical waveguide formation and characterization,” J. Appl. Phys. 92, 6477-6483 (2002).
    [CrossRef]
  17. H. Hu, F. Lu, F. Chen, B.-R. Shi, K.-M. Wang, and D.-Y. Shen, “Monomode optical waveguide in lithium niobate formed by MeV Si+ ion implantation,” J. Appl. Phys. 89, 5224-5226(2001).
    [CrossRef]
  18. X.-L. Wang, K.-M. Wang, F. Chen, G. Fu, S.-L. Li, H. Liu, L. Gao, D.-Y. Shen, H.-J. Ma, and R. Nie, “Optical properties of stoichiometric LiNbO3 waveguides formed by low-dose oxygen ion implantation,” Appl. Phys. Lett. 86, 041103 (2005).
    [CrossRef]
  19. F. Chen, “Construction of two-dimensional waveguides in insulating optical materials by means of ion beam implantation for photonic applications: fabrication methods and research progress,” CRC Crit. Rev. Solid State Mater. Sci. 33, 165-182(2008).
    [CrossRef]
  20. J. M. White and P. F. Heidrich, “Optical waveguide refractive index profiles determined from measurement of mode indices: a simple analysis,” Appl. Opt. 15, 151-155 (1976).
    [CrossRef] [PubMed]
  21. D. Fluck, D. H. Jundt, and P. Gunter, “Modeling of refractive index profiles of He+ ion-implanted KNbO3 waveguides based on the irradiation parameters,” J. Appl. Phys. 74, 6023-6031(1993).
    [CrossRef]
  22. P. J. Chandler and F. L. Lama, “A new approach to the determination of planar waveguide profiles by means of a non-stationary mode index calculation,” Opt. Acta 33, 127-143(1996).
    [CrossRef]
  23. V. V. Atuchin, “Causes of refractive indices changes in He-implanted LiNbO3 and LiTaO3 waveguides,” Nucl. Instrum. Methods Phys. Res. B 168, 498-502 (2000).
    [CrossRef]
  24. H. Hu, F. Lu, F. Chen, B.-R. Shi, K.-M. Wang, and D.-Y. Shen, “Extraordinary refractive-index increase in lithium niobate caused by low-dose ion implantation,” Appl. Opt. 40, 3759-3761 (2001).
    [CrossRef]
  25. Y. Jiang, K.-M. Wang, X.-L. Wang, F. Chen, C.-L. Jia, L. Wang, Y. Jiao, and F. Lu, “Model of refractive-index changes in lithium niobate waveguides fabricated by ion implantation,” Phys. Rev. B 75, 195101 (2007).
    [CrossRef]
  26. S. M. Kostritskii and P. Moretti, “Specific behavior of refractive indices in low-dose He+-implanted LiNbO3 waveguides,” J. Appl. Phys. 101, 094109 (2007).
    [CrossRef]
  27. J. F. Ziegler, Computer Code SRIM, <http://www.srim.org>.

2008 (1)

F. Chen, “Construction of two-dimensional waveguides in insulating optical materials by means of ion beam implantation for photonic applications: fabrication methods and research progress,” CRC Crit. Rev. Solid State Mater. Sci. 33, 165-182(2008).
[CrossRef]

2007 (3)

Y. Jiang, K.-M. Wang, X.-L. Wang, F. Chen, C.-L. Jia, L. Wang, Y. Jiao, and F. Lu, “Model of refractive-index changes in lithium niobate waveguides fabricated by ion implantation,” Phys. Rev. B 75, 195101 (2007).
[CrossRef]

S. M. Kostritskii and P. Moretti, “Specific behavior of refractive indices in low-dose He+-implanted LiNbO3 waveguides,” J. Appl. Phys. 101, 094109 (2007).
[CrossRef]

F, Chen, X.-L. Wang, and K.-M. Wang, “Development of ion-implanted optical waveguides in optical materials,” Opt. Mater. 29, 1523-1542 (2007).
[CrossRef]

2005 (3)

X.-L. Wang, K.-M. Wang, F. Chen, G. Fu, S.-L. Li, H. Liu, L. Gao, D.-Y. Shen, H.-J. Ma, and R. Nie, “Optical properties of stoichiometric LiNbO3 waveguides formed by low-dose oxygen ion implantation,” Appl. Phys. Lett. 86, 041103 (2005).
[CrossRef]

M. Bianconi, N. Argiolas, M. Bazzan, G. G. Bentini, M. Chiarini, A. Cerutti, P. Mazzoldi, G. Pennestrì, and C. Sada, “On the dynamics of the damage growth in 5 MeV oxygen-implanted lithium niobate,” Appl. Phys. Lett. 87, 072901 (2005).
[CrossRef]

A. Boudrioua, B. Vincent, R. Kremer, P. Moretti, and S. Tascu, “Linear and nonlinear optical properties of implanted Ca4GdO(BO3)3,” J. Opt. Soc. Am. B 22, 2192-2199 (2005).
[CrossRef]

2004 (4)

S.-L. Li, K.-M. Wang, F. Chen, X.-L. Wang, G. Fu, D.-Y. Shen, H.-J. Ma, and R. Nie, “Monomode optical waveguide excited at 1540 nm in LiNbO3 formed by MeV carbon ion implantation at low doses,” Opt. Express 12, 747-752 (2004).
[CrossRef] [PubMed]

L. Laversenne, P. Hoffmann, M. Pollnau, P. Moretti, and J. Mugnier, “Designable buried waveguides in sapphire by proton implantation,” Appl. Phys. Lett. 85, 5167-5169 (2004).
[CrossRef]

G. G. Bentini, M. Bianconi, L. Correra, M. Chiarini, P. Mazzoldi, C. Sada, N. Argiolas, M. Bazzan, and R. Guzzi, “Damage effects produced in the near-surface region of x-cut LiNbO3 by low dose, high energy implantation of nitrogen, oxygen, and fluorine ions,” J. Appl. Phys. 96, 242-247 (2004).
[CrossRef]

L. Arizmendi, “Photonic applications of lithium niobate crystals,” Phys. Status Solidi A 201, 253-283 (2004).
[CrossRef]

2003 (1)

2002 (1)

G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, “Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in X-cut LiNbO3: Planar optical waveguide formation and characterization,” J. Appl. Phys. 92, 6477-6483 (2002).
[CrossRef]

2001 (3)

H. Hu, F. Lu, F. Chen, B.-R. Shi, K.-M. Wang, and D.-Y. Shen, “Monomode optical waveguide in lithium niobate formed by MeV Si+ ion implantation,” J. Appl. Phys. 89, 5224-5226(2001).
[CrossRef]

P. Bindner, A. Boudrioua, J. C. Looulergue, and P. Moretti, “Formation of planar optical waveguides in potassium titanyl phosphate by double implantation of protons,” Appl. Phys. Lett. 79, 2558-2560 (2001).
[CrossRef]

H. Hu, F. Lu, F. Chen, B.-R. Shi, K.-M. Wang, and D.-Y. Shen, “Extraordinary refractive-index increase in lithium niobate caused by low-dose ion implantation,” Appl. Opt. 40, 3759-3761 (2001).
[CrossRef]

2000 (1)

V. V. Atuchin, “Causes of refractive indices changes in He-implanted LiNbO3 and LiTaO3 waveguides,” Nucl. Instrum. Methods Phys. Res. B 168, 498-502 (2000).
[CrossRef]

1998 (1)

F. Abdi, M. Aillerie, P. Bourson, M. D. Fontana, and K. Polgar, “Electro-optic properties in pure LiNbO3 crystals from the congruent to the stoichiometric composition,” J. Appl. Phys. 84, 2251-2254 (1998).
[CrossRef]

1997 (1)

B. M. Park, K. Kitamura, K. Terabe, Y. Furukara, Y. Ji, and E. Suzuki, “Mechanical twinning in stoichiometric lithium niobate single crystal,” J. Cryst. Growth 180, 101-104 (1997).
[CrossRef]

1996 (2)

D. Fluck, T. Pliska, P. Günter, St. Bauer, L. Becker, and Ch. Buchal, “Blue-light second-harmonic generation in ion-implanted KNbO3 channel waveguides of new design,” Appl. Phys. Lett. 69, 4133-4135 (1996).
[CrossRef]

P. J. Chandler and F. L. Lama, “A new approach to the determination of planar waveguide profiles by means of a non-stationary mode index calculation,” Opt. Acta 33, 127-143(1996).
[CrossRef]

1995 (1)

1993 (1)

D. Fluck, D. H. Jundt, and P. Gunter, “Modeling of refractive index profiles of He+ ion-implanted KNbO3 waveguides based on the irradiation parameters,” J. Appl. Phys. 74, 6023-6031(1993).
[CrossRef]

1992 (1)

C. S. Tsai, “Integrated acousto-optic circuits and applications,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 39, 529-533(1992).
[CrossRef] [PubMed]

1976 (1)

Abdi, F.

F. Abdi, M. Aillerie, P. Bourson, M. D. Fontana, and K. Polgar, “Electro-optic properties in pure LiNbO3 crystals from the congruent to the stoichiometric composition,” J. Appl. Phys. 84, 2251-2254 (1998).
[CrossRef]

Aillerie, M.

F. Abdi, M. Aillerie, P. Bourson, M. D. Fontana, and K. Polgar, “Electro-optic properties in pure LiNbO3 crystals from the congruent to the stoichiometric composition,” J. Appl. Phys. 84, 2251-2254 (1998).
[CrossRef]

Argiolas, N.

M. Bianconi, N. Argiolas, M. Bazzan, G. G. Bentini, M. Chiarini, A. Cerutti, P. Mazzoldi, G. Pennestrì, and C. Sada, “On the dynamics of the damage growth in 5 MeV oxygen-implanted lithium niobate,” Appl. Phys. Lett. 87, 072901 (2005).
[CrossRef]

G. G. Bentini, M. Bianconi, L. Correra, M. Chiarini, P. Mazzoldi, C. Sada, N. Argiolas, M. Bazzan, and R. Guzzi, “Damage effects produced in the near-surface region of x-cut LiNbO3 by low dose, high energy implantation of nitrogen, oxygen, and fluorine ions,” J. Appl. Phys. 96, 242-247 (2004).
[CrossRef]

G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, “Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in X-cut LiNbO3: Planar optical waveguide formation and characterization,” J. Appl. Phys. 92, 6477-6483 (2002).
[CrossRef]

Arizmendi, L.

L. Arizmendi, “Photonic applications of lithium niobate crystals,” Phys. Status Solidi A 201, 253-283 (2004).
[CrossRef]

Atuchin, V. V.

V. V. Atuchin, “Causes of refractive indices changes in He-implanted LiNbO3 and LiTaO3 waveguides,” Nucl. Instrum. Methods Phys. Res. B 168, 498-502 (2000).
[CrossRef]

Aulkemeyer, S.

Bauer, St.

D. Fluck, T. Pliska, P. Günter, St. Bauer, L. Becker, and Ch. Buchal, “Blue-light second-harmonic generation in ion-implanted KNbO3 channel waveguides of new design,” Appl. Phys. Lett. 69, 4133-4135 (1996).
[CrossRef]

Bazzan, M.

M. Bianconi, N. Argiolas, M. Bazzan, G. G. Bentini, M. Chiarini, A. Cerutti, P. Mazzoldi, G. Pennestrì, and C. Sada, “On the dynamics of the damage growth in 5 MeV oxygen-implanted lithium niobate,” Appl. Phys. Lett. 87, 072901 (2005).
[CrossRef]

G. G. Bentini, M. Bianconi, L. Correra, M. Chiarini, P. Mazzoldi, C. Sada, N. Argiolas, M. Bazzan, and R. Guzzi, “Damage effects produced in the near-surface region of x-cut LiNbO3 by low dose, high energy implantation of nitrogen, oxygen, and fluorine ions,” J. Appl. Phys. 96, 242-247 (2004).
[CrossRef]

G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, “Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in X-cut LiNbO3: Planar optical waveguide formation and characterization,” J. Appl. Phys. 92, 6477-6483 (2002).
[CrossRef]

Becker, L.

D. Fluck, T. Pliska, P. Günter, St. Bauer, L. Becker, and Ch. Buchal, “Blue-light second-harmonic generation in ion-implanted KNbO3 channel waveguides of new design,” Appl. Phys. Lett. 69, 4133-4135 (1996).
[CrossRef]

Bentini, G. G.

M. Bianconi, N. Argiolas, M. Bazzan, G. G. Bentini, M. Chiarini, A. Cerutti, P. Mazzoldi, G. Pennestrì, and C. Sada, “On the dynamics of the damage growth in 5 MeV oxygen-implanted lithium niobate,” Appl. Phys. Lett. 87, 072901 (2005).
[CrossRef]

G. G. Bentini, M. Bianconi, L. Correra, M. Chiarini, P. Mazzoldi, C. Sada, N. Argiolas, M. Bazzan, and R. Guzzi, “Damage effects produced in the near-surface region of x-cut LiNbO3 by low dose, high energy implantation of nitrogen, oxygen, and fluorine ions,” J. Appl. Phys. 96, 242-247 (2004).
[CrossRef]

G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, “Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in X-cut LiNbO3: Planar optical waveguide formation and characterization,” J. Appl. Phys. 92, 6477-6483 (2002).
[CrossRef]

Bianconi, M.

M. Bianconi, N. Argiolas, M. Bazzan, G. G. Bentini, M. Chiarini, A. Cerutti, P. Mazzoldi, G. Pennestrì, and C. Sada, “On the dynamics of the damage growth in 5 MeV oxygen-implanted lithium niobate,” Appl. Phys. Lett. 87, 072901 (2005).
[CrossRef]

G. G. Bentini, M. Bianconi, L. Correra, M. Chiarini, P. Mazzoldi, C. Sada, N. Argiolas, M. Bazzan, and R. Guzzi, “Damage effects produced in the near-surface region of x-cut LiNbO3 by low dose, high energy implantation of nitrogen, oxygen, and fluorine ions,” J. Appl. Phys. 96, 242-247 (2004).
[CrossRef]

G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, “Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in X-cut LiNbO3: Planar optical waveguide formation and characterization,” J. Appl. Phys. 92, 6477-6483 (2002).
[CrossRef]

Bindner, P.

P. Bindner, A. Boudrioua, J. C. Looulergue, and P. Moretti, “Formation of planar optical waveguides in potassium titanyl phosphate by double implantation of protons,” Appl. Phys. Lett. 79, 2558-2560 (2001).
[CrossRef]

Boudrioua, A.

A. Boudrioua, B. Vincent, R. Kremer, P. Moretti, and S. Tascu, “Linear and nonlinear optical properties of implanted Ca4GdO(BO3)3,” J. Opt. Soc. Am. B 22, 2192-2199 (2005).
[CrossRef]

P. Bindner, A. Boudrioua, J. C. Looulergue, and P. Moretti, “Formation of planar optical waveguides in potassium titanyl phosphate by double implantation of protons,” Appl. Phys. Lett. 79, 2558-2560 (2001).
[CrossRef]

Bourson, P.

F. Abdi, M. Aillerie, P. Bourson, M. D. Fontana, and K. Polgar, “Electro-optic properties in pure LiNbO3 crystals from the congruent to the stoichiometric composition,” J. Appl. Phys. 84, 2251-2254 (1998).
[CrossRef]

Buchal, Ch.

D. Fluck, T. Pliska, P. Günter, St. Bauer, L. Becker, and Ch. Buchal, “Blue-light second-harmonic generation in ion-implanted KNbO3 channel waveguides of new design,” Appl. Phys. Lett. 69, 4133-4135 (1996).
[CrossRef]

Cantelar, E.

Cerutti, A.

M. Bianconi, N. Argiolas, M. Bazzan, G. G. Bentini, M. Chiarini, A. Cerutti, P. Mazzoldi, G. Pennestrì, and C. Sada, “On the dynamics of the damage growth in 5 MeV oxygen-implanted lithium niobate,” Appl. Phys. Lett. 87, 072901 (2005).
[CrossRef]

Chandler, P. J.

P. J. Chandler and F. L. Lama, “A new approach to the determination of planar waveguide profiles by means of a non-stationary mode index calculation,” Opt. Acta 33, 127-143(1996).
[CrossRef]

Chen, F,

F, Chen, X.-L. Wang, and K.-M. Wang, “Development of ion-implanted optical waveguides in optical materials,” Opt. Mater. 29, 1523-1542 (2007).
[CrossRef]

Chen, F.

F. Chen, “Construction of two-dimensional waveguides in insulating optical materials by means of ion beam implantation for photonic applications: fabrication methods and research progress,” CRC Crit. Rev. Solid State Mater. Sci. 33, 165-182(2008).
[CrossRef]

Y. Jiang, K.-M. Wang, X.-L. Wang, F. Chen, C.-L. Jia, L. Wang, Y. Jiao, and F. Lu, “Model of refractive-index changes in lithium niobate waveguides fabricated by ion implantation,” Phys. Rev. B 75, 195101 (2007).
[CrossRef]

X.-L. Wang, K.-M. Wang, F. Chen, G. Fu, S.-L. Li, H. Liu, L. Gao, D.-Y. Shen, H.-J. Ma, and R. Nie, “Optical properties of stoichiometric LiNbO3 waveguides formed by low-dose oxygen ion implantation,” Appl. Phys. Lett. 86, 041103 (2005).
[CrossRef]

S.-L. Li, K.-M. Wang, F. Chen, X.-L. Wang, G. Fu, D.-Y. Shen, H.-J. Ma, and R. Nie, “Monomode optical waveguide excited at 1540 nm in LiNbO3 formed by MeV carbon ion implantation at low doses,” Opt. Express 12, 747-752 (2004).
[CrossRef] [PubMed]

H. Hu, F. Lu, F. Chen, B.-R. Shi, K.-M. Wang, and D.-Y. Shen, “Extraordinary refractive-index increase in lithium niobate caused by low-dose ion implantation,” Appl. Opt. 40, 3759-3761 (2001).
[CrossRef]

H. Hu, F. Lu, F. Chen, B.-R. Shi, K.-M. Wang, and D.-Y. Shen, “Monomode optical waveguide in lithium niobate formed by MeV Si+ ion implantation,” J. Appl. Phys. 89, 5224-5226(2001).
[CrossRef]

Chiarini, M.

M. Bianconi, N. Argiolas, M. Bazzan, G. G. Bentini, M. Chiarini, A. Cerutti, P. Mazzoldi, G. Pennestrì, and C. Sada, “On the dynamics of the damage growth in 5 MeV oxygen-implanted lithium niobate,” Appl. Phys. Lett. 87, 072901 (2005).
[CrossRef]

G. G. Bentini, M. Bianconi, L. Correra, M. Chiarini, P. Mazzoldi, C. Sada, N. Argiolas, M. Bazzan, and R. Guzzi, “Damage effects produced in the near-surface region of x-cut LiNbO3 by low dose, high energy implantation of nitrogen, oxygen, and fluorine ions,” J. Appl. Phys. 96, 242-247 (2004).
[CrossRef]

G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, “Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in X-cut LiNbO3: Planar optical waveguide formation and characterization,” J. Appl. Phys. 92, 6477-6483 (2002).
[CrossRef]

Correra, L.

G. G. Bentini, M. Bianconi, L. Correra, M. Chiarini, P. Mazzoldi, C. Sada, N. Argiolas, M. Bazzan, and R. Guzzi, “Damage effects produced in the near-surface region of x-cut LiNbO3 by low dose, high energy implantation of nitrogen, oxygen, and fluorine ions,” J. Appl. Phys. 96, 242-247 (2004).
[CrossRef]

G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, “Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in X-cut LiNbO3: Planar optical waveguide formation and characterization,” J. Appl. Phys. 92, 6477-6483 (2002).
[CrossRef]

Domenech, M.

Fluck, D.

D. Fluck, T. Pliska, P. Günter, St. Bauer, L. Becker, and Ch. Buchal, “Blue-light second-harmonic generation in ion-implanted KNbO3 channel waveguides of new design,” Appl. Phys. Lett. 69, 4133-4135 (1996).
[CrossRef]

D. Fluck, D. H. Jundt, and P. Gunter, “Modeling of refractive index profiles of He+ ion-implanted KNbO3 waveguides based on the irradiation parameters,” J. Appl. Phys. 74, 6023-6031(1993).
[CrossRef]

Fontana, M. D.

F. Abdi, M. Aillerie, P. Bourson, M. D. Fontana, and K. Polgar, “Electro-optic properties in pure LiNbO3 crystals from the congruent to the stoichiometric composition,” J. Appl. Phys. 84, 2251-2254 (1998).
[CrossRef]

Fu, G.

X.-L. Wang, K.-M. Wang, F. Chen, G. Fu, S.-L. Li, H. Liu, L. Gao, D.-Y. Shen, H.-J. Ma, and R. Nie, “Optical properties of stoichiometric LiNbO3 waveguides formed by low-dose oxygen ion implantation,” Appl. Phys. Lett. 86, 041103 (2005).
[CrossRef]

S.-L. Li, K.-M. Wang, F. Chen, X.-L. Wang, G. Fu, D.-Y. Shen, H.-J. Ma, and R. Nie, “Monomode optical waveguide excited at 1540 nm in LiNbO3 formed by MeV carbon ion implantation at low doses,” Opt. Express 12, 747-752 (2004).
[CrossRef] [PubMed]

Furukara, Y.

B. M. Park, K. Kitamura, K. Terabe, Y. Furukara, Y. Ji, and E. Suzuki, “Mechanical twinning in stoichiometric lithium niobate single crystal,” J. Cryst. Growth 180, 101-104 (1997).
[CrossRef]

Gao, L.

X.-L. Wang, K.-M. Wang, F. Chen, G. Fu, S.-L. Li, H. Liu, L. Gao, D.-Y. Shen, H.-J. Ma, and R. Nie, “Optical properties of stoichiometric LiNbO3 waveguides formed by low-dose oxygen ion implantation,” Appl. Phys. Lett. 86, 041103 (2005).
[CrossRef]

Gunter, P.

D. Fluck, D. H. Jundt, and P. Gunter, “Modeling of refractive index profiles of He+ ion-implanted KNbO3 waveguides based on the irradiation parameters,” J. Appl. Phys. 74, 6023-6031(1993).
[CrossRef]

Günter, P.

D. Fluck, T. Pliska, P. Günter, St. Bauer, L. Becker, and Ch. Buchal, “Blue-light second-harmonic generation in ion-implanted KNbO3 channel waveguides of new design,” Appl. Phys. Lett. 69, 4133-4135 (1996).
[CrossRef]

Guzzi, R.

G. G. Bentini, M. Bianconi, L. Correra, M. Chiarini, P. Mazzoldi, C. Sada, N. Argiolas, M. Bazzan, and R. Guzzi, “Damage effects produced in the near-surface region of x-cut LiNbO3 by low dose, high energy implantation of nitrogen, oxygen, and fluorine ions,” J. Appl. Phys. 96, 242-247 (2004).
[CrossRef]

G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, “Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in X-cut LiNbO3: Planar optical waveguide formation and characterization,” J. Appl. Phys. 92, 6477-6483 (2002).
[CrossRef]

Heidrich, P. F.

Hoffmann, P.

L. Laversenne, P. Hoffmann, M. Pollnau, P. Moretti, and J. Mugnier, “Designable buried waveguides in sapphire by proton implantation,” Appl. Phys. Lett. 85, 5167-5169 (2004).
[CrossRef]

Hu, H.

H. Hu, F. Lu, F. Chen, B.-R. Shi, K.-M. Wang, and D.-Y. Shen, “Monomode optical waveguide in lithium niobate formed by MeV Si+ ion implantation,” J. Appl. Phys. 89, 5224-5226(2001).
[CrossRef]

H. Hu, F. Lu, F. Chen, B.-R. Shi, K.-M. Wang, and D.-Y. Shen, “Extraordinary refractive-index increase in lithium niobate caused by low-dose ion implantation,” Appl. Opt. 40, 3759-3761 (2001).
[CrossRef]

Ji, Y.

B. M. Park, K. Kitamura, K. Terabe, Y. Furukara, Y. Ji, and E. Suzuki, “Mechanical twinning in stoichiometric lithium niobate single crystal,” J. Cryst. Growth 180, 101-104 (1997).
[CrossRef]

Jia, C.-L.

Y. Jiang, K.-M. Wang, X.-L. Wang, F. Chen, C.-L. Jia, L. Wang, Y. Jiao, and F. Lu, “Model of refractive-index changes in lithium niobate waveguides fabricated by ion implantation,” Phys. Rev. B 75, 195101 (2007).
[CrossRef]

Jiang, Y.

Y. Jiang, K.-M. Wang, X.-L. Wang, F. Chen, C.-L. Jia, L. Wang, Y. Jiao, and F. Lu, “Model of refractive-index changes in lithium niobate waveguides fabricated by ion implantation,” Phys. Rev. B 75, 195101 (2007).
[CrossRef]

Jiao, Y.

Y. Jiang, K.-M. Wang, X.-L. Wang, F. Chen, C.-L. Jia, L. Wang, Y. Jiao, and F. Lu, “Model of refractive-index changes in lithium niobate waveguides fabricated by ion implantation,” Phys. Rev. B 75, 195101 (2007).
[CrossRef]

Jundt, D. H.

D. Fluck, D. H. Jundt, and P. Gunter, “Modeling of refractive index profiles of He+ ion-implanted KNbO3 waveguides based on the irradiation parameters,” J. Appl. Phys. 74, 6023-6031(1993).
[CrossRef]

Kip, D.

Kitamura, K.

B. M. Park, K. Kitamura, K. Terabe, Y. Furukara, Y. Ji, and E. Suzuki, “Mechanical twinning in stoichiometric lithium niobate single crystal,” J. Cryst. Growth 180, 101-104 (1997).
[CrossRef]

Kostritskii, S. M.

S. M. Kostritskii and P. Moretti, “Specific behavior of refractive indices in low-dose He+-implanted LiNbO3 waveguides,” J. Appl. Phys. 101, 094109 (2007).
[CrossRef]

Kremer, R.

Kuz'minov, Yu. S.

A. M. Prokhorov and Yu. S. Kuz'minov, Physics and Chemistry of Crystalline Lithium Niobate (Hilger, 1990).

Lama, F. L.

P. J. Chandler and F. L. Lama, “A new approach to the determination of planar waveguide profiles by means of a non-stationary mode index calculation,” Opt. Acta 33, 127-143(1996).
[CrossRef]

Laversenne, L.

L. Laversenne, P. Hoffmann, M. Pollnau, P. Moretti, and J. Mugnier, “Designable buried waveguides in sapphire by proton implantation,” Appl. Phys. Lett. 85, 5167-5169 (2004).
[CrossRef]

Li, S.-L.

X.-L. Wang, K.-M. Wang, F. Chen, G. Fu, S.-L. Li, H. Liu, L. Gao, D.-Y. Shen, H.-J. Ma, and R. Nie, “Optical properties of stoichiometric LiNbO3 waveguides formed by low-dose oxygen ion implantation,” Appl. Phys. Lett. 86, 041103 (2005).
[CrossRef]

S.-L. Li, K.-M. Wang, F. Chen, X.-L. Wang, G. Fu, D.-Y. Shen, H.-J. Ma, and R. Nie, “Monomode optical waveguide excited at 1540 nm in LiNbO3 formed by MeV carbon ion implantation at low doses,” Opt. Express 12, 747-752 (2004).
[CrossRef] [PubMed]

Lifante, G.

Liu, H.

X.-L. Wang, K.-M. Wang, F. Chen, G. Fu, S.-L. Li, H. Liu, L. Gao, D.-Y. Shen, H.-J. Ma, and R. Nie, “Optical properties of stoichiometric LiNbO3 waveguides formed by low-dose oxygen ion implantation,” Appl. Phys. Lett. 86, 041103 (2005).
[CrossRef]

Looulergue, J. C.

P. Bindner, A. Boudrioua, J. C. Looulergue, and P. Moretti, “Formation of planar optical waveguides in potassium titanyl phosphate by double implantation of protons,” Appl. Phys. Lett. 79, 2558-2560 (2001).
[CrossRef]

Lu, F.

Y. Jiang, K.-M. Wang, X.-L. Wang, F. Chen, C.-L. Jia, L. Wang, Y. Jiao, and F. Lu, “Model of refractive-index changes in lithium niobate waveguides fabricated by ion implantation,” Phys. Rev. B 75, 195101 (2007).
[CrossRef]

H. Hu, F. Lu, F. Chen, B.-R. Shi, K.-M. Wang, and D.-Y. Shen, “Extraordinary refractive-index increase in lithium niobate caused by low-dose ion implantation,” Appl. Opt. 40, 3759-3761 (2001).
[CrossRef]

H. Hu, F. Lu, F. Chen, B.-R. Shi, K.-M. Wang, and D.-Y. Shen, “Monomode optical waveguide in lithium niobate formed by MeV Si+ ion implantation,” J. Appl. Phys. 89, 5224-5226(2001).
[CrossRef]

Ma, H.-J.

X.-L. Wang, K.-M. Wang, F. Chen, G. Fu, S.-L. Li, H. Liu, L. Gao, D.-Y. Shen, H.-J. Ma, and R. Nie, “Optical properties of stoichiometric LiNbO3 waveguides formed by low-dose oxygen ion implantation,” Appl. Phys. Lett. 86, 041103 (2005).
[CrossRef]

S.-L. Li, K.-M. Wang, F. Chen, X.-L. Wang, G. Fu, D.-Y. Shen, H.-J. Ma, and R. Nie, “Monomode optical waveguide excited at 1540 nm in LiNbO3 formed by MeV carbon ion implantation at low doses,” Opt. Express 12, 747-752 (2004).
[CrossRef] [PubMed]

Mazzoldi, P.

M. Bianconi, N. Argiolas, M. Bazzan, G. G. Bentini, M. Chiarini, A. Cerutti, P. Mazzoldi, G. Pennestrì, and C. Sada, “On the dynamics of the damage growth in 5 MeV oxygen-implanted lithium niobate,” Appl. Phys. Lett. 87, 072901 (2005).
[CrossRef]

G. G. Bentini, M. Bianconi, L. Correra, M. Chiarini, P. Mazzoldi, C. Sada, N. Argiolas, M. Bazzan, and R. Guzzi, “Damage effects produced in the near-surface region of x-cut LiNbO3 by low dose, high energy implantation of nitrogen, oxygen, and fluorine ions,” J. Appl. Phys. 96, 242-247 (2004).
[CrossRef]

G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, “Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in X-cut LiNbO3: Planar optical waveguide formation and characterization,” J. Appl. Phys. 92, 6477-6483 (2002).
[CrossRef]

Moretti, P.

S. M. Kostritskii and P. Moretti, “Specific behavior of refractive indices in low-dose He+-implanted LiNbO3 waveguides,” J. Appl. Phys. 101, 094109 (2007).
[CrossRef]

A. Boudrioua, B. Vincent, R. Kremer, P. Moretti, and S. Tascu, “Linear and nonlinear optical properties of implanted Ca4GdO(BO3)3,” J. Opt. Soc. Am. B 22, 2192-2199 (2005).
[CrossRef]

L. Laversenne, P. Hoffmann, M. Pollnau, P. Moretti, and J. Mugnier, “Designable buried waveguides in sapphire by proton implantation,” Appl. Phys. Lett. 85, 5167-5169 (2004).
[CrossRef]

P. Bindner, A. Boudrioua, J. C. Looulergue, and P. Moretti, “Formation of planar optical waveguides in potassium titanyl phosphate by double implantation of protons,” Appl. Phys. Lett. 79, 2558-2560 (2001).
[CrossRef]

D. Kip, S. Aulkemeyer, and P. Moretti, “Low-loss planar optical waveguides in strontium barium niobate crystals formed by ion-beam implantation,” Opt. Lett. 20, 1256-1258 (1995).
[CrossRef] [PubMed]

Mugnier, J.

L. Laversenne, P. Hoffmann, M. Pollnau, P. Moretti, and J. Mugnier, “Designable buried waveguides in sapphire by proton implantation,” Appl. Phys. Lett. 85, 5167-5169 (2004).
[CrossRef]

Nie, R.

X.-L. Wang, K.-M. Wang, F. Chen, G. Fu, S.-L. Li, H. Liu, L. Gao, D.-Y. Shen, H.-J. Ma, and R. Nie, “Optical properties of stoichiometric LiNbO3 waveguides formed by low-dose oxygen ion implantation,” Appl. Phys. Lett. 86, 041103 (2005).
[CrossRef]

S.-L. Li, K.-M. Wang, F. Chen, X.-L. Wang, G. Fu, D.-Y. Shen, H.-J. Ma, and R. Nie, “Monomode optical waveguide excited at 1540 nm in LiNbO3 formed by MeV carbon ion implantation at low doses,” Opt. Express 12, 747-752 (2004).
[CrossRef] [PubMed]

Park, B. M.

B. M. Park, K. Kitamura, K. Terabe, Y. Furukara, Y. Ji, and E. Suzuki, “Mechanical twinning in stoichiometric lithium niobate single crystal,” J. Cryst. Growth 180, 101-104 (1997).
[CrossRef]

Pennestrì, G.

M. Bianconi, N. Argiolas, M. Bazzan, G. G. Bentini, M. Chiarini, A. Cerutti, P. Mazzoldi, G. Pennestrì, and C. Sada, “On the dynamics of the damage growth in 5 MeV oxygen-implanted lithium niobate,” Appl. Phys. Lett. 87, 072901 (2005).
[CrossRef]

Pliska, T.

D. Fluck, T. Pliska, P. Günter, St. Bauer, L. Becker, and Ch. Buchal, “Blue-light second-harmonic generation in ion-implanted KNbO3 channel waveguides of new design,” Appl. Phys. Lett. 69, 4133-4135 (1996).
[CrossRef]

Polgar, K.

F. Abdi, M. Aillerie, P. Bourson, M. D. Fontana, and K. Polgar, “Electro-optic properties in pure LiNbO3 crystals from the congruent to the stoichiometric composition,” J. Appl. Phys. 84, 2251-2254 (1998).
[CrossRef]

Pollnau, M.

L. Laversenne, P. Hoffmann, M. Pollnau, P. Moretti, and J. Mugnier, “Designable buried waveguides in sapphire by proton implantation,” Appl. Phys. Lett. 85, 5167-5169 (2004).
[CrossRef]

Prokhorov, A. M.

A. M. Prokhorov and Yu. S. Kuz'minov, Physics and Chemistry of Crystalline Lithium Niobate (Hilger, 1990).

Richards, J.

Sada, C.

M. Bianconi, N. Argiolas, M. Bazzan, G. G. Bentini, M. Chiarini, A. Cerutti, P. Mazzoldi, G. Pennestrì, and C. Sada, “On the dynamics of the damage growth in 5 MeV oxygen-implanted lithium niobate,” Appl. Phys. Lett. 87, 072901 (2005).
[CrossRef]

G. G. Bentini, M. Bianconi, L. Correra, M. Chiarini, P. Mazzoldi, C. Sada, N. Argiolas, M. Bazzan, and R. Guzzi, “Damage effects produced in the near-surface region of x-cut LiNbO3 by low dose, high energy implantation of nitrogen, oxygen, and fluorine ions,” J. Appl. Phys. 96, 242-247 (2004).
[CrossRef]

G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, “Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in X-cut LiNbO3: Planar optical waveguide formation and characterization,” J. Appl. Phys. 92, 6477-6483 (2002).
[CrossRef]

Shen, D.-Y.

X.-L. Wang, K.-M. Wang, F. Chen, G. Fu, S.-L. Li, H. Liu, L. Gao, D.-Y. Shen, H.-J. Ma, and R. Nie, “Optical properties of stoichiometric LiNbO3 waveguides formed by low-dose oxygen ion implantation,” Appl. Phys. Lett. 86, 041103 (2005).
[CrossRef]

S.-L. Li, K.-M. Wang, F. Chen, X.-L. Wang, G. Fu, D.-Y. Shen, H.-J. Ma, and R. Nie, “Monomode optical waveguide excited at 1540 nm in LiNbO3 formed by MeV carbon ion implantation at low doses,” Opt. Express 12, 747-752 (2004).
[CrossRef] [PubMed]

H. Hu, F. Lu, F. Chen, B.-R. Shi, K.-M. Wang, and D.-Y. Shen, “Extraordinary refractive-index increase in lithium niobate caused by low-dose ion implantation,” Appl. Opt. 40, 3759-3761 (2001).
[CrossRef]

H. Hu, F. Lu, F. Chen, B.-R. Shi, K.-M. Wang, and D.-Y. Shen, “Monomode optical waveguide in lithium niobate formed by MeV Si+ ion implantation,” J. Appl. Phys. 89, 5224-5226(2001).
[CrossRef]

Shi, B.-R.

H. Hu, F. Lu, F. Chen, B.-R. Shi, K.-M. Wang, and D.-Y. Shen, “Monomode optical waveguide in lithium niobate formed by MeV Si+ ion implantation,” J. Appl. Phys. 89, 5224-5226(2001).
[CrossRef]

H. Hu, F. Lu, F. Chen, B.-R. Shi, K.-M. Wang, and D.-Y. Shen, “Extraordinary refractive-index increase in lithium niobate caused by low-dose ion implantation,” Appl. Opt. 40, 3759-3761 (2001).
[CrossRef]

Suzuki, E.

B. M. Park, K. Kitamura, K. Terabe, Y. Furukara, Y. Ji, and E. Suzuki, “Mechanical twinning in stoichiometric lithium niobate single crystal,” J. Cryst. Growth 180, 101-104 (1997).
[CrossRef]

Tascu, S.

Terabe, K.

B. M. Park, K. Kitamura, K. Terabe, Y. Furukara, Y. Ji, and E. Suzuki, “Mechanical twinning in stoichiometric lithium niobate single crystal,” J. Cryst. Growth 180, 101-104 (1997).
[CrossRef]

Tsai, C. S.

C. S. Tsai, “Integrated acousto-optic circuits and applications,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 39, 529-533(1992).
[CrossRef] [PubMed]

Vazquez, G. V.

Vincent, B.

Wang, K.-M.

Y. Jiang, K.-M. Wang, X.-L. Wang, F. Chen, C.-L. Jia, L. Wang, Y. Jiao, and F. Lu, “Model of refractive-index changes in lithium niobate waveguides fabricated by ion implantation,” Phys. Rev. B 75, 195101 (2007).
[CrossRef]

F, Chen, X.-L. Wang, and K.-M. Wang, “Development of ion-implanted optical waveguides in optical materials,” Opt. Mater. 29, 1523-1542 (2007).
[CrossRef]

X.-L. Wang, K.-M. Wang, F. Chen, G. Fu, S.-L. Li, H. Liu, L. Gao, D.-Y. Shen, H.-J. Ma, and R. Nie, “Optical properties of stoichiometric LiNbO3 waveguides formed by low-dose oxygen ion implantation,” Appl. Phys. Lett. 86, 041103 (2005).
[CrossRef]

S.-L. Li, K.-M. Wang, F. Chen, X.-L. Wang, G. Fu, D.-Y. Shen, H.-J. Ma, and R. Nie, “Monomode optical waveguide excited at 1540 nm in LiNbO3 formed by MeV carbon ion implantation at low doses,” Opt. Express 12, 747-752 (2004).
[CrossRef] [PubMed]

H. Hu, F. Lu, F. Chen, B.-R. Shi, K.-M. Wang, and D.-Y. Shen, “Extraordinary refractive-index increase in lithium niobate caused by low-dose ion implantation,” Appl. Opt. 40, 3759-3761 (2001).
[CrossRef]

H. Hu, F. Lu, F. Chen, B.-R. Shi, K.-M. Wang, and D.-Y. Shen, “Monomode optical waveguide in lithium niobate formed by MeV Si+ ion implantation,” J. Appl. Phys. 89, 5224-5226(2001).
[CrossRef]

Wang, L.

Y. Jiang, K.-M. Wang, X.-L. Wang, F. Chen, C.-L. Jia, L. Wang, Y. Jiao, and F. Lu, “Model of refractive-index changes in lithium niobate waveguides fabricated by ion implantation,” Phys. Rev. B 75, 195101 (2007).
[CrossRef]

Wang, X.-L.

Y. Jiang, K.-M. Wang, X.-L. Wang, F. Chen, C.-L. Jia, L. Wang, Y. Jiao, and F. Lu, “Model of refractive-index changes in lithium niobate waveguides fabricated by ion implantation,” Phys. Rev. B 75, 195101 (2007).
[CrossRef]

F, Chen, X.-L. Wang, and K.-M. Wang, “Development of ion-implanted optical waveguides in optical materials,” Opt. Mater. 29, 1523-1542 (2007).
[CrossRef]

X.-L. Wang, K.-M. Wang, F. Chen, G. Fu, S.-L. Li, H. Liu, L. Gao, D.-Y. Shen, H.-J. Ma, and R. Nie, “Optical properties of stoichiometric LiNbO3 waveguides formed by low-dose oxygen ion implantation,” Appl. Phys. Lett. 86, 041103 (2005).
[CrossRef]

S.-L. Li, K.-M. Wang, F. Chen, X.-L. Wang, G. Fu, D.-Y. Shen, H.-J. Ma, and R. Nie, “Monomode optical waveguide excited at 1540 nm in LiNbO3 formed by MeV carbon ion implantation at low doses,” Opt. Express 12, 747-752 (2004).
[CrossRef] [PubMed]

White, J. M.

Ziegler, J. F.

J. F. Ziegler, Computer Code SRIM, <http://www.srim.org>.

Appl. Opt. (2)

Appl. Phys. Lett. (5)

P. Bindner, A. Boudrioua, J. C. Looulergue, and P. Moretti, “Formation of planar optical waveguides in potassium titanyl phosphate by double implantation of protons,” Appl. Phys. Lett. 79, 2558-2560 (2001).
[CrossRef]

D. Fluck, T. Pliska, P. Günter, St. Bauer, L. Becker, and Ch. Buchal, “Blue-light second-harmonic generation in ion-implanted KNbO3 channel waveguides of new design,” Appl. Phys. Lett. 69, 4133-4135 (1996).
[CrossRef]

L. Laversenne, P. Hoffmann, M. Pollnau, P. Moretti, and J. Mugnier, “Designable buried waveguides in sapphire by proton implantation,” Appl. Phys. Lett. 85, 5167-5169 (2004).
[CrossRef]

M. Bianconi, N. Argiolas, M. Bazzan, G. G. Bentini, M. Chiarini, A. Cerutti, P. Mazzoldi, G. Pennestrì, and C. Sada, “On the dynamics of the damage growth in 5 MeV oxygen-implanted lithium niobate,” Appl. Phys. Lett. 87, 072901 (2005).
[CrossRef]

X.-L. Wang, K.-M. Wang, F. Chen, G. Fu, S.-L. Li, H. Liu, L. Gao, D.-Y. Shen, H.-J. Ma, and R. Nie, “Optical properties of stoichiometric LiNbO3 waveguides formed by low-dose oxygen ion implantation,” Appl. Phys. Lett. 86, 041103 (2005).
[CrossRef]

CRC Crit. Rev. Solid State Mater. Sci. (1)

F. Chen, “Construction of two-dimensional waveguides in insulating optical materials by means of ion beam implantation for photonic applications: fabrication methods and research progress,” CRC Crit. Rev. Solid State Mater. Sci. 33, 165-182(2008).
[CrossRef]

IEEE Trans. Ultrason. Ferroelectr. Freq. Control (1)

C. S. Tsai, “Integrated acousto-optic circuits and applications,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 39, 529-533(1992).
[CrossRef] [PubMed]

J. Appl. Phys. (6)

G. G. Bentini, M. Bianconi, L. Correra, M. Chiarini, P. Mazzoldi, C. Sada, N. Argiolas, M. Bazzan, and R. Guzzi, “Damage effects produced in the near-surface region of x-cut LiNbO3 by low dose, high energy implantation of nitrogen, oxygen, and fluorine ions,” J. Appl. Phys. 96, 242-247 (2004).
[CrossRef]

D. Fluck, D. H. Jundt, and P. Gunter, “Modeling of refractive index profiles of He+ ion-implanted KNbO3 waveguides based on the irradiation parameters,” J. Appl. Phys. 74, 6023-6031(1993).
[CrossRef]

G. G. Bentini, M. Bianconi, M. Chiarini, L. Correra, C. Sada, P. Mazzoldi, N. Argiolas, M. Bazzan, and R. Guzzi, “Effect of low dose high energy O3+ implantation on refractive index and linear electro-optic properties in X-cut LiNbO3: Planar optical waveguide formation and characterization,” J. Appl. Phys. 92, 6477-6483 (2002).
[CrossRef]

H. Hu, F. Lu, F. Chen, B.-R. Shi, K.-M. Wang, and D.-Y. Shen, “Monomode optical waveguide in lithium niobate formed by MeV Si+ ion implantation,” J. Appl. Phys. 89, 5224-5226(2001).
[CrossRef]

F. Abdi, M. Aillerie, P. Bourson, M. D. Fontana, and K. Polgar, “Electro-optic properties in pure LiNbO3 crystals from the congruent to the stoichiometric composition,” J. Appl. Phys. 84, 2251-2254 (1998).
[CrossRef]

S. M. Kostritskii and P. Moretti, “Specific behavior of refractive indices in low-dose He+-implanted LiNbO3 waveguides,” J. Appl. Phys. 101, 094109 (2007).
[CrossRef]

J. Cryst. Growth (1)

B. M. Park, K. Kitamura, K. Terabe, Y. Furukara, Y. Ji, and E. Suzuki, “Mechanical twinning in stoichiometric lithium niobate single crystal,” J. Cryst. Growth 180, 101-104 (1997).
[CrossRef]

J. Opt. Soc. Am. B (1)

Nucl. Instrum. Methods Phys. Res. B (1)

V. V. Atuchin, “Causes of refractive indices changes in He-implanted LiNbO3 and LiTaO3 waveguides,” Nucl. Instrum. Methods Phys. Res. B 168, 498-502 (2000).
[CrossRef]

Opt. Acta (1)

P. J. Chandler and F. L. Lama, “A new approach to the determination of planar waveguide profiles by means of a non-stationary mode index calculation,” Opt. Acta 33, 127-143(1996).
[CrossRef]

Opt. Express (2)

Opt. Lett. (1)

Opt. Mater. (1)

F, Chen, X.-L. Wang, and K.-M. Wang, “Development of ion-implanted optical waveguides in optical materials,” Opt. Mater. 29, 1523-1542 (2007).
[CrossRef]

Phys. Rev. B (1)

Y. Jiang, K.-M. Wang, X.-L. Wang, F. Chen, C.-L. Jia, L. Wang, Y. Jiao, and F. Lu, “Model of refractive-index changes in lithium niobate waveguides fabricated by ion implantation,” Phys. Rev. B 75, 195101 (2007).
[CrossRef]

Phys. Status Solidi A (1)

L. Arizmendi, “Photonic applications of lithium niobate crystals,” Phys. Status Solidi A 201, 253-283 (2004).
[CrossRef]

Other (2)

A. M. Prokhorov and Yu. S. Kuz'minov, Physics and Chemistry of Crystalline Lithium Niobate (Hilger, 1990).

J. F. Ziegler, Computer Code SRIM, <http://www.srim.org>.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic of the channel waveguide fabrication process. The width of the photoresist is d = 43 μm , and the waveguide width is w = 7 μm .

Fig. 2
Fig. 2

Extraordinary refractive index ( n e ) dark mode spectra of the fabricated NSLN waveguide measured at wavelengths of 633 and 1539 nm before and after thermal annealing at 260 ° C for 30 min . The two dashed lines in the figure represent the n e of substrate at wavelengths of 633 and 1539 nm .

Fig. 3
Fig. 3

RCM-fitted n e refractive index profile in a NSLN waveguide formed by 6.0 MeV O 3 + implantation at a dose of 5 × 10 14 ions / cm 2 at the wavelength of 633 nm .

Fig. 4
Fig. 4

Nuclear energy deposition and electronic energy loss versus penetration depth of 6.0 MeV O 3 + implanted in NSLN crystal.

Fig. 5
Fig. 5

Ordinary refractive index ( n e ) dark mode spectra of fabricated NSLN waveguide measured at wavelengths of 633 and 1539 nm before and after thermal annealing at 260 ° C for 30 min . The two dashed lines represent n o of the substrate at the wavelength of 633 and 1539 nm .

Fig. 6
Fig. 6

RCM-fitted n o refractive index profile in a NSLN waveguide formed by 6.0 MeV O 3 + implantation at a dose of 5 × 10 14 ions / cm 2 at the wavelength of 633 nm .

Fig. 7
Fig. 7

Near-field intensity profile of the NSLN channel waveguide collected by CCD camera. The inset is an image of the end face of the channel waveguide obtained from an optical microscope.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

Δ n = Δ n P + Δ n V ,
α = 10 log 10 ( w 2 / w 1 T obj 2 T LN 2 η ) ,

Metrics