Abstract

The demonstration of continuous wave intracavity difference-frequency generation in the mid-infrared (mid-IR) is presented. A cavity for pump laser enhancement is constructed around a periodically poled lithium niobate crystal, and the cavity length is locked to the frequency of the pump laser using the Pound–Drever–Hall technique, producing a gain of 12 in the resultant idler power compared to the single-pass case. A widely tunable single-mode 3.3μm idler beam with a power of nearly 10mW is available for direct absorption spectroscopy. The pump-enhancement method demonstrated here should be readily scalable to produce hundreds of milliwatts of mid-IR light by using higher power signal and pump lasers.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. C. Faist, C. Gmachl, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “Distributed feedback quantum cascade lasers,” Appl. Phys. Lett. 70, 2670-2672 (1997).
    [CrossRef]
  2. S. W. Sharpe, J. F. Kelly, J. S. Hartman, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “High-resolution (Doppler-limited) spectroscopy using quantum-cascade distributed-feedback lasers,” Opt. Lett. 23, 1396-1398 (1998).
    [CrossRef]
  3. M. E. Klein, D.-H. Lee, J.-P. Meyn, K.-J. Boller, and R. Wallenstein, “Singly resonant continuous-wave optical parametric oscillator pumped by a diode laser,” Opt. Lett. 24, 1142-1144 (1999).
    [CrossRef]
  4. A. K. Y. Ngai, S. T. Persun, L. D. Lindsa, A. A. Kosterev, P. Gross, C. J. Lee, S. M. Cristescu, F. K. Tittel, K.-J. Boller, and F. J. M. Harren, “Continuous wave optical parametric oscillator for quartz-enhanced photoacoustic trace gas sensing,” Appl. Phys. B 89, 123-128 (2007).
    [CrossRef]
  5. G. A. Turnbull, D. McGloin, I. D. Lindsay, M. Ebrahimzadeh, and M. H. Dunn, “Extended mode-hop-free tuning by use of a dual-cavity pump-enhanced optical parametric oscillator,” Opt. Lett. 25, 341-343 (2000).
    [CrossRef]
  6. A. J. Henderson, P. M. Roper, L. A. Borschowa, and R. D. Mead, “Stable, continuously tunable operation of a diode-pumped doubly resonant optical parametric oscillator,” Opt. Lett. 25, 1264-1266 (2000).
    [CrossRef]
  7. F. G. Colville, M. J. Padgett, and M. H. Dunn, “Continuous-wave, dual-cavity, doubly resonant, optical parametric oscillator,” Appl. Phys. Lett. 64, 1490-1492 (1994).
  8. D. Richter, A. Fried, B. P. Wert, J. G. Walega, and F. K. Tittel, “Development of a tunable mid-IR difference frequency laser source for highly sensitive airborne trace gas detection,” Appl. Phys. B 75, 281-288 (2002).
    [CrossRef]
  9. D. Richter and P. Weibring, “Ultra-high precision mid-IR spectrometer I: design and analysis of an optical fiber pumped difference-frequency generation source,” Appl. Phys. B 82, 479-486 (2006).
    [CrossRef]
  10. P. Malara, P. Maddaloni, G. Gagliardi, and P. De Natale, “Combining a difference-frequency source with an off-axis high-finesse cavity for trace-gas monitoring around 3 μm,” Opt. Express 14, 1304-1313 (2006).
    [CrossRef] [PubMed]
  11. C. L. Canedy, W. W. Bewley, J. R. Lindle, C. S. Kim, M. Kim, I. Vurgaftman, J. R. Meyer, “High-power and high-efficiency midwave-infrared interband cascade lasers,” Appl. Phys. Lett. 88, 161103 (2006).
    [CrossRef]
  12. G. Wysocki, Y. Bakhirkin, S. So, F. K. Tittel, C. J. Hill, R. Q. Yang, and M. P. Fraser, “Dual interband cascade laser based trace-gas sensor for environmental monitoring,” Appl. Opt. 46, 8202-8210 (2007).
    [CrossRef] [PubMed]
  13. D. Richter, P. Weilbring, A. Fried, O. Tadanaga, Y. Nishida, M. Asobe, and H. Suzuki, “High-power, tunable difference frequency generation source for absorption spectroscopy based on a ridge waveguide periodically poled lithium niobate crystal,” Opt. Express 15, 564-571 (2007).
    [CrossRef] [PubMed]
  14. K. P. Petrov, S. Waltman, U. Simon, R. F. Curl, F. K. Tittel, E. J. Dlugokencky, and L. Hollberg, “Detection of methane in air using diode-laser pumped difference-frequency generation near 3.2 μm,” Appl. Phys. B 61, 553-558 (1995).
    [CrossRef]
  15. M. Asobe, O. Tadanaga, T. Yanagawa, H. Itoh, and H. Suzuki, “Reducing photorefractive effect in periodically poled ZnO- and MgO-doped LiNbO3 wavelength converters,” Appl. Phys. Lett. 78, 3163-3165 (2001).
    [CrossRef]
  16. E. D. Black, “An introduction to Pound-Drever-Hall laser frequency stabilization,” Am. J. Phys. 69, 79-87 (2001).
    [CrossRef]
  17. A. E. Siegman, “Laser mirrors and regenerative feedback,” in Lasers (University Science Books, 1986), pp. 416-420.
  18. L. E. Myers, R. C. Eckardt, M. M. Fejer, R. L. Byer, and W. R. Bosenberg, “Multigrating quasi-phase-matched optical parametric oscillator in periodically poled LiNbO3,” Opt. Lett. 21, 591-593 (1996).
    [CrossRef] [PubMed]
  19. E. J. Moyer, D. S. Sayres, G. S. Engel, J. M. St. Clair, F. M. Keutch, N. T. Allen, J. H. Kroll, and J. G. Anderson, “Design considerations in high-sensitivity off-axis integrated cavity output spectroscopy,” Appl. Phys. B 92, 467-474 (2008).
    [CrossRef]

2008 (1)

E. J. Moyer, D. S. Sayres, G. S. Engel, J. M. St. Clair, F. M. Keutch, N. T. Allen, J. H. Kroll, and J. G. Anderson, “Design considerations in high-sensitivity off-axis integrated cavity output spectroscopy,” Appl. Phys. B 92, 467-474 (2008).
[CrossRef]

2007 (3)

2006 (3)

D. Richter and P. Weibring, “Ultra-high precision mid-IR spectrometer I: design and analysis of an optical fiber pumped difference-frequency generation source,” Appl. Phys. B 82, 479-486 (2006).
[CrossRef]

C. L. Canedy, W. W. Bewley, J. R. Lindle, C. S. Kim, M. Kim, I. Vurgaftman, J. R. Meyer, “High-power and high-efficiency midwave-infrared interband cascade lasers,” Appl. Phys. Lett. 88, 161103 (2006).
[CrossRef]

P. Malara, P. Maddaloni, G. Gagliardi, and P. De Natale, “Combining a difference-frequency source with an off-axis high-finesse cavity for trace-gas monitoring around 3 μm,” Opt. Express 14, 1304-1313 (2006).
[CrossRef] [PubMed]

2002 (1)

D. Richter, A. Fried, B. P. Wert, J. G. Walega, and F. K. Tittel, “Development of a tunable mid-IR difference frequency laser source for highly sensitive airborne trace gas detection,” Appl. Phys. B 75, 281-288 (2002).
[CrossRef]

2001 (2)

M. Asobe, O. Tadanaga, T. Yanagawa, H. Itoh, and H. Suzuki, “Reducing photorefractive effect in periodically poled ZnO- and MgO-doped LiNbO3 wavelength converters,” Appl. Phys. Lett. 78, 3163-3165 (2001).
[CrossRef]

E. D. Black, “An introduction to Pound-Drever-Hall laser frequency stabilization,” Am. J. Phys. 69, 79-87 (2001).
[CrossRef]

2000 (2)

1999 (1)

1998 (1)

1997 (1)

J. C. Faist, C. Gmachl, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “Distributed feedback quantum cascade lasers,” Appl. Phys. Lett. 70, 2670-2672 (1997).
[CrossRef]

1996 (1)

1995 (1)

K. P. Petrov, S. Waltman, U. Simon, R. F. Curl, F. K. Tittel, E. J. Dlugokencky, and L. Hollberg, “Detection of methane in air using diode-laser pumped difference-frequency generation near 3.2 μm,” Appl. Phys. B 61, 553-558 (1995).
[CrossRef]

1994 (1)

F. G. Colville, M. J. Padgett, and M. H. Dunn, “Continuous-wave, dual-cavity, doubly resonant, optical parametric oscillator,” Appl. Phys. Lett. 64, 1490-1492 (1994).

Allen, N. T.

E. J. Moyer, D. S. Sayres, G. S. Engel, J. M. St. Clair, F. M. Keutch, N. T. Allen, J. H. Kroll, and J. G. Anderson, “Design considerations in high-sensitivity off-axis integrated cavity output spectroscopy,” Appl. Phys. B 92, 467-474 (2008).
[CrossRef]

Anderson, J. G.

E. J. Moyer, D. S. Sayres, G. S. Engel, J. M. St. Clair, F. M. Keutch, N. T. Allen, J. H. Kroll, and J. G. Anderson, “Design considerations in high-sensitivity off-axis integrated cavity output spectroscopy,” Appl. Phys. B 92, 467-474 (2008).
[CrossRef]

Asobe, M.

D. Richter, P. Weilbring, A. Fried, O. Tadanaga, Y. Nishida, M. Asobe, and H. Suzuki, “High-power, tunable difference frequency generation source for absorption spectroscopy based on a ridge waveguide periodically poled lithium niobate crystal,” Opt. Express 15, 564-571 (2007).
[CrossRef] [PubMed]

M. Asobe, O. Tadanaga, T. Yanagawa, H. Itoh, and H. Suzuki, “Reducing photorefractive effect in periodically poled ZnO- and MgO-doped LiNbO3 wavelength converters,” Appl. Phys. Lett. 78, 3163-3165 (2001).
[CrossRef]

Baillargeon, J. N.

S. W. Sharpe, J. F. Kelly, J. S. Hartman, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “High-resolution (Doppler-limited) spectroscopy using quantum-cascade distributed-feedback lasers,” Opt. Lett. 23, 1396-1398 (1998).
[CrossRef]

J. C. Faist, C. Gmachl, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “Distributed feedback quantum cascade lasers,” Appl. Phys. Lett. 70, 2670-2672 (1997).
[CrossRef]

Bakhirkin, Y.

Bewley, W. W.

C. L. Canedy, W. W. Bewley, J. R. Lindle, C. S. Kim, M. Kim, I. Vurgaftman, J. R. Meyer, “High-power and high-efficiency midwave-infrared interband cascade lasers,” Appl. Phys. Lett. 88, 161103 (2006).
[CrossRef]

Black, E. D.

E. D. Black, “An introduction to Pound-Drever-Hall laser frequency stabilization,” Am. J. Phys. 69, 79-87 (2001).
[CrossRef]

Boller, K.-J.

A. K. Y. Ngai, S. T. Persun, L. D. Lindsa, A. A. Kosterev, P. Gross, C. J. Lee, S. M. Cristescu, F. K. Tittel, K.-J. Boller, and F. J. M. Harren, “Continuous wave optical parametric oscillator for quartz-enhanced photoacoustic trace gas sensing,” Appl. Phys. B 89, 123-128 (2007).
[CrossRef]

M. E. Klein, D.-H. Lee, J.-P. Meyn, K.-J. Boller, and R. Wallenstein, “Singly resonant continuous-wave optical parametric oscillator pumped by a diode laser,” Opt. Lett. 24, 1142-1144 (1999).
[CrossRef]

Borschowa, L. A.

Bosenberg, W. R.

Byer, R. L.

Canedy, C. L.

C. L. Canedy, W. W. Bewley, J. R. Lindle, C. S. Kim, M. Kim, I. Vurgaftman, J. R. Meyer, “High-power and high-efficiency midwave-infrared interband cascade lasers,” Appl. Phys. Lett. 88, 161103 (2006).
[CrossRef]

Capasso, F.

S. W. Sharpe, J. F. Kelly, J. S. Hartman, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “High-resolution (Doppler-limited) spectroscopy using quantum-cascade distributed-feedback lasers,” Opt. Lett. 23, 1396-1398 (1998).
[CrossRef]

J. C. Faist, C. Gmachl, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “Distributed feedback quantum cascade lasers,” Appl. Phys. Lett. 70, 2670-2672 (1997).
[CrossRef]

Cho, A. Y.

S. W. Sharpe, J. F. Kelly, J. S. Hartman, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “High-resolution (Doppler-limited) spectroscopy using quantum-cascade distributed-feedback lasers,” Opt. Lett. 23, 1396-1398 (1998).
[CrossRef]

J. C. Faist, C. Gmachl, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “Distributed feedback quantum cascade lasers,” Appl. Phys. Lett. 70, 2670-2672 (1997).
[CrossRef]

Colville, F. G.

F. G. Colville, M. J. Padgett, and M. H. Dunn, “Continuous-wave, dual-cavity, doubly resonant, optical parametric oscillator,” Appl. Phys. Lett. 64, 1490-1492 (1994).

Cristescu, S. M.

A. K. Y. Ngai, S. T. Persun, L. D. Lindsa, A. A. Kosterev, P. Gross, C. J. Lee, S. M. Cristescu, F. K. Tittel, K.-J. Boller, and F. J. M. Harren, “Continuous wave optical parametric oscillator for quartz-enhanced photoacoustic trace gas sensing,” Appl. Phys. B 89, 123-128 (2007).
[CrossRef]

Curl, R. F.

K. P. Petrov, S. Waltman, U. Simon, R. F. Curl, F. K. Tittel, E. J. Dlugokencky, and L. Hollberg, “Detection of methane in air using diode-laser pumped difference-frequency generation near 3.2 μm,” Appl. Phys. B 61, 553-558 (1995).
[CrossRef]

De Natale, P.

Dlugokencky, E. J.

K. P. Petrov, S. Waltman, U. Simon, R. F. Curl, F. K. Tittel, E. J. Dlugokencky, and L. Hollberg, “Detection of methane in air using diode-laser pumped difference-frequency generation near 3.2 μm,” Appl. Phys. B 61, 553-558 (1995).
[CrossRef]

Dunn, M. H.

G. A. Turnbull, D. McGloin, I. D. Lindsay, M. Ebrahimzadeh, and M. H. Dunn, “Extended mode-hop-free tuning by use of a dual-cavity pump-enhanced optical parametric oscillator,” Opt. Lett. 25, 341-343 (2000).
[CrossRef]

F. G. Colville, M. J. Padgett, and M. H. Dunn, “Continuous-wave, dual-cavity, doubly resonant, optical parametric oscillator,” Appl. Phys. Lett. 64, 1490-1492 (1994).

Ebrahimzadeh, M.

Eckardt, R. C.

Engel, G. S.

E. J. Moyer, D. S. Sayres, G. S. Engel, J. M. St. Clair, F. M. Keutch, N. T. Allen, J. H. Kroll, and J. G. Anderson, “Design considerations in high-sensitivity off-axis integrated cavity output spectroscopy,” Appl. Phys. B 92, 467-474 (2008).
[CrossRef]

Faist, J. C.

J. C. Faist, C. Gmachl, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “Distributed feedback quantum cascade lasers,” Appl. Phys. Lett. 70, 2670-2672 (1997).
[CrossRef]

Fejer, M. M.

Fraser, M. P.

Fried, A.

D. Richter, P. Weilbring, A. Fried, O. Tadanaga, Y. Nishida, M. Asobe, and H. Suzuki, “High-power, tunable difference frequency generation source for absorption spectroscopy based on a ridge waveguide periodically poled lithium niobate crystal,” Opt. Express 15, 564-571 (2007).
[CrossRef] [PubMed]

D. Richter, A. Fried, B. P. Wert, J. G. Walega, and F. K. Tittel, “Development of a tunable mid-IR difference frequency laser source for highly sensitive airborne trace gas detection,” Appl. Phys. B 75, 281-288 (2002).
[CrossRef]

Gagliardi, G.

Gmachl, C.

S. W. Sharpe, J. F. Kelly, J. S. Hartman, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “High-resolution (Doppler-limited) spectroscopy using quantum-cascade distributed-feedback lasers,” Opt. Lett. 23, 1396-1398 (1998).
[CrossRef]

J. C. Faist, C. Gmachl, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “Distributed feedback quantum cascade lasers,” Appl. Phys. Lett. 70, 2670-2672 (1997).
[CrossRef]

Gross, P.

A. K. Y. Ngai, S. T. Persun, L. D. Lindsa, A. A. Kosterev, P. Gross, C. J. Lee, S. M. Cristescu, F. K. Tittel, K.-J. Boller, and F. J. M. Harren, “Continuous wave optical parametric oscillator for quartz-enhanced photoacoustic trace gas sensing,” Appl. Phys. B 89, 123-128 (2007).
[CrossRef]

Harren, F. J. M.

A. K. Y. Ngai, S. T. Persun, L. D. Lindsa, A. A. Kosterev, P. Gross, C. J. Lee, S. M. Cristescu, F. K. Tittel, K.-J. Boller, and F. J. M. Harren, “Continuous wave optical parametric oscillator for quartz-enhanced photoacoustic trace gas sensing,” Appl. Phys. B 89, 123-128 (2007).
[CrossRef]

Hartman, J. S.

Henderson, A. J.

Hill, C. J.

Hollberg, L.

K. P. Petrov, S. Waltman, U. Simon, R. F. Curl, F. K. Tittel, E. J. Dlugokencky, and L. Hollberg, “Detection of methane in air using diode-laser pumped difference-frequency generation near 3.2 μm,” Appl. Phys. B 61, 553-558 (1995).
[CrossRef]

Itoh, H.

M. Asobe, O. Tadanaga, T. Yanagawa, H. Itoh, and H. Suzuki, “Reducing photorefractive effect in periodically poled ZnO- and MgO-doped LiNbO3 wavelength converters,” Appl. Phys. Lett. 78, 3163-3165 (2001).
[CrossRef]

Kelly, J. F.

Keutch, F. M.

E. J. Moyer, D. S. Sayres, G. S. Engel, J. M. St. Clair, F. M. Keutch, N. T. Allen, J. H. Kroll, and J. G. Anderson, “Design considerations in high-sensitivity off-axis integrated cavity output spectroscopy,” Appl. Phys. B 92, 467-474 (2008).
[CrossRef]

Kim, C. S.

C. L. Canedy, W. W. Bewley, J. R. Lindle, C. S. Kim, M. Kim, I. Vurgaftman, J. R. Meyer, “High-power and high-efficiency midwave-infrared interband cascade lasers,” Appl. Phys. Lett. 88, 161103 (2006).
[CrossRef]

Kim, M.

C. L. Canedy, W. W. Bewley, J. R. Lindle, C. S. Kim, M. Kim, I. Vurgaftman, J. R. Meyer, “High-power and high-efficiency midwave-infrared interband cascade lasers,” Appl. Phys. Lett. 88, 161103 (2006).
[CrossRef]

Klein, M. E.

Kosterev, A. A.

A. K. Y. Ngai, S. T. Persun, L. D. Lindsa, A. A. Kosterev, P. Gross, C. J. Lee, S. M. Cristescu, F. K. Tittel, K.-J. Boller, and F. J. M. Harren, “Continuous wave optical parametric oscillator for quartz-enhanced photoacoustic trace gas sensing,” Appl. Phys. B 89, 123-128 (2007).
[CrossRef]

Kroll, J. H.

E. J. Moyer, D. S. Sayres, G. S. Engel, J. M. St. Clair, F. M. Keutch, N. T. Allen, J. H. Kroll, and J. G. Anderson, “Design considerations in high-sensitivity off-axis integrated cavity output spectroscopy,” Appl. Phys. B 92, 467-474 (2008).
[CrossRef]

Lee, C. J.

A. K. Y. Ngai, S. T. Persun, L. D. Lindsa, A. A. Kosterev, P. Gross, C. J. Lee, S. M. Cristescu, F. K. Tittel, K.-J. Boller, and F. J. M. Harren, “Continuous wave optical parametric oscillator for quartz-enhanced photoacoustic trace gas sensing,” Appl. Phys. B 89, 123-128 (2007).
[CrossRef]

Lee, D.-H.

Lindle, J. R.

C. L. Canedy, W. W. Bewley, J. R. Lindle, C. S. Kim, M. Kim, I. Vurgaftman, J. R. Meyer, “High-power and high-efficiency midwave-infrared interband cascade lasers,” Appl. Phys. Lett. 88, 161103 (2006).
[CrossRef]

Lindsa, L. D.

A. K. Y. Ngai, S. T. Persun, L. D. Lindsa, A. A. Kosterev, P. Gross, C. J. Lee, S. M. Cristescu, F. K. Tittel, K.-J. Boller, and F. J. M. Harren, “Continuous wave optical parametric oscillator for quartz-enhanced photoacoustic trace gas sensing,” Appl. Phys. B 89, 123-128 (2007).
[CrossRef]

Lindsay, I. D.

Maddaloni, P.

Malara, P.

McGloin, D.

Mead, R. D.

Meyer, J. R.

C. L. Canedy, W. W. Bewley, J. R. Lindle, C. S. Kim, M. Kim, I. Vurgaftman, J. R. Meyer, “High-power and high-efficiency midwave-infrared interband cascade lasers,” Appl. Phys. Lett. 88, 161103 (2006).
[CrossRef]

Meyn, J.-P.

Moyer, E. J.

E. J. Moyer, D. S. Sayres, G. S. Engel, J. M. St. Clair, F. M. Keutch, N. T. Allen, J. H. Kroll, and J. G. Anderson, “Design considerations in high-sensitivity off-axis integrated cavity output spectroscopy,” Appl. Phys. B 92, 467-474 (2008).
[CrossRef]

Myers, L. E.

Ngai, A. K. Y.

A. K. Y. Ngai, S. T. Persun, L. D. Lindsa, A. A. Kosterev, P. Gross, C. J. Lee, S. M. Cristescu, F. K. Tittel, K.-J. Boller, and F. J. M. Harren, “Continuous wave optical parametric oscillator for quartz-enhanced photoacoustic trace gas sensing,” Appl. Phys. B 89, 123-128 (2007).
[CrossRef]

Nishida, Y.

Padgett, M. J.

F. G. Colville, M. J. Padgett, and M. H. Dunn, “Continuous-wave, dual-cavity, doubly resonant, optical parametric oscillator,” Appl. Phys. Lett. 64, 1490-1492 (1994).

Persun, S. T.

A. K. Y. Ngai, S. T. Persun, L. D. Lindsa, A. A. Kosterev, P. Gross, C. J. Lee, S. M. Cristescu, F. K. Tittel, K.-J. Boller, and F. J. M. Harren, “Continuous wave optical parametric oscillator for quartz-enhanced photoacoustic trace gas sensing,” Appl. Phys. B 89, 123-128 (2007).
[CrossRef]

Petrov, K. P.

K. P. Petrov, S. Waltman, U. Simon, R. F. Curl, F. K. Tittel, E. J. Dlugokencky, and L. Hollberg, “Detection of methane in air using diode-laser pumped difference-frequency generation near 3.2 μm,” Appl. Phys. B 61, 553-558 (1995).
[CrossRef]

Richter, D.

D. Richter, P. Weilbring, A. Fried, O. Tadanaga, Y. Nishida, M. Asobe, and H. Suzuki, “High-power, tunable difference frequency generation source for absorption spectroscopy based on a ridge waveguide periodically poled lithium niobate crystal,” Opt. Express 15, 564-571 (2007).
[CrossRef] [PubMed]

D. Richter and P. Weibring, “Ultra-high precision mid-IR spectrometer I: design and analysis of an optical fiber pumped difference-frequency generation source,” Appl. Phys. B 82, 479-486 (2006).
[CrossRef]

D. Richter, A. Fried, B. P. Wert, J. G. Walega, and F. K. Tittel, “Development of a tunable mid-IR difference frequency laser source for highly sensitive airborne trace gas detection,” Appl. Phys. B 75, 281-288 (2002).
[CrossRef]

Roper, P. M.

Sayres, D. S.

E. J. Moyer, D. S. Sayres, G. S. Engel, J. M. St. Clair, F. M. Keutch, N. T. Allen, J. H. Kroll, and J. G. Anderson, “Design considerations in high-sensitivity off-axis integrated cavity output spectroscopy,” Appl. Phys. B 92, 467-474 (2008).
[CrossRef]

Sharpe, S. W.

Siegman, A. E.

A. E. Siegman, “Laser mirrors and regenerative feedback,” in Lasers (University Science Books, 1986), pp. 416-420.

Simon, U.

K. P. Petrov, S. Waltman, U. Simon, R. F. Curl, F. K. Tittel, E. J. Dlugokencky, and L. Hollberg, “Detection of methane in air using diode-laser pumped difference-frequency generation near 3.2 μm,” Appl. Phys. B 61, 553-558 (1995).
[CrossRef]

Sirtori, C.

J. C. Faist, C. Gmachl, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “Distributed feedback quantum cascade lasers,” Appl. Phys. Lett. 70, 2670-2672 (1997).
[CrossRef]

Sivco, D. L.

S. W. Sharpe, J. F. Kelly, J. S. Hartman, C. Gmachl, F. Capasso, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “High-resolution (Doppler-limited) spectroscopy using quantum-cascade distributed-feedback lasers,” Opt. Lett. 23, 1396-1398 (1998).
[CrossRef]

J. C. Faist, C. Gmachl, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “Distributed feedback quantum cascade lasers,” Appl. Phys. Lett. 70, 2670-2672 (1997).
[CrossRef]

So, S.

St. Clair, J. M.

E. J. Moyer, D. S. Sayres, G. S. Engel, J. M. St. Clair, F. M. Keutch, N. T. Allen, J. H. Kroll, and J. G. Anderson, “Design considerations in high-sensitivity off-axis integrated cavity output spectroscopy,” Appl. Phys. B 92, 467-474 (2008).
[CrossRef]

Suzuki, H.

D. Richter, P. Weilbring, A. Fried, O. Tadanaga, Y. Nishida, M. Asobe, and H. Suzuki, “High-power, tunable difference frequency generation source for absorption spectroscopy based on a ridge waveguide periodically poled lithium niobate crystal,” Opt. Express 15, 564-571 (2007).
[CrossRef] [PubMed]

M. Asobe, O. Tadanaga, T. Yanagawa, H. Itoh, and H. Suzuki, “Reducing photorefractive effect in periodically poled ZnO- and MgO-doped LiNbO3 wavelength converters,” Appl. Phys. Lett. 78, 3163-3165 (2001).
[CrossRef]

Tadanaga, O.

D. Richter, P. Weilbring, A. Fried, O. Tadanaga, Y. Nishida, M. Asobe, and H. Suzuki, “High-power, tunable difference frequency generation source for absorption spectroscopy based on a ridge waveguide periodically poled lithium niobate crystal,” Opt. Express 15, 564-571 (2007).
[CrossRef] [PubMed]

M. Asobe, O. Tadanaga, T. Yanagawa, H. Itoh, and H. Suzuki, “Reducing photorefractive effect in periodically poled ZnO- and MgO-doped LiNbO3 wavelength converters,” Appl. Phys. Lett. 78, 3163-3165 (2001).
[CrossRef]

Tittel, F. K.

A. K. Y. Ngai, S. T. Persun, L. D. Lindsa, A. A. Kosterev, P. Gross, C. J. Lee, S. M. Cristescu, F. K. Tittel, K.-J. Boller, and F. J. M. Harren, “Continuous wave optical parametric oscillator for quartz-enhanced photoacoustic trace gas sensing,” Appl. Phys. B 89, 123-128 (2007).
[CrossRef]

G. Wysocki, Y. Bakhirkin, S. So, F. K. Tittel, C. J. Hill, R. Q. Yang, and M. P. Fraser, “Dual interband cascade laser based trace-gas sensor for environmental monitoring,” Appl. Opt. 46, 8202-8210 (2007).
[CrossRef] [PubMed]

D. Richter, A. Fried, B. P. Wert, J. G. Walega, and F. K. Tittel, “Development of a tunable mid-IR difference frequency laser source for highly sensitive airborne trace gas detection,” Appl. Phys. B 75, 281-288 (2002).
[CrossRef]

K. P. Petrov, S. Waltman, U. Simon, R. F. Curl, F. K. Tittel, E. J. Dlugokencky, and L. Hollberg, “Detection of methane in air using diode-laser pumped difference-frequency generation near 3.2 μm,” Appl. Phys. B 61, 553-558 (1995).
[CrossRef]

Turnbull, G. A.

Vurgaftman, I.

C. L. Canedy, W. W. Bewley, J. R. Lindle, C. S. Kim, M. Kim, I. Vurgaftman, J. R. Meyer, “High-power and high-efficiency midwave-infrared interband cascade lasers,” Appl. Phys. Lett. 88, 161103 (2006).
[CrossRef]

Walega, J. G.

D. Richter, A. Fried, B. P. Wert, J. G. Walega, and F. K. Tittel, “Development of a tunable mid-IR difference frequency laser source for highly sensitive airborne trace gas detection,” Appl. Phys. B 75, 281-288 (2002).
[CrossRef]

Wallenstein, R.

Waltman, S.

K. P. Petrov, S. Waltman, U. Simon, R. F. Curl, F. K. Tittel, E. J. Dlugokencky, and L. Hollberg, “Detection of methane in air using diode-laser pumped difference-frequency generation near 3.2 μm,” Appl. Phys. B 61, 553-558 (1995).
[CrossRef]

Weibring, P.

D. Richter and P. Weibring, “Ultra-high precision mid-IR spectrometer I: design and analysis of an optical fiber pumped difference-frequency generation source,” Appl. Phys. B 82, 479-486 (2006).
[CrossRef]

Weilbring, P.

Wert, B. P.

D. Richter, A. Fried, B. P. Wert, J. G. Walega, and F. K. Tittel, “Development of a tunable mid-IR difference frequency laser source for highly sensitive airborne trace gas detection,” Appl. Phys. B 75, 281-288 (2002).
[CrossRef]

Wysocki, G.

Yanagawa, T.

M. Asobe, O. Tadanaga, T. Yanagawa, H. Itoh, and H. Suzuki, “Reducing photorefractive effect in periodically poled ZnO- and MgO-doped LiNbO3 wavelength converters,” Appl. Phys. Lett. 78, 3163-3165 (2001).
[CrossRef]

Yang, R. Q.

Am. J. Phys. (1)

E. D. Black, “An introduction to Pound-Drever-Hall laser frequency stabilization,” Am. J. Phys. 69, 79-87 (2001).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. B (5)

A. K. Y. Ngai, S. T. Persun, L. D. Lindsa, A. A. Kosterev, P. Gross, C. J. Lee, S. M. Cristescu, F. K. Tittel, K.-J. Boller, and F. J. M. Harren, “Continuous wave optical parametric oscillator for quartz-enhanced photoacoustic trace gas sensing,” Appl. Phys. B 89, 123-128 (2007).
[CrossRef]

D. Richter, A. Fried, B. P. Wert, J. G. Walega, and F. K. Tittel, “Development of a tunable mid-IR difference frequency laser source for highly sensitive airborne trace gas detection,” Appl. Phys. B 75, 281-288 (2002).
[CrossRef]

D. Richter and P. Weibring, “Ultra-high precision mid-IR spectrometer I: design and analysis of an optical fiber pumped difference-frequency generation source,” Appl. Phys. B 82, 479-486 (2006).
[CrossRef]

K. P. Petrov, S. Waltman, U. Simon, R. F. Curl, F. K. Tittel, E. J. Dlugokencky, and L. Hollberg, “Detection of methane in air using diode-laser pumped difference-frequency generation near 3.2 μm,” Appl. Phys. B 61, 553-558 (1995).
[CrossRef]

E. J. Moyer, D. S. Sayres, G. S. Engel, J. M. St. Clair, F. M. Keutch, N. T. Allen, J. H. Kroll, and J. G. Anderson, “Design considerations in high-sensitivity off-axis integrated cavity output spectroscopy,” Appl. Phys. B 92, 467-474 (2008).
[CrossRef]

Appl. Phys. Lett. (4)

J. C. Faist, C. Gmachl, F. Capasso, C. Sirtori, D. L. Sivco, J. N. Baillargeon, and A. Y. Cho, “Distributed feedback quantum cascade lasers,” Appl. Phys. Lett. 70, 2670-2672 (1997).
[CrossRef]

C. L. Canedy, W. W. Bewley, J. R. Lindle, C. S. Kim, M. Kim, I. Vurgaftman, J. R. Meyer, “High-power and high-efficiency midwave-infrared interband cascade lasers,” Appl. Phys. Lett. 88, 161103 (2006).
[CrossRef]

M. Asobe, O. Tadanaga, T. Yanagawa, H. Itoh, and H. Suzuki, “Reducing photorefractive effect in periodically poled ZnO- and MgO-doped LiNbO3 wavelength converters,” Appl. Phys. Lett. 78, 3163-3165 (2001).
[CrossRef]

F. G. Colville, M. J. Padgett, and M. H. Dunn, “Continuous-wave, dual-cavity, doubly resonant, optical parametric oscillator,” Appl. Phys. Lett. 64, 1490-1492 (1994).

Opt. Express (2)

Opt. Lett. (5)

Other (1)

A. E. Siegman, “Laser mirrors and regenerative feedback,” in Lasers (University Science Books, 1986), pp. 416-420.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

PE DFG laser. The pump ( 1064 nm ) and signal ( 1576 nm ) lasers are combined into an optical fiber using a WDM. The cavity length is actively locked to the frequency of the pump laser while the signal laser is single passed. Current tuning of the signal laser results in wavelength (and power) tuning of the 3.3 μm idler beam used for spectroscopy.

Fig. 2
Fig. 2

Photograph of pump-enhancement cavity including the temperature-controlled PPLN stage (left). Photos of 1064 nm cavity output, showing transverse cavity modes supported by the cavity (right). When properly aligned, only the lowest-order TEM 00 mode of the pump beam is amplified, suggesting that the idler beam is generated in TEM 00 .

Fig. 3
Fig. 3

Typical reflection spectrum of the pump-enhancement cavity recorded as the cavity length is scanned with the 20 MHz laser modulation turned on (dark solid curve) and off (light solid curve). Sidebands are evident in with the modulation turned on, allowing for a wider bandwidth and more robust cavity lock (for this figure, the magnitude of modulation is amplified fivefold compared to operational level in order to illustrate the emergence of sidebands). The dashed curve below shows the difference in phase between the applied modulation and that which is recorded at the lock detector (reflection from mirror 1). This is the error signal used by the PID regulator to lock the cavity length to the pump frequency.

Fig. 4
Fig. 4

Transmission spectrum of three closely spaced methane lines at 20 Torr , using single-pass DFG (middle panel) and the PE DFG source described here (bottom panel). The dotted curve (top panel) shows the spectrum obtained as the PE DFG source is directed through a germanium etalon and tuned over the same wavelength region. The single-valued Airy function that describes this oscillation is evidence that the idler wavelength from the PE DFG source is indeed single mode.

Tables (1)

Tables Icon

Table 1 Pump-Enhanced Difference-Frequency Generation Cavity Mirror Coatings for Both Sides of Each Optic

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

F = FSR Δ υ = 2 π · b .
Γ = I cavity I input = T 1 ( 1 R 1 R 2 ... R n L 1 L 2 ... L m ) 2 ,

Metrics