Abstract

Until recently, little has been done to study the effect of higher modulation frequencies (>100MHz) or short (<2ns) pulse durations on forward-scattered light in ocean water. This forward-scattered light limits image resolution and may ultimately limit the bandwidth of a point-to-point optical communications link. The purpose of this work is to study the propagation of modulated light fields at frequencies up to 1GHz. Results from laboratory tank experiments and their impact on future underwater optical imaging and communications systems are discussed.

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. R. Dalgleish, F. M. Caimi, W. B. Britton, and C. F. Andren, “Improved LLS imaging performance in scattering-dominant waters,” Proc. SPIE 7317 (to be published).
  2. A. Weidemann, G. R. Fournier, L. Forand, and P. Mathieu, “In harbor underwater threat detection/identification using active imaging,” Proc. SPIE 5780, 59-70 (2005).
    [CrossRef]
  3. M. E. Zevallos, S. K. Gayen, M. Alrubaiee, and R. R. Alfano, “Time-gated backscattered ballistic light imaging of objects in turbid water,” Appl. Phys. Lett. 86, 011115 (2005).
    [CrossRef]
  4. L. Mullen, A. Laux, B. Cochenour, E. P. Zege, I. L. Katsev, and A. S. Prikhach, “Demodulation techniques for the amplitude modulated laser imager,” Appl. Opt. 46, 7374-7383 (2007).
    [CrossRef] [PubMed]
  5. L. Bartolini, L. De Dominicis, M. Ferri de Collibus, G. Fornetti, M. Francucci, M. Guarneri, M. Nuvoli, E. Paglia, and R. Ricci, “Experimental evidence of signal-optical noise interferencelike effect in underwater amplitude-modulated laser optical radar systems,” Opt. Lett. 33, 2584-2586 (2008).
    [CrossRef] [PubMed]
  6. H. Hodara and R. J. Marquedant, “The signal/noise ratio concept in underwater optics,” Appl. Opt. 7, 527-534 (1968).
    [CrossRef] [PubMed]
  7. F. Hanson and S. Radic, “High bandwidth underwater optical communication,” Appl. Opt. 47, 277-283 (2008).
    [CrossRef] [PubMed]
  8. R. J. Helkey, D. J. Derickson, A. Mar, J. G. Wasserbauer, and J. E. Bowers, “Millimeter-wave signal generation using semiconductor diode lasers,” Microw. Opt. Technol. Lett. 6, 1-5(1993).
    [CrossRef]
  9. D. Gloge, E. L. Chinnock, and D. H. Ring, “Direct measurement of the (baseband) frequency response of multimode fibers,” Appl. Opt. 11, 1534-1538 (1972).
    [CrossRef] [PubMed]
  10. L. Mullen, B. Cochenour, W. Rabinovich, R. Mahon, and J. Muth, “Backscatter suppression for underwater modulating retroreflector links using polarization discrimination,” Appl. Opt. 48, 328-337 (2009).
    [CrossRef] [PubMed]
  11. S. Jaruwatanadilok, “Underwater wireless optical communication channel modeling and performance evaluation using vector radiative transfer theory,” IEEE J. Sel. Areas Commun. 26, 1620-1627 (2008).
    [CrossRef]
  12. C. D. Mobley, Light and Water. Radiative Transfer in Natural Waters (Academic, 1994).

2009 (1)

2008 (3)

2007 (1)

2005 (2)

A. Weidemann, G. R. Fournier, L. Forand, and P. Mathieu, “In harbor underwater threat detection/identification using active imaging,” Proc. SPIE 5780, 59-70 (2005).
[CrossRef]

M. E. Zevallos, S. K. Gayen, M. Alrubaiee, and R. R. Alfano, “Time-gated backscattered ballistic light imaging of objects in turbid water,” Appl. Phys. Lett. 86, 011115 (2005).
[CrossRef]

1993 (1)

R. J. Helkey, D. J. Derickson, A. Mar, J. G. Wasserbauer, and J. E. Bowers, “Millimeter-wave signal generation using semiconductor diode lasers,” Microw. Opt. Technol. Lett. 6, 1-5(1993).
[CrossRef]

1972 (1)

1968 (1)

Alfano, R. R.

M. E. Zevallos, S. K. Gayen, M. Alrubaiee, and R. R. Alfano, “Time-gated backscattered ballistic light imaging of objects in turbid water,” Appl. Phys. Lett. 86, 011115 (2005).
[CrossRef]

Alrubaiee, M.

M. E. Zevallos, S. K. Gayen, M. Alrubaiee, and R. R. Alfano, “Time-gated backscattered ballistic light imaging of objects in turbid water,” Appl. Phys. Lett. 86, 011115 (2005).
[CrossRef]

Andren, C. F.

F. R. Dalgleish, F. M. Caimi, W. B. Britton, and C. F. Andren, “Improved LLS imaging performance in scattering-dominant waters,” Proc. SPIE 7317 (to be published).

Bartolini, L.

Bowers, J. E.

R. J. Helkey, D. J. Derickson, A. Mar, J. G. Wasserbauer, and J. E. Bowers, “Millimeter-wave signal generation using semiconductor diode lasers,” Microw. Opt. Technol. Lett. 6, 1-5(1993).
[CrossRef]

Britton, W. B.

F. R. Dalgleish, F. M. Caimi, W. B. Britton, and C. F. Andren, “Improved LLS imaging performance in scattering-dominant waters,” Proc. SPIE 7317 (to be published).

Caimi, F. M.

F. R. Dalgleish, F. M. Caimi, W. B. Britton, and C. F. Andren, “Improved LLS imaging performance in scattering-dominant waters,” Proc. SPIE 7317 (to be published).

Chinnock, E. L.

Cochenour, B.

Dalgleish, F. R.

F. R. Dalgleish, F. M. Caimi, W. B. Britton, and C. F. Andren, “Improved LLS imaging performance in scattering-dominant waters,” Proc. SPIE 7317 (to be published).

De Dominicis, L.

Derickson, D. J.

R. J. Helkey, D. J. Derickson, A. Mar, J. G. Wasserbauer, and J. E. Bowers, “Millimeter-wave signal generation using semiconductor diode lasers,” Microw. Opt. Technol. Lett. 6, 1-5(1993).
[CrossRef]

Ferri de Collibus, M.

Forand, L.

A. Weidemann, G. R. Fournier, L. Forand, and P. Mathieu, “In harbor underwater threat detection/identification using active imaging,” Proc. SPIE 5780, 59-70 (2005).
[CrossRef]

Fornetti, G.

Fournier, G. R.

A. Weidemann, G. R. Fournier, L. Forand, and P. Mathieu, “In harbor underwater threat detection/identification using active imaging,” Proc. SPIE 5780, 59-70 (2005).
[CrossRef]

Francucci, M.

Gayen, S. K.

M. E. Zevallos, S. K. Gayen, M. Alrubaiee, and R. R. Alfano, “Time-gated backscattered ballistic light imaging of objects in turbid water,” Appl. Phys. Lett. 86, 011115 (2005).
[CrossRef]

Gloge, D.

Guarneri, M.

Hanson, F.

Helkey, R. J.

R. J. Helkey, D. J. Derickson, A. Mar, J. G. Wasserbauer, and J. E. Bowers, “Millimeter-wave signal generation using semiconductor diode lasers,” Microw. Opt. Technol. Lett. 6, 1-5(1993).
[CrossRef]

Hodara, H.

Jaruwatanadilok, S.

S. Jaruwatanadilok, “Underwater wireless optical communication channel modeling and performance evaluation using vector radiative transfer theory,” IEEE J. Sel. Areas Commun. 26, 1620-1627 (2008).
[CrossRef]

Katsev, I. L.

Laux, A.

Mahon, R.

Mar, A.

R. J. Helkey, D. J. Derickson, A. Mar, J. G. Wasserbauer, and J. E. Bowers, “Millimeter-wave signal generation using semiconductor diode lasers,” Microw. Opt. Technol. Lett. 6, 1-5(1993).
[CrossRef]

Marquedant, R. J.

Mathieu, P.

A. Weidemann, G. R. Fournier, L. Forand, and P. Mathieu, “In harbor underwater threat detection/identification using active imaging,” Proc. SPIE 5780, 59-70 (2005).
[CrossRef]

Mobley, C. D.

C. D. Mobley, Light and Water. Radiative Transfer in Natural Waters (Academic, 1994).

Mullen, L.

Muth, J.

Nuvoli, M.

Paglia, E.

Prikhach, A. S.

Rabinovich, W.

Radic, S.

Ricci, R.

Ring, D. H.

Wasserbauer, J. G.

R. J. Helkey, D. J. Derickson, A. Mar, J. G. Wasserbauer, and J. E. Bowers, “Millimeter-wave signal generation using semiconductor diode lasers,” Microw. Opt. Technol. Lett. 6, 1-5(1993).
[CrossRef]

Weidemann, A.

A. Weidemann, G. R. Fournier, L. Forand, and P. Mathieu, “In harbor underwater threat detection/identification using active imaging,” Proc. SPIE 5780, 59-70 (2005).
[CrossRef]

Zege, E. P.

Zevallos, M. E.

M. E. Zevallos, S. K. Gayen, M. Alrubaiee, and R. R. Alfano, “Time-gated backscattered ballistic light imaging of objects in turbid water,” Appl. Phys. Lett. 86, 011115 (2005).
[CrossRef]

Appl. Opt. (5)

Appl. Phys. Lett. (1)

M. E. Zevallos, S. K. Gayen, M. Alrubaiee, and R. R. Alfano, “Time-gated backscattered ballistic light imaging of objects in turbid water,” Appl. Phys. Lett. 86, 011115 (2005).
[CrossRef]

IEEE J. Sel. Areas Commun. (1)

S. Jaruwatanadilok, “Underwater wireless optical communication channel modeling and performance evaluation using vector radiative transfer theory,” IEEE J. Sel. Areas Commun. 26, 1620-1627 (2008).
[CrossRef]

Microw. Opt. Technol. Lett. (1)

R. J. Helkey, D. J. Derickson, A. Mar, J. G. Wasserbauer, and J. E. Bowers, “Millimeter-wave signal generation using semiconductor diode lasers,” Microw. Opt. Technol. Lett. 6, 1-5(1993).
[CrossRef]

Opt. Lett. (1)

Proc. SPIE (2)

F. R. Dalgleish, F. M. Caimi, W. B. Britton, and C. F. Andren, “Improved LLS imaging performance in scattering-dominant waters,” Proc. SPIE 7317 (to be published).

A. Weidemann, G. R. Fournier, L. Forand, and P. Mathieu, “In harbor underwater threat detection/identification using active imaging,” Proc. SPIE 5780, 59-70 (2005).
[CrossRef]

Other (1)

C. D. Mobley, Light and Water. Radiative Transfer in Natural Waters (Academic, 1994).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Graph showing the frequency spectrum of a mode-locked pulse train after being detected by a high-speed photodiode (EOT ET-4000) and a special modified PMT (Photonis PMT). The dashed lines show that the 3 dB bandwidth of the Photonis PMT is approximately 1 GHz .

Fig. 2
Fig. 2

Experimental setup for measuring the frequency response of forward-scattered light with a mode-locked laser. The PMT output is split into its AC and DC components with a bias tee, and they are analyzed with a microwave spectrum analyzer and a multimeter, respectively.

Fig. 3
Fig. 3

Modulation depth of the copolarized component of the detected signal versus frequency for different attenuation lengths.

Fig. 4
Fig. 4

Data from Fig. 3, showing modulation depth as a function of attenuation length for different frequencies. The dashed line indicates where the modulation depth is 0.5.

Fig. 5
Fig. 5

Modulation depth of the cross-polarized component of the detected signal versus frequency for different attenuation lengths.

Fig. 6
Fig. 6

Data from Fig. 5, showing modulation depth as a function of attenuation length for different frequencies. The dashed line indicates where the modulation depth is 0.5.

Fig. 7
Fig. 7

DOP versus frequency for different attenuation lengths. The DOP was computed from the data presented in Figs. 3, 4, 5, 6. The results for the DC component of the detected signal ( f = 0 ) is also shown for reference.

Fig. 8
Fig. 8

Data from Fig. 7, showing DOP versus attenuation length for different frequencies. The values for the DC component of the detected signal ( f = 0 ) is also shown for reference.

Fig. 9
Fig. 9

Plot of the received copolarized signal amplitude as a function of attenuation coefficient for different frequencies. Also plotted is the signal amplitude computed using the attenuation coefficient (labeled exp ( c d ) ).

Fig. 10
Fig. 10

Plot of the 3 dB frequency (frequency at which the modulation depth falls to 0.5) versus attenuation length for both copolarized and cross-polarized components of the detected signal.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

P opt ( t ) = P avg 2 π T τ n = exp [ ( t + n T ) 2 / 2 τ 2 ] ,
P r f ( f ) = 2 R L ( R P avg ) 2 exp [ ( 2.67 t p f ) 2 ] ,
M D ( f ) = V r f ( f ) 2 V avg ,
DOP ( f ) = V x , CO ( f ) V x , CROSS ( f ) V x , CO ( f ) + V x , CROSS ( f ) ,

Metrics