Abstract

We propose a hybrid-guidance photonic crystal fiber (HG-PCF) that can guide light by the simultaneous effect of index guidance and photonic bandgap guidance at all wavelengths and directions. Index guidance is the dominant guidance mechanism at short wavelengths and photonic bandgap guidance is the dominant guidance mechanism at long wavelengths. The transmission spectrum of the Bragg grating in such a HG-PCF is also investigated.

© 2009 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. C. Knight, “Photonic crystal fibres,” Nature 424, 847-851(2003).
    [CrossRef] [PubMed]
  2. T. P. White, R. C. McPhedran, C. Martjin de Sterke, N. M. Litchinitser, and B. J. Eggleton, “Resonance and scattering in microstructured optical fibers,” Opt. Lett. 27, 1977-1979 (2002).
    [CrossRef]
  3. N. M. Litchinitser, A. K. Abeeluck, C. Headley, and B. J. Eggleton, “Antiresonant reflecting photonic crystal optical waveguides,” Opt. Lett. 27, 1592-1594 (2002).
    [CrossRef]
  4. A. K. Abeeluck, N. M. Litchinitser, C. Headley, and B. J. Eggleton, “Analysis of spectral characteristics of photonic bandgap waveguides,” Opt. Express 10, 1320-1333 (2002).
    [PubMed]
  5. N. M. Litchinitser, S. C. Dunn, B. Usner, B. J. Eggleton, T. P. White, R. C. McPhedran, and C. Martijn de Sterke, “Resonances in microstructured optical waveguides,” Opt. Express 11, 1243-1251 (2003).
    [CrossRef] [PubMed]
  6. M. A. Duguay, Y. Kukubun, T. L. Koch, and L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2−Si multilayer structures,” Appl. Phys. Lett. 49, 13-15 (1986).
    [CrossRef]
  7. S. A. Cerqueira, Jr., F. Luan, C. M. B. Cordeiro, A. K. George, and J. C. Knight, “Hybrid photonic crystal fiber,” Opt. Express 14, 926-931 (2006).
    [CrossRef]
  8. M. Perrin, Y. Quiquempois, G. Bouwmans, and M. Douay, “Coexistence of total internal reflexion and bandgap modes in solid core photonic bandgap fibre with intersticial air holes,” Opt. Express 15, 13783-13795 (2007).
    [CrossRef] [PubMed]
  9. L. Jin, Z. Wang, Y. Liu, G. Kai, and X. Dong, “Ultraviolet-inscribed long period grating in all solid photonic bandgap fibers,” Opt. Express 16, 21119-21131 (2008).
    [CrossRef] [PubMed]
  10. L. Lavoute, P. Roy, A. Desfarges-Berthelemot, V. Kermene, and S. Fevrier, “Design of microstructured single-mode fiber combining large mode area and high rare earth ion concentration,” Opt. Express 14, 2994-2999 (2006).
    [CrossRef] [PubMed]
  11. L. Michaille, C. R. Bennett, D. M. Taylor, T. J. Shepherd, J. Broeng, H. R. Simonsen, and A. Petersson, “Phase locking and supermode selection in multicore photonic crystal fiber lasers with a large doped area,” Opt. Lett. 30, 1668-1670(2005).
    [CrossRef] [PubMed]

2008 (1)

2007 (1)

2006 (2)

2005 (1)

2003 (2)

2002 (3)

1986 (1)

M. A. Duguay, Y. Kukubun, T. L. Koch, and L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2−Si multilayer structures,” Appl. Phys. Lett. 49, 13-15 (1986).
[CrossRef]

Abeeluck, A. K.

Bennett, C. R.

Bouwmans, G.

Broeng, J.

Cerqueira, S. A.

Cordeiro, C. M. B.

Desfarges-Berthelemot, A.

Dong, X.

Douay, M.

Duguay, M. A.

M. A. Duguay, Y. Kukubun, T. L. Koch, and L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2−Si multilayer structures,” Appl. Phys. Lett. 49, 13-15 (1986).
[CrossRef]

Dunn, S. C.

Eggleton, B. J.

Fevrier, S.

George, A. K.

Headley, C.

Jin, L.

Kai, G.

Kermene, V.

Knight, J. C.

Koch, T. L.

M. A. Duguay, Y. Kukubun, T. L. Koch, and L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2−Si multilayer structures,” Appl. Phys. Lett. 49, 13-15 (1986).
[CrossRef]

Kukubun, Y.

M. A. Duguay, Y. Kukubun, T. L. Koch, and L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2−Si multilayer structures,” Appl. Phys. Lett. 49, 13-15 (1986).
[CrossRef]

Lavoute, L.

Litchinitser, N. M.

Liu, Y.

Luan, F.

Martijn de Sterke, C.

Martjin de Sterke, C.

McPhedran, R. C.

Michaille, L.

Perrin, M.

Petersson, A.

Pfeiffer, L.

M. A. Duguay, Y. Kukubun, T. L. Koch, and L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2−Si multilayer structures,” Appl. Phys. Lett. 49, 13-15 (1986).
[CrossRef]

Quiquempois, Y.

Roy, P.

Shepherd, T. J.

Simonsen, H. R.

Taylor, D. M.

Usner, B.

Wang, Z.

White, T. P.

Appl. Phys. Lett. (1)

M. A. Duguay, Y. Kukubun, T. L. Koch, and L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2−Si multilayer structures,” Appl. Phys. Lett. 49, 13-15 (1986).
[CrossRef]

Nature (1)

J. C. Knight, “Photonic crystal fibres,” Nature 424, 847-851(2003).
[CrossRef] [PubMed]

Opt. Express (6)

Opt. Lett. (3)

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Cross section of all directions and wavelengths HG-PCF.

Fig. 2
Fig. 2

Fundamental core modes and bandgap map of the HG-PCF. The effective refractive index curve of the fundamental core modes is labeled “Core modes.” Points A and B correspond to 1050 and 1090 nm , respectively.

Fig. 3
Fig. 3

Mode field profiles: (a) and (b) HG-PCF at λ = 900 and 1650 nm , respectively; (c) and (d) HI-PCFP at λ = 900 and 1650 nm , respectively.

Fig. 4
Fig. 4

Modal profiles of the LP 01 supermodes, which produce nonzero overlap. The amplitudes and directions of electric fields are represented by the arrows.

Fig. 5
Fig. 5

Some modal profiles of the LP 11 supermode: (a), (b), and (c) can produce nonzero overlaps; (d) can produce zero overlaps.

Fig. 6
Fig. 6

Transmission spectrum of the Bragg grating in the HG-PCF: (a)  Λ FBG = 311.3 nm and (b)  Λ FBG = 571.5 nm .

Fig. 7
Fig. 7

(a) Transmission spectrum of the Bragg grating in the HG-PCF when Λ FBG = 346 nm . (b) Modal profile of the LP 11 supermode at 1000 nm when n = 0 .

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

k = π λ grating E i ( x , y ) E j * ( x , y ) Δ n ( x , y ) d x d y .

Metrics